Recaps, boosting, face detection

Class 10. 24 Sep 2009

Instructor: Bhiksha Raj

Administrivia: Projects

Only 3 groups so far
${ }_{9}$ Plus two individuals
${ }_{q}$ Total of 15 people

Notify us about your teams by tomorrow
${ }_{q}$ Or at least that you are *trying* to form a team
${ }_{q}$ Otherwise, on $1^{\text {st }}$ we will assign teams by lots
n Inform us about the project you will be working on
${ }_{q}$ Only 4 projects so far

Administrivia: Homeworks

n. First homework will be returned to you on $6^{\text {th }}$
${ }_{q}$ Still waiting for the elusive late submissions J
${ }_{q}$ Scoring will be completed before that
n Second homework:
${ }_{q}$ If you are getting bad results, do not be surprised
${ }_{q}$ This is not a great technique
${ }_{q}$ A somewhat better technique will be tried for part
2 of the homework
Will be put up by Thursday

Lecture by Paris Smaragdis

Thursday.
n Independent Component Analysis and applications to audio
n Seminar by Paris on Friday
q 3.30 PM, GHC 4303
${ }_{q}$ Title "Making Machines Listen"
${ }_{q}$ Do not miss!
q Posters can be found in Porter, Wean, Hammerschlag and Roberts

RECAP

Principal Component Analysis

${ }_{n}$ Computing the "Principal" directions of a data

- What do they mean
${ }_{q}$ Why do we care

Principal Components $==$ Eigen Vectors

${ }_{n}$ Principal Component Analysis is the same as Eigen analysis
The "Principal Components" are the Eigen Vectors
${ }^{n}$ Again, what are Eigen Vectors?

Principal Component Analysis

Which line through the mean leads to the smallest reconstruction
error (sum of squared lengths of the blue lines) ?

Principal Components

n The first principal component is the first Eigen ("typical") vector
q $X=a_{1}(X) E_{1}$
${ }_{q}$ The first Eigen face
${ }_{q}$ For non-zero-mean data sets, the average of the data
n The second principal component is the second "typical" (or correction) vector
q $\quad X=a_{1}(X) E_{1}+a_{2}(X) E_{2}$

Faces
${ }_{q}$ Principal components: Eigen faces are like faces
n Music
q. Principal components are Eigen vectors
q. Eigen vectors are NOT like the notes

11-755 MLSP: Bhiksha Raj

Properties of Principal Components

The first principal component tells us nothing about the average value of the second component
n In general, the k-th principal component tells us nothing about the i-th principal component for i not equal to k.
The principal components are uncorrelated
${ }_{q}$ The average contribution of the second Eigen face to the the collection of faces is the same, regardless of the contribution of the first Eigen face

A Quick Intro to Boosting

Introduction to Boosting

n An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier
${ }^{q}$ Simple classifiers are often called "weak" learners
q The complex classifiers are called "strong" learners
n Each weak learner focuses on instances where the previous classifier failed
${ }_{q}$ Give greater weight to instances that have been incorrectly classified by previous learners
n Restrictions for weak learners
q Better than 50\% correct
Final classifier is weighted sum of weak classifiers

Boosting and the Chimpanzee Problem

The total confidence in all classifiers that classify the entity as a chimpanzee is

$$
\text { Score }_{\text {chimp }}=\sum_{\text {classifier favors chimpanzee }} a_{\text {classifier }}
$$

n The total confidence in all classifiers that classify it as a human is

$$
\text { Score }_{\text {human }}=\sum_{\text {classifier favors human }} a_{\text {classifier }}
$$

If Score $_{\text {chimpanzee }}>$ Score $_{\text {human }}$ then the our belief that we have a chimpanzee is greater than the belief that we have a human

Boosting. A very simple idea

n One can come up with many rules to classify
${ }_{q}$ E.g. Chimpanzee vs. Human classifier:
q If arms == long, entity is chimpanzee
q If height >5 ' 6 " entity is human
q If lives in house == entity is human
q. If lives in zoo == entity is chimpanzee
n Each of them is a reasonable rule, but makes many mistakes
${ }_{q}$ Each rule has an intrinsic error rate
n Combine the predictions of these rules
q But not equally
q Rules that are less accurate should be given lesser weight

