11-755 Machine Learning for Signal Processing

Recaps, boosting, face detection

Class 10. 24 Sep 2009

Instructor: Bhiksha Raj

Administrivia: Projects

- n Only 3 groups so far
 - Plus two individuals
 - g Total of 15 people
- n Notify us about your teams by tomorrow
 - $_{\rm q}$ Or at least that you are *trying* to form a team
 - ^q Otherwise, on 1st we will assign teams by lots
- n Inform us about the project you will be working on
 - g Only 4 projects so far

Administrivia: Homeworks

- ⁿ First homework will be returned to you on 6th
 - $_{\rm q}~$ Still waiting for the elusive late submissions $_{\rm J}$
 - g Scoring will be completed before that
- n Second homework:
 - $_{\rm q}\,$ If you are getting bad results, do not be surprised
 - This is not a great technique
 - A somewhat better technique will be tried for part 2 of the homework
 - ⁿ Will be put up by Thursday

Lecture by Paris Smaragdis

- n Thursday.
- Independent Component Analysis and applications to audio
- n Seminar by Paris on Friday
 - $_{\rm q}$ 3.30 PM, GHC 4303
 - qTitle "Making Machines Listen"
 - g Do not miss!
 - Posters can be found in Porter, Wean, Hammerschlag and Roberts

RECAP

11-755 MLSP: Bhiksha Raj

Principal Component Analysis

n Computing the "Principal" directions of a data

- g What do they mean
- g Why do we care

- Principal Component Analysis is the same as Eigen analysis
- n The "Principal Components" are the Eigen Vectors
- n Again, what are Eigen Vectors?

Principal Component Analysis

- ⁿ The first principal component is the *first Eigen* ("typical") vector
 - $A = a_1(X)E_1$
 - qThe first Eigen face
 - $_{\rm q}$ For non-zero-mean data sets, the average of the data
- The second principal component is the second "typical" (or correction) vector
 - $A = a_1(X)E_1 + a_2(X)E_2$

Example of Principal Components

n Faces

^q Principal components: Eigen faces are like faces

n Music

- qPrincipal components are Eigen vectors
- $_{\rm q}$ Eigen vectors are **NOT** like the notes

11-755 MLSP: Bhiksha Raj

Properties of Principal Components

- The first principal component tells us nothing about the *average* value of the second component
- In general, the *k*-th principal component tells us nothing about the *i*-th principal component for *i* not equal to *k*.
- n The principal components are *uncorrelated*
 - The *average* contribution of the second Eigen face to the the collection of faces is the same, regardless of the contribution of the first Eigen face

A Quick Intro to Boosting

11-755 MLSP: Bhiksha Raj

Introduction to Boosting

- An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier
 - g Simple classifiers are often called "weak" learners
 - The complex classifiers are called "strong" learners
- n Each weak learner focuses on instances where the previous classifier failed
 - Give greater weight to instances that have been incorrectly classified by previous learners
- n Restrictions for weak learners
 - ^d Better than 50% correct
- ⁿ Final classifier is *weighted* sum of weak classifiers

ⁿ The total confidence in all classifiers that classify the entity as a chimpanzee is

$$Score_{chimp} = \sum_{classifier favors chimpanzee} a_{classifier}$$

n The total confidence in all classifiers that classify it as a human is

$$Score_{human} = \sum_{classifier favors human} a_{classifier}$$

ⁿ If *Score_{chimpanzee} > Score_{human}* then the our belief that we have a chimpanzee is greater than the belief that we have a human

Boosting: A very simple idea

- ⁿ One can come up with many rules to classify
 - g E.g. Chimpanzee vs. Human classifier:
 - If arms == long, entity is chimpanzee
 - $_{\text{q}}$ If height > 5'6" entity is human
 - g If lives in house == entity is human
 - ^q If lives in zoo == entity is chimpanzee
- n Each of them is a reasonable rule, but makes many mistakes
 - g Each rule has an intrinsic error rate
- n *Combine* the predictions of these rules
 - g But not equally
 - Rules that are less accurate should be given lesser weight

Formalizing the Boosting Concept

- ⁿ Given a set of instances $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$
 - x_i is the set of attributes of the *i*th instance
 - $g y_1$ is the class for the *i*th instance
 - n y_1 can be +1 or -1 (binary classification only)
- ⁿ Given a set of classifiers h_1, h_2, \ldots, h_T
 - h_i classifies an instance with attributes x as $h_i(x)$
 - $h_i(x)$ is either -1 or +1 (for a binary classifier)
 - $_{\rm q}~y^{*}h(x)$ is 1 for all correctly classified points and -1 for incorrectly classified points
- Devise a function $f(h_1(x), h_2(x), ..., h_T(x))$ such that classification based on f() is superior to classification by any $h_i(x)$
 - The function is succinctly represented as f(x)

The Boosting Concept

- n A simple combiner function: Voting
 - q $f(x) = S_i h_i(x)$
 - G Classifier $H(x) = \operatorname{sign}(f(x)) = \operatorname{sign}(S_i h_i(x))$
 - g Simple majority classifier
 - ⁿ A simple voting scheme
- A better combiner function: Boosting
 - q $f(x) = S_i a_i h_i(x)$
 - ⁿ Can be any real number
 - G Classifier $H(x) = \operatorname{sign}(f(x)) = \operatorname{sign}(S_i a_i h_i(x))$
 - g A weighted majority classifier
 - ⁿ The weight a_i for any $h_i(x)$ is a measure of our trust in $h_i(x)$

The ADABoost Algorithm

n Adaboost is ADAPTIVE boosting

- n The combined classifier is a sequence of weighted classifiers
- n We learn classifier weights in an adaptive manner
- n Each classifier's weight optimizes performance on data whose weights are in turn adapted to the accuracy with which they have been classified

The ADABoost Algorithm

```
n Initialize D_1(x_j) = 1/N
n For t = 1, ..., T
```

- Train a weak classifier h_t using distribution D_t
- g Compute total error on training data

n
$$e_t = \text{Sum} \{ D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i)) \}$$

g Set $a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$

n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$

 $_{\rm q}$ Normalize D_{t+1} to make it a distribution

```
n The final classifier is
```

 $H(x) = \operatorname{sign}(S_t a_t h_t(x))$

- n Face detection with multiple Eigen faces
- ⁿ Step 0: Derived top 2 Eigen faces from eigen face training data
- Step 1: On a (different) set of examples, express each image as a linear combination of Eigen faces
 - g Examples include both faces and non faces
 - $_{\rm q}$ $\,$ Even the non-face images will are explained in terms of the eigen faces

Training Data

$$= 0.2 \text{ E1} + 0.4 \text{ E2}$$
$$= -0.8 \text{ E1} - 0.1 \text{ E2}$$
$$= 0.4 \text{ E1} - 0.9 \text{ E2}$$
$$= 0.2 \text{ E1} + 0.5 \text{ E2}$$

ID	E1	E2.	Class	
Α	0.3	-0.6	+1	Face
В	0.5	-0.5	+1	
С	0.7	-0.1	+1	Non-
D	0.6	-0.4	+1	
 E	0.2	0.4	-1	
F	-0.8	-0.1	-1	
G	0.4	-0.9	-1	
Н	0.2	0.5	-1	

Face = +1 Non-face = -1

The ADABoost Algorithm

Initialize $D_1(x_i) = 1/N$

ⁿ For t = 1, ..., T

- **Train a weak classifier** h_t using distribution D_t
- g Compute total error on training data

 $n = Sum \{ D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i)) \}$

g Set $a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$

n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$

 $_{\rm q}$ Normalize D_{t+1} to make it a distribution

n The final classifier is

 $\mathbf{H}(x) = \operatorname{sign}(\mathbf{S}_t \mathbf{a}_t h_t(x))$

Training Data

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

The ADABoost Algorithm

n Initialize
$$D_1(x_i) = 1/N$$

- Train a weak classifier h_t using distribution D_t
- G Compute total error on training data

$$= e_t = \text{Sum} \{ D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i)) \}$$

$$a_{t} = \frac{1}{2} \ln (e_{t} / (1 - e_{t}))$$

n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$

 $_{\rm q}$ Normalize D_{t+1} to make it a distribution

n The final classifier is

 $\mathbf{H}(x) = \operatorname{sign}(\mathbf{S}_t \mathbf{a}_t h_t(x))$

Sign = -1, error = 5/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

Sign = -1, error = 7/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

Sign = -1, error = 6/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

The Best E1 "Stump"