Formalizing the Boosting Concept

${ }_{n}$ Given a set of instances $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)$
${ }_{q} x_{i}$ is the set of attributes of the $i^{\text {ih }}$ instance
${ }_{q} y_{1}$ is the class for the i in instance
n y_{1} can be +1 or -1 (binary classification only)
n Given a set of classifiers $h_{1}, h_{2}, \ldots, h_{T}$
$q h_{i}$ classifies an instance with attributes x as $h_{i}(x)$
${ }_{q} h_{i}(x)$ is either -1 or +1 (for a binary classifier)
${ }_{q} \mathrm{y}^{*} \mathrm{~h}(\mathrm{x})$ is 1 for all correctly classified points and -1 for incorrectly classified points
${ }_{n}$ Devise a function $f\left(h_{1}(x), h_{2}(x), \ldots, h_{T}(x)\right)$ such that classification based on $f()$ is superior to classification by any $h_{i}(x)$
${ }_{q}$ The function is succinctly represented as $f(x)$

The Boosting Concept

A simple combiner function: Voting
q $f(x)=S_{i} h_{i}(x)$
q Classifier $H(x)=\operatorname{sign}(f(x))=\operatorname{sign}\left(S_{i} h_{i}(x)\right)$
q Simple majority classifier
n A simple voting scheme
A better combiner function: Boosting
${ }_{q} f(x)=S_{i} a_{i} h_{i}(x)$
${ }_{n}$ Can be any real number
q. Classifier $H(x)=\operatorname{sign}(f(x))=\operatorname{sign}\left(S_{i} a_{i} h_{i}(x)\right)$
q A weighted majority classifier
The weight a_{i} for any $h_{i}(x)$ is a measure of our trust in $h_{i}(x)$

The ADABoost Algorithm

${ }_{n}$ Adaboost is ADAPTIVE boosting

The combined classifier is a sequence of weighted classifiers We learn classifier weights in an adaptive manner

Each classifier's weight optimizes performance on data whose weights are in turn adapted to the accuracy with which they have been classified

The ADABoost Algorithm

${ }_{n}$ Initialize $D_{1}\left(x_{i}\right)=1 / N$
For $t=1, \ldots, \mathrm{~T}$
q Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data

```
    \({ }_{\mathrm{n}} \mathrm{e}_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}\)
\({ }_{q}\) Set \(a_{t}=1 / 2 \ln \left(\left(1-e_{t}\right) / e_{t}\right)\)
\({ }_{q}\) For \(i=1 \ldots\) N
```

$$
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution
The final classifier is
${ }_{\text {q }} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

Image $=\mathbf{a} * E 1+b * E 2 \quad a=$ Image $. E 1 / / I m a g e l$

n Face detection with multiple Eigen faces
n Step 0: Derived top 2 Eigen faces from eigen face training data Step 1: On a (different) set of examples, express each image as a linear combination of Eigen faces
${ }_{q}$ Examples include both faces and non faces
${ }_{q}$ Even the non-face images will are explained in terms of the eigen faces

Training Data

號 $=0.3 \mathrm{E} 1-0.6 \mathrm{E} 2$
$=0.5 \mathrm{E} 1-0.5 \mathrm{E} 2$
$=0.7 \mathrm{E} 1-0.1 \mathrm{E} 2$
$=0.6 \mathrm{E} 1-0.4 \mathrm{E} 2$
$=0.2 \mathrm{E} 1+0.4 \mathrm{E} 2$
$=$
$=0.8 \mathrm{E} 1-0.1 \mathrm{E} 2$
$=$
$=0.4 \mathrm{E} 1-0.9 \mathrm{E} 2$
$=$

ID	E1	E2.	Class
A	0.3	-0.6	+1
B	0.5	-0.5	+1
C	0.7	-0.1	+1
D	0.6	-0.4	+1
E	0.2	0.4	-1
F	-0.8	-0.1	-1
G	0.4	-0.9	-1
H	0.2	0.5	-1

Face $=+1$
Non-face $=-1$

The ADABoost Algorithm

Initialize $D_{1}\left(x_{i}\right)=1 / \mathrm{N}$
For $t=1, \ldots, \mathrm{~T}$
${ }_{q}$ Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data
$\left.{ }_{\mathrm{n}} \mathrm{e}_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 ⁄ 2\left(1-y_{i}\right.} h_{t}\left(x_{i}\right)\right)\right\}$
${ }_{q}$ Set $a_{t}=1 / 2 \ln \left(\left(1-e_{t}\right) / e_{t}\right)$
${ }_{q}$ For $i=1 \ldots$ N

$$
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution The final classifier is
${ }_{\text {q }} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