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

Sign = -1, error = 2/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
С	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	-0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

The Best "Stump"

F	E	Η	A	G	B	С	D
-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	three					I	
	Sign = +1, error = 1/8						<mark>l/8</mark>

The Best overall classifier based on a single feature is based on E1

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
C	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

The ADABoost Algorithm

_n Initialize
$$D_1(x_j) = 1/N$$

n For
$$t = 1, ..., 7$$

- Train a weak classifier h_t using distribution D_t
- Compute total error on training data $P_{t} = \text{Sum} \{D_{t}(x_{i}) \frac{1}{2}(1 - y_{i} h_{t}(x_{i}))\}$

^a Set
$$a_t = \frac{1}{2} \ln (e_t / (1 - e_t))$$

n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$

 $_{\rm q}$ Normalize D_{t+1} to make it a distribution

n The final classifier is

 $\mathbf{H}(x) = \operatorname{sign}(\mathbf{S}_t \mathbf{a}_t h_t(x))$

The Best Error

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	1/8
В	0.5	-0.5	+1	1/8
C	0.7	-0.1	+1	1/8
D	0.6	-0.4	+1	1/8
E	0.2	0.4	-1	1/8
F	-0.8	0.1	-1	1/8
G	0.4	-0.9	-1	1/8
Н	0.2	0.5	-1	1/8

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED INSTANCES

11-755 MLSP: Bhiksha Raj

The ADABoost Algorithm

n Initialize
$$D_1(x_j) = 1/N$$

n For
$$t = 1, ..., T$$

- Train a weak classifier h_t using distribution D_t
- g Compute total error on training data

n
$$e_t = \text{Sum} \{ D_t(x_i) \frac{1}{2} (1 - y_i h_t(x_i)) \}$$

Set
$$a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$$

n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$

 $_{\rm q}$ Normalize D_{t+1} to make it a distribution

$\ensuremath{{}_{n}}$ The final classifier is

 $H(x) = \operatorname{sign}(S_t a_t h_t(x))$

Computing Alpha

The Boosted Classifier Thus Far

The ADABoost Algorithm

```
n Initialize D_1(x_i) = 1/N
<sup>n</sup> For t = 1, ..., T
    Train a weak classifier h_t using distribution D_t
    <sup>q</sup> Compute total error on training data
         n e_t = Average {<sup>1</sup>/<sub>2</sub> (1 - y_i h_t(x_i))}
    _{\rm q} Set a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)
    g For i = 1... N
         n set D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))
    _{\rm q} Normalize D_{t+1} to make it a distribution
n The final classifier is
    H(x) = \operatorname{sign}(S_t a_t h_t(x))
```

The Best Error

 F
 E
 H
 A
 G
 B
 C
 D

 -0.8
 0.2
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 1/8
 1/8
 1/8
 1/8
 1/8
 1/8
 1/8
 1/8

 $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ $\exp(a_t) = \exp(0.97) = 2.63$ $\exp(-a_t) = \exp(-0.97) = 0.38$

ID	E1	E2.	Class	Weight	Weight
Α	0.3	-0.6	+1	1/8 * 2.63	0.33
В	0.5	-0.5	+1	1/8 * 0.38	0.05
С	0.7	-0.1	+1	1/8 * 0.38	0.05
D	0.6	-0.4	+1	1/8 * 0.38	0.05
E	0.2	0.4	-1	1/8 * 0.38	0.05
F	-0.8	0.1	-1	1/8 * 0.38	0.05
G	0.4	-0.9	-1	1/8 * 0.38	0.05
Н	0.2	0.5	-1	1/8 * 0.38	0.05

Multiply the correctly classified instances by 0.38 Multiply incorrectly classified instances by 2.63