Training Data

$=0.2 \mathrm{E} 1+0.4 \mathrm{E} 2$
$=$
$=0.8 \mathrm{E} 1-0.1 \mathrm{E} 2$
$=$
$=0.4 \mathrm{E} 1-0.9 \mathrm{E} 2$
$=$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The ADABoost Algorithm

n Initialize $D_{1}\left(x_{i}\right)=1 / N$
${ }_{n}$ For $t=1, \ldots$, T
${ }_{q}$ Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data

$$
\mathrm{e}_{\mathrm{t}}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}
$$

${ }_{q}$ Set $a_{t}=1 / 2 \ln \left(e_{t} /\left(1-e_{t}\right)\right)$
${ }_{q}$ For $i=1 \ldots$ N

$$
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution The final classifier is
${ }_{\text {q }} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

The E1"Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
$\operatorname{sign}=+1$ or -1

Sign $=+1$, error $=3 / 8$
$\operatorname{Sign}=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

F	E	H	A	G	B	C	D
$\mathbf{- 0 . 8}$	$\mathbf{0 . 2}$	$\mathbf{0 . 2}$	0.3	0.4	$\mathbf{0 . 5}$	0.6	0.7
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$

Classifier based on E1: if $\left(\operatorname{sign}^{*} w t(E 1)>+\right.$ thresh $\left.)>0\right)$ face $=$ true
$\operatorname{sign}=+1$ or -1

threshold

Sign $=+1$, error $=2 / 8$
$\operatorname{Sign}=-1$, error $=6 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

F	E	H	A	G	B	C	D
0.8	0.2	0.2	0.3	0.4	0.5	0.6	18.7
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

Classifier based on E1: if $\left(\operatorname{sign}^{*} w t(E 1)>+\right.$ thresh $\left.)>0\right)$ face $=$ true
$\operatorname{sign}=+1$ or -1

threshold

Sign $=+1$, error $=1 / 8$
Sign $=-1$, error $=7 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
$\operatorname{sign}=+1$ or -1

Sign $=+1$, error $=2 / 8$
Sign $=-1$, error $=6 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

F	E	H	A	G	B	C	D
-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7

Classifier based on E1:
sign $=+1$ or -1

```
if ( sign*wt(E1) > thresh) > 0) face \(=\) true
    face = true
```

threshold
Sign $=+1$, error $=1 / 8$
Sign $=-1$, error $=7 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

F	E	H	A	G	B	C	D
-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7
1/8	1/8	1/8	1/8			1/8	1/8

Classifier based on E1: if $\left(\operatorname{sign}^{*} w t(E 1)>+\right.$ thresh $\left.)>0\right)$ face $=$ true
sign $=+1$ or -1
threshold
Sign $=+1$, error $=2 / 8$
$\operatorname{Sign}=-1$, error $=6 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The Best E1 "Stump"


```
Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0)
    face = true
Sign = +1
Threshold = 0.45
```

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E2"Stump"

Note order

Classifier based on E2:
if $\left(\right.$ sign*wt(E2) $^{\text {t }}$ > thresh $)>0$) face $=$ true
sign $=+1$ or -1

```
threshold - - ー ー - -> 
```

Sign $=+1$, error $=3 / 8$
$\operatorname{Sign}=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The Best E2"Stump"

G	A	B	D	C	F	E	H
-0.9	-0.6	-0.5	-0.4	0.1	0.1	0.4	0.5
$\begin{array}{lllllllllllll}1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8\end{array}$							1/8
threshold							

$$
\begin{aligned}
& \text { if } \left.\left(\operatorname{sign}^{*} w t(E 2)>\text { thresh }\right)>0\right) \\
& \text { face }=\text { true }
\end{aligned}
$$

$\operatorname{sign}=-1$
Threshold $=0.15$

Sign $=-1$, error $=2 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

11-755 MLSP: Bhiksha Raj

The Best "Stump"

The Best overall classifier based on a single feature is based on E1
If $(w+(E 1)>0.45) \quad$ Face

Sign $=+1$, error $=1 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

11-755 MLSP: Bhiksha Raj

The ADABoost Algorithm

n Initialize $D_{1}\left(x_{i}\right)=1 / N$
${ }_{n}$ For $t=1, \ldots$, T
q Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data

$$
{ }^{n} e_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right) 1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}
$$

${ }_{q}$ Set $a_{t}=1 / 2 \ln \left(e_{t} /\left(1-e_{t}\right)\right)$
${ }_{q}$ For $i=1 \ldots \mathrm{~N}$

$$
\text { net } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution The final classifier is
${ }_{q} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

The Best Error

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED INSTANCES

The ADABoost Algorithm

${ }_{n}$ Initialize $D_{1}\left(x_{i}\right)=1 / N$
${ }_{n}$ For $t=1, \ldots$, T
${ }_{q}$ Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data

```
    \(\left.{ }_{\mathrm{n}} \mathrm{e}_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2\left(1-y_{i}\right.} h_{t}\left(x_{i}\right)\right)\right\}\)
\({ }_{q}\) Set \(a_{t}=1 / 2 \ln \left(\left(1-e_{t}\right) / e_{t}\right)\)
\({ }_{q}\) For \(i=1 \ldots\) N
```

$$
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution The final classifier is
${ }_{\text {q }} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

Computing Alpha

The Boosted Classifier Thus Far

The ADABoost Algorithm

${ }_{n}$ Initialize $D_{1}\left(x_{i}\right)=1 / N$
n For $t=1, \ldots, \mathrm{~T}$
${ }_{q}$ Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data
$n e_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
${ }_{q}$ Set $a_{t}=1 / 2 \ln \left(\left(1-e_{t}\right) / e_{t}\right)$
${ }_{q}$ For $i=1 \ldots \mathrm{~N}$

$$
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution The final classifier is
${ }_{q} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

The Best Error

ID	E1	E2.	Class	Weight	Weight
A	0.3	-0.6	+1	$1 / 8{ }^{*} 2.63$	0.33
B	0.5	-0.5	+1	$1 / 8^{*} 0.38$	0.05
C	0.7	-0.1	+1	$1 / 8{ }^{*} 0.38$	0.05
D	0.6	-0.4	+1	$1 / 8^{*} 0.38$	0.05
E	0.2	0.4	-1	$1 / 8^{*} 0.38$	0.05
F	-0.8	0.1	-1	$1 / 8^{*} 0.38$	0.05
G	0.4	-0.9	-1	$1 / 8{ }^{*} 0.38$	0.05
H	0.2	0.5	-1	$1 / 8^{*} 0.38$	0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

The ADABoost Algorithm

${ }_{n}$ Initialize $D_{1}\left(x_{i}\right)=1 / N$
${ }_{n}$ For $t=1, \ldots$, T
${ }_{q}$ Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data
$n e_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
${ }_{q}$ Set $a_{t}=1 / 2 \ln \left(\left(1-e_{t}\right) / e_{t}\right)$
${ }_{q}$ For $i=1 \ldots \mathrm{~N}$
${ }_{n}$ set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
${ }_{q}$ Normalize D_{t+1} to make it a distribution
The final classifier is
${ }_{q} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

The Best Error

$\begin{array}{llllllll}\mathbf{F} & \mathbf{E} & \mathbf{H} & \mathbf{A} & \mathbf{G} & \mathbf{B} & \mathbf{C} & \mathbf{D}\end{array}$

-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7

$D^{\prime}=D / \operatorname{sum}(D)$

$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$

threshold

ID	E1	E2.	Class	Weight	Weight	Weight
A	0.3	-0.6	+1	$1 / 8^{*} 2.63$	0.33	0.48
B	0.5	-0.5	+1	$1 / 8^{*} 0.38$	0.05	0.074
C	0.7	-0.1	+1	$1 / 8^{*} 0.38$	0.05	0.074
D	0.6	-0.4	+1	$1 / 8^{*} 0.38$	0.05	0.074
E	0.2	0.4	-1	$1 / 8^{*} 0.38$	0.05	0.074
F	-0.8	0.1	-1	$1 / 8{ }^{*} 0.38$	0.05	0.074
G	0.4	-0.9	-1	$1 / 8^{*} 0.38$	0.05	0.074
H	0.2	0.5	-1	$1 / 8 * 0.38$	0.05	0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The Best Error

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The ADABoost Algorithm

n Initialize $D_{1}\left(x_{i}\right)=1 / N$
${ }_{n}$ For $t=1, \ldots$, T
${ }_{q}$ Train a weak classifier h_{t} using distribution D_{t}
${ }_{q}$ Compute total error on training data
$n e_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
${ }_{q}$ Set $a_{t}=1 / 2 \ln \left(e_{t} /\left(1-e_{t}\right)\right)$
${ }_{q}$ For $i=1 \ldots \mathrm{~N}$

$$
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-a_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

${ }_{q}$ Normalize D_{t+1} to make it a distribution The final classifier is
${ }_{q} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

E1 classifier

F E	H	A	G	B	C	D
0.80 .2	0.2	0.3	0.4	0.5	0.6	0.7
. 074 \% 074	. 074	. 48	. 074	. 074	. 074	. 074
threshold						