The ADABoost Algorithm

```
n Initialize D_1(x_i) = 1/N
<sup>n</sup> For t = 1, ..., T
    Train a weak classifier h_t using distribution D_t
    <sup>q</sup> Compute total error on training data
        n e_t = Average {<sup>1</sup>/<sub>2</sub> (1 - y_i h_t(x_i))}
    g Set a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)
    G For i = 1... N
        n set D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))
    Normalize D_{t+1} to make it a distribution
n The final classifier is
    H(x) = \operatorname{sign}(S_t a_t h_t(x))
```

The Best Error

 F
 E
 H
 A
 G
 B
 C
 D

 0.8
 0.2
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 1/8
 1/8
 1/8
 1/8
 1/8
 1/8
 1/8
 1/8

D' = D / sum(D)

ID	E1	E2.	Class	Weight	Weight	Weight
Α	0.3	-0.6	+1	1/8 * 2.63	0.33	0.48
В	0.5	-0.5	+1	1/8 * 0.38	0.05	0.074
С	0.7	-0.1	+1	1/8 * 0.38	0.05	0.074
D	0.6	-0.4	+1	1/8 * 0.38	0.05	0.074
E	0.2	0.4	-1	1/8 * 0.38	0.05	0.074
F	-0.8	0.1	-1	1/8 * 0.38	0.05	0.074
G	0.4	-0.9	-1	1/8 * 0.38	0.05	0.074
Н	0.2	0.5	-1	1/8 * 0.38	0.05	0.074

Multiply the correctly classified instances by 0.38 Multiply incorrectly classified instances by 2.63 Normalize to sum to 1.0 The Best Error

 F
 E
 H
 A
 G
 B
 C
 D

 -0.8
 0.2
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 1/8
 1/8
 1/8
 1/8
 1/8
 1/8
 1/8
 1/8

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	0.48
В	0.5	-0.5	+1	0.074
С	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
Н	0.2	0.5	-1	0.074

Multiply the correctly classified instances by 0.38 Multiply incorrectly classified instances by 2.63 Normalize to sum to 1.0

11-755 MLSP: Bhiksha Raj

D' = D / sum(D)

The ADABoost Algorithm

n Initialize
$$D_1(x_i) = 1/N$$

- Train a weak classifier h_t using distribution D_t
- G Compute total error on training data

n
$$e_t = \text{Average} \{ \frac{1}{2} (1 - y_i h_t(x_i)) \}$$

$$a_t = \frac{1}{2} \ln (e_t / (1 - e_t))$$

n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$

 $_{\rm q}$ Normalize D_{t+1} to make it a distribution

n The final classifier is

 $\mathbf{H}(x) = \operatorname{sign}(\mathbf{S}_t \mathbf{a}_t h_t(x))$

Sign = +1, error = 0.222 Sign = -1, error = 0.778

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	0.48
В	0.5	-0.5	+1	0.074
С	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
Н	0.2	0.5	-1	0.074

Sign = -1, error = 0.852

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	0.48
В	0.5	-0.5	+1	0.074
С	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
Н	0.2	0.5	-1	0.074

Sign = +1, error = 0.074

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	0.48
В	0.5	-0.5	+1	0.074
С	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
Н	0.2	0.5	-1	0.074

Sign = -1, error = 0.148

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	0.48
В	0.5	-0.5	+1	0.074
С	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	-0.1	-1	0.074
G	0.4	-0.9	-1	0.074
Н	0.2	0.5	-1	0.074

The Best Classifier

Classifier based on E1: if (wt(E1) > 0.45) face = true

ID	E1	E2.	Class	Weight
Α	0.3	-0.6	+1	0.48
В	0.5	-0.5	+1	0.074
С	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
Н	0.2	0.5	-1	0.074

The Boosted Classifier Thus Far

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

11-755 MLSP: Bhiksha Raj

Reweighting the Data

Exp(alpha) = exp(2.36) = 10Exp(-alpha) = exp(-2.36) = 0.1

ID	E1	E2.	Class	Weight	
Α	0.3	-0.6	+1	0.48*0.1	0.06
В	0.5	-0.5	+1	0.074*0.1	0.01
С	0.7	-0.1	+1	0.074*0.1	0.01
D	0.6	-0.4	+1	0.074*0.1	0.01
E	0.2	0.4	-1	0.074*0.1	0.01
F	-0.8	0.1	-1	0.074*0.1	0.01
G	0.4	-0.9	-1	0.074*10	0.86
Н	0.2	0.5	-1	0.074*0.1	0.01
	I				