Classifier based on E1:

 if (sign*wt(E1) > thresh) > 0) face $=$ true$\operatorname{sign}=+1$ or -1

Sign $=+1$, error $=0.222$
Sign $=-1$, error $=0.778$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

E1 classifier

Classifier based on E1:

 if (sign*wt(E1) > thresh) > 0) face $=$ true$\operatorname{sign}=+1$ or -1

Sign $=+1$, error $=0.148$
Sign $=-1$, error $=0.852$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

The Best E1 classifier

Classifier based on E1:

F E	H	A	G	B	C	D
0.80 .2	0.2	0.3	0.4	0.5	0.6	0.7
. 074.074	. 074	. 48	. 074	. 074	. 074	. 074
	threshold					

```
    if ( sign*wt(E1) > thresh) > 0)
    face = true
```

 \(\operatorname{sign}=+1\) or -1
 Sign $=+\mathbf{1}$, error $=0.074$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

11-755 MLSP: Bhiksha Raj

The Best E2 classifier

Classifier based on E2:

$$
\begin{aligned}
& \text { if } \left.\left(\text { sign*wt }^{*} \text { (E2) }>\text { thresh }\right)>0\right) \\
& \text { face }=\text { true }
\end{aligned}
$$

$\operatorname{sign}=+1$ or -1

Sign $=\mathbf{- 1}$, error $=0.148$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	-0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

11-755 MLSP: Bhiksha Raj

The Best Classifier

F	E	H	A	G	B	C	D
0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7
. 074.	. 074	. 074	. 48	. 074	. 074	. 074	. 074
		threshold					

$$
\left.\begin{array}{l}
\text { Classifier based on E1: } \\
\text { if }(w t(E 1)>0.45) \text { face }=\text { true }
\end{array}\right\} \begin{aligned}
\text { Alpha }=0.5 \ln ((1-0.074) / 0.074) \\
\quad=1.26
\end{aligned}
$$

Sign $=+\mathbf{1}$, error $=\mathbf{0 . 0 7 4}$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

The Boosted Classifier Thus Far

$$
H(X)=\operatorname{sign}(0.97 \text { * h1 (X) + } 1.26 \text { * h2 }(X))
$$

Reweighting the Data

$$
\begin{aligned}
& \operatorname{Exp}(\text { alpha })=\exp (2.36)=10 \\
& \operatorname{Exp}(- \text { alpha })=\exp (-2.36)=0.1
\end{aligned}
$$

Sign $=+\mathbf{1}$, error $=\mathbf{0 . 0 7 4}$

ID	E1	E2.	Class	Weight	
A	0.3	-0.6	+1	$0.48^{*} 0.1$	0.06
B	0.5	-0.5	+1	$0.074^{*} 0.1$	0.01
C	0.7	-0.1	+1	$0.074^{*} 0.1$	0.01
D	0.6	-0.4	+1	$0.074^{*} 0.1$	0.01
E	0.2	0.4	-1	$0.074^{*} 0.1$	0.01
F	-0.8	0.1	-1	$0.074^{*} 0.1$	0.01
G	0.4	-0.9	-1	$0.074^{*} 10$	0.86
H	0.2	0.5	-1	$0.074^{*} 0.1$	0.01

Reweighting the Data

Sign $=+\mathbf{1}$, error $=\mathbf{0 . 0 7 4}$

ID	E1	E2.	Class	Weight	
A	0.3	-0.6	+1	$0.48^{*} 0.1$	0.06
B	0.5	-0.5	+1	$0.074^{*} 0.1$	0.01
C	0.7	-0.1	+1	$0.074^{*} 0.1$	0.01
D	0.6	-0.4	+1	$0.074^{*} 0.1$	0.01
E	0.2	0.4	-1	$0.074^{*} 0.1$	0.01
F	-0.8	0.1	-1	$0.074^{*} 0.1$	0.01
G	0.4	-0.9	-1	$0.074^{*} 10$	0.86
H	0.2	0.5	-1	$0.074^{*} 0.1$	0.01

AdaBoost

In this example both of our first two classifiers were based on E1
${ }_{q}$ Additional classifiers may switch to E2
In general, the reweighting of the data will result in a different feature being picked for each classifier

This also automatically gives us a feature selection strategy
${ }_{q}$ In this data the $\mathrm{wt}(\mathrm{E} 1)$ is the most important feature

AdaBoost

n NOT required to go with the best classifier so far
n For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier
${ }_{q}$ So long as its right more than 50% of the time
n We can continue to add classifiers even after we get 100% classification of the training data
q Because the weights of the data keep changing
a Adding new classifiers beyond this point is often a good thing to do

ADA Boost

$\square=0.4 \mathrm{E} 1-0.4 \mathrm{E} 2$

The final classifier is
${ }_{q} H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$

The output is 1 if the total weight of all weak learners that classify x as 1 is greater than the total weight of all weak learners that classify it as -1

Boosting and Face Detection

${ }_{n}$ Boosting forms the basis of the most common technique for face detection today: The Viola-Jones algorithm.

The problem of face detection

Defining Features

${ }_{q}$ Should we be searching for noses, eyes, eyebrows etc.?
n Nice, but expensive
a Or something simpler
${ }_{n}$ Selecting Features
q Of all the possible features we can think of, which ones make sense
n Classification: Combining evidence
${ }_{q}$ How does one combine the evidence from the different features?

Features: The Viola Jones Method

Integral Features!!
${ }_{q}$ Like the Checkerboard
n The same principle as we used to decompose images in terms of checkerboards:
${ }_{q}$ The image of any object has changes at various scales
${ }_{q}$ These can be represented coarsely by a checkerboard pattern
n The checkerboard patterns must however now be localized
${ }_{q}$ Stay within the region of the face

Features

n Checkerboard Patterns to represent facial features
${ }_{q}$ The white areas are subtracted from the black ones.
${ }_{q}$ Each checkerboard explains a localized portion of the image
n Four types of checkerboard patterns (only)

"Integral" features

Each checkerboard has the following characteristics
q Length
q Width
${ }_{q}$ Type
Specifies the number and arrangement of bands
n The four checkerboards above are the four used by Viola and Jones

Explaining a portion of the face with a

 checker..
n How much is the difference in average intensity of the image in the black and white regions
q Sum(pixel values in white region) - Sum(pixel values in black region)
This is actually the dot product of the region of the face covered by the rectangle and the checkered pattern itself
q White $=1$, Black $=-1$

Integral images

n Summed area tables

For each pixel store the sum of ALL pixels to the left of and above it.

Fast Computation of Pixel Sums

Figure 3: The sum of the pixels within rectangle D can be computed with four array references. The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is $A+B$, at location 3 is $A+C$, and at location 4 is $A+B+C+D$. The sum within D can be computed as $4+1-(2+3)$.

A Fast Way to Compute the Feature

Store pixel table for every pixel in the image
${ }_{q}$ The sum of all pixel values to the left of and above the pixel Let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ be the pixel table values at the locations shown
q Total pixel value of black area $=\mathrm{D}+\mathrm{A}-\mathrm{B}-\mathrm{C}$
q Total pixel value of white area $=F+C-D-E$
q Feature value $=(F+C-D-E)-(D+A-B-C)$

How many features?

Each checker board of width P and height H can start at
q $(0,0),(0,1),(0,2), \ldots(0, N-P)$
${ }_{q} \quad(1,0),(1,1),(1,2), \ldots(1, N-P)$
q ..
(M-H,0), (M-H,1), (M-H,2), ... (M-H, N-P)
$(\mathrm{M}-\mathrm{H})^{*}(\mathrm{~N}-\mathrm{P})$ possible starting locations
Each is a unique checker feature
n E.g. at one location it may measure the forehead, at another the chin

How many features

Each feature can have many sizes
q Width from (min) to (max) pixels
q Height from (min ht) to (max ht) pixels
n At each size, there can be many starting locations
${ }_{q}$ Total number of possible checkerboards of one type: No. of possible sizes x No. of possible locations
n There are four types of checkerboards
q Total no. of possible checkerboards: VERY VERY LARGE!

Learning. No. of features

${ }_{n}$ Analysis performed on images of 24×24 pixels only
${ }_{q}$ Reduces the no. of possible features to about 180000
n Restrict checkerboard size
${ }_{9}$ Minimum of 8 pixels wide
q Minimum of 8 pixels high
n Other limits, e.g. 4 pixels may be used too
${ }_{q}$ Reduces no. of checkerboards to about 50000

No. of features

Each possible checkerboard gives us one feature
A total of up to 180000 features derived from a 24×24 image!
Every 24×24 image is now represented by a set of 180000 numbers
q This is the set of features we will use for classifying if it is a face or not!

The Classifier

The Viola-Jones algorithm uses a simple Boosting based classifier
n Each "weak learner" is a simple threshold
n At each stage find the best feature to classify the data with
${ }_{q}$ l.e the feature that gives us the best classification of all the training data

Training data includes many examples of faces and non-face images
${ }_{q}$ The classification rule is of the kind
n If feature > threshold, face (or if feature < threshold, face) The optimal value of "threshold" must also be determined.

The Weak Learner

n Training (for each weak learner):
q For each feature f (of all 180000 features)
n Find a threshold $q(f)$ and polarity $p(\mathrm{f})(p(\mathrm{f})=-1$ or $p(\mathrm{f})=1$) such that $\left(f>p(f){ }^{*} q(f)\right)$ performs the best classification of faces
${ }_{q}$ Lowest overall error in classifying all training data
\& Error counted over weighted samples
$n \quad$ Let the optimal overall error for f be $\operatorname{error}(f)$
${ }_{q}$ Find the feature f^{\prime} such that error(f^{\prime}) is lowest
${ }_{q}$ The weak learner is the test $\left(f^{\prime}>p\left(f^{\prime}\right)^{*} q\left(f^{\prime}\right)\right)=>$ face
n Note that the procedure for learning weak learners also identifies the most useful features for face recognition

The Viola Jones Classifier

${ }_{n}$ A boosted threshold-based classifier
${ }_{n}$ First weak learner: Find the best feature, and its optimal threshold
${ }_{q}$ Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner)

Third weak learner: Find the best feature for the reweighted data and its optimal threshold (weighting from two weak learners)
${ }_{q}$ Fourth weak learner: Find the best feature for the reweighted data and its optimal threhsold (weighting from three weak learners)

To Train

n Collect a large number of histogram equalized facial images
q Resize all of them to 24×24
${ }_{q}$ These are our "face" training set
Collect a much much much larger set of 24×24 non-face images of all kinds
${ }_{q}$ Each of them is histogram equalized
${ }_{q}$ These are our "non-face" training set
n Train a boosted classifier

The Viola Jones Classifier

During tests:
q. Given any new 24×24 image

$$
\mathrm{H}(\mathrm{f})=\operatorname{Sign}\left(S_{f} a_{f}\left(f>p_{f} q(f)\right)\right)
$$

n Only a small number of features ($f<100$) typically used
n Problems:
q Only classifies 24×24 images entirely as faces or non-faces
n Typical pictures are much larger
n They may contain many faces
Faces in pictures can be much larger or smaller
q Not accurate enough

Multiple faces in the picture

n Scan the image
q. Classify each 24×24 rectangle from the photo
q All rectangles that get classified as having a face indicate the location of a face
n For an NxM picture, we will perform (N-24)*(M-24) classifications
n If overlapping 24×24 rectangles are found to have faces, merge them

Multiple faces in the picture

n Scan the image
q. Classify each 24×24 rectangle from the photo
q All rectangles that get classified as having a face indicate the location of a face
n For an NxM picture, we will perform (N-24)*(M-24) classifications
n If overlapping 24×24 rectangles are found to have faces, merge them

Multiple faces in the picture

n Scan the image
q. Classify each 24×24 rectangle from the photo
q All rectangles that get classified as having a face indicate the location of a face
n For an NxM picture, we will perform ($\mathrm{N}-24)^{*}(\mathrm{M}-24)$ classifications
n If overlapping 24×24 rectangles are found to have faces, merge them

Multiple faces in the picture

n Scan the image
q. Classify each 24×24 rectangle from the photo
q All rectangles that get classified as having a face indicate the location of a face
n For an NxM picture, we will perform ($\mathrm{N}-24)^{*}(\mathrm{M}-24)$ classifications
n If overlapping 24×24 rectangles are found to have faces, merge them

Face size solution

We already have a classifier
${ }_{q}$ That uses weak learners
Scale each classifier
q Every weak learner
${ }_{q}$ Scale its size up by factor a. Scale the threshold up to a^{2} q.
${ }_{q}$ Do this for many scaling factors

Overall solution

Scan the picture with classifiers of size 24×24 Scale the classifier to 26×26 and scan
Scale to 28×28 and scan etc.
Faces of different sizes will be found at different scales

False Rejection vs. False detection

n False Rejection: There's a face in the image, but the classifier misses it
${ }_{q}$ Rejects the hypothesis that there's a face
n False detection: Recognizes a face when there is none.
n Classifier:
${ }_{q}$ Standard boosted classifier: $H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)\right)$
${ }_{q}$ Modified classifier $H(x)=\operatorname{sign}\left(S_{t} a_{t} h_{t}(x)+Y\right)$
n Y is a bias that we apply to the classifier.
n If Y is large, then we assume the presence of a face even when we are not sure
${ }_{q}$ By increasing Y, we can reduce false rejection, while increasing false detection
n Many instances for which $s_{t} a_{t} h_{t}(x)$ is negative get classified as faces

ROC

n Ideally false rejection will be 0%, false detection will also be 0\%
As Y increases, we reject faces less and less
${ }_{q}$ But accept increasing amounts of garbage as faces
${ }_{n}$ Can set Y so that we rarely miss a face

Problem: Not accurate enough, too slow

${ }_{n}$ If we set Y high enough, we will never miss a face
${ }_{q}$ But will classify a lot of junk as faces
${ }_{n}$ Solution: Classify the output of the first classifier with a second classifier
${ }_{q}$ And so on.

Cascaded Classifiers

Build the first classifier to have near-zero false rejection rate
q But will reject a large number of non-face images

Cascaded Classifiers

n Build the first classifier to have near-zero false rejection rate
q But will reject a large number of non-face images
Filter all training data with this classifier
Build a second classifier on the data that have been passed by the first classifier, to have near-zero false rejection rate
${ }_{q}$ This classifier will be different from the first one
Different data set

Cascaded Classifiers

n Build the first classifier to have near-zero false rejection rate
q But will reject a large number of non-face images
Filter all training data with this classifier
Build a second classifier on the data that have been passed by the first classifier, to have near-zero false rejection rate
q This classifier will be different from the first one
Different data set
n Filter all training data with the cascade of the first two classifiers
n Build a third classifier on data passed by the cascade..
q And so on..

Final Cascade of Classifiers

Useful Features Learned by Boosting

Detection in Real Images

n Basic classifier operates on 24×24 subwindows
n Scaling:
${ }_{q}$ Scale the detector (rather than the images)
a Features can easily be evaluated at any scale
${ }_{q}$ Scale by factors of 1.25

Location:
${ }_{q}$ Move detector around the image (e.g., 1 pixel increments)
n Final Detections
q A real face may result in multiple nearby detections
${ }_{q}$ Postprocess detected subwindows to combine overlapping detections into a single detection

Training

In paper, 24×24 images of faces and non faces (positive and negative examples).

Sample results using the Viola-Jones

Detector

Notice detection at multiple scales

More Detection Examples

11-755 MLSP: Bhiksha Raj

Practical implementation

Details discussed in Viola-Jones paper

Training time $=$ weeks (with 5 k faces and 9.5 k nonfaces)

Final detector has 38 layers in the cascade, 6060 features

700 Mhz processor:
q Can process a 384×288 image in 0.067 seconds (in 2003 when paper was written)

n MORE RECAPS

Uncorrelated vs. Independence

Left panel: What does the value of X tell you about the average value of Y ?
q But what does X tell you about the distribution of Y ?
n Right panel: What does the value of X tell you about the average value of Y ?
${ }_{q}$ What about the distribution?
${ }_{q} X$ and Y are independent!

Independent component analysis

Pick "basis" vectors such that projections along one tell you nothing about projections along another
${ }_{q}$ Not merely such that they do not tell you anything about the average value

These represent "independent" factors that compose the data
E. E.g. knowing where one note occurs in music tells you nothing about where another note occurs
${ }_{q}$ These are independent factors

Non-negative Matrix Factorization

What we need to explain the music

Some times components only add
q Notes in a piece of music are purely additive
${ }_{q}$ Playing one note will not cancel out another that is simultaneously played PCA / Eigen analysis result in bases that combine both additively and subtractively
${ }_{q}$ E.g. for the piece of music above, the first eigen vector includes frequencies that are not in the first note. They must be subtracted out by subsequent eigen vectors

Non-negative Matrix Factorization

${ }_{n}$ NMF will give you purely additive bases
${ }_{q}$ Bases will be non-negative
${ }_{q}$ They will only add and never subtract
n For the music above this automatically discovers the notes

Multi-Dimensional Scaling

	x 1	x 2	x 3	x 4
x 1	0	1.9	7	6.2
x 2		0	11	5.3
x 3			0	4.9
x 4				0

Given only the distances between data, how do you find their locations in some N dimensional space
${ }_{9}$ The distances may be from anything
n KL distances, counts, etc.

NIDS for ainensionality rearuction

n Given vectors with very large dimensionality
${ }_{q}$ E.g. spectral vectors: 1025 components (frequencies)
q Images: 10000 components (pixels)
n Compute for each vector Y a new low-dimensional vector Y^{\prime} such that the distances between vectors is preserved
q Compute distances between all vector pairs
q Employ MDS to get new low-dimensional vectors
E.g. 100 dimensions instead of 10000

Additional Topics

Covered later as required