11-755 MLSP: Bhiksha Raj

Reweighting the Data

NOTE: THE WEIGHT OF "G" WHICH WAS MISCLASSIFIED BY THE SECOND CLASSIFIER IS NOW SUDDENLY HIGH

ID	E1	E2.	Class	Weight	
Α	0.3	-0.6	+1	0.48*0.1	0.06
В	0.5	-0.5	+1	0.074*0.1	0.01
С	0.7	-0.1	+1	0.074*0.1	0.01
D	0.6	-0.4	+1	0.074*0.1	0.01
E	0.2	0.4	-1	0.074*0.1	0.01
F	-0.8	0.1	-1	0.074*0.1	0.01
G	0.4	-0.9	-1	0.074*10	0.86
н	0.2	0.5	-1	0.074*0.1	0.01

11-755 MLSP: Bhiksha Raj

AdaBoost

- In this example both of our first two classifiers were based on E1
 - ^q Additional classifiers may switch to E2
- In general, the reweighting of the data will result in a different feature being picked for each classifier
- This also automatically gives us a *feature selection* strategy
 - In this data the wt(E1) is the most important feature \mathbb{R}^{3}

AdaBoost

- n NOT required to go with the best classifier so far
- For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier
 - $_{\rm q}$ So long as its right more than 50% of the time
- We can *continue* to add classifiers even after we get 100% classification of the training data
 - $_{\rm q}\,$ Because the weights of the data keep changing
 - Adding new classifiers beyond this point is often a good thing to do

ADA Boost

$$I = 0.4 \text{ E1} - 0.4 \text{ E2}$$

$$I = 0.4 \text{ E1} - 0.4 \text{ E2}$$

$$I = 0.4 \text{ E1} - 0.4 \text{ E2}$$

$$I = 0.4 \text{ E1} - 0.4 \text{ E2}$$

$$I = 0.4 \text{ E1} - 0.4 \text{ E2}$$

- n The final classifier is q $H(x) = sign(S_t a_t h_t(x))$
- n The output is 1 if the total weight of all weak learners that classify x as 1 is greater than the total weight of all weak learners that classify it as -1

Boosting and Face Detection

Boosting forms the basis of the most
 common technique for face detection today:
 The Viola-Jones algorithm.

The problem of face detection

n Defining Features

- ^q Should we be searching for noses, eyes, eyebrows etc.?
 - n Nice, but expensive
- ^q Or something simpler
- ⁿ Selecting Features
 - ^q Of all the possible features we can think of, which ones make sense
- n Classification: Combining evidence
 - How does one combine the evidence from the different features?

- n Integral Features!!
 - Like the Checkerboard
- The same principle as we used to decompose images in terms of checkerboards:
 - $_{\rm q}$ The image of any object has changes at various scales
 - These can be represented coarsely by a checkerboard pattern
- ⁿ The checkerboard patterns must however now be *localized*
 - $_{\rm q}$ Stay within the region of the face

Features

- n Checkerboard Patterns to represent facial features
 - ^q The white areas are subtracted from the black ones.
 - g Each checkerboard explains a *localized* portion of the image
- n Four types of checkerboard patterns (only)

- n Each checkerboard has the following characteristics
 - g Length
 - g Width
 - g Type
 - n Specifies the number and arrangement of bands
- ⁿ The four checkerboards above are the four used by Viola and Jones

Explaining a portion of the face with a checker..

- n How much is the difference in average intensity of the image in the black and white regions
 - g Sum(pixel values in white region) Sum(pixel values in black region)
- This is actually the dot product of the region of the face covered by the rectangle and the checkered pattern itself
 - g White = 1, Black = -1

n Summed area tables

ⁿ For each pixel store the sum of ALL pixels to the left of and above it.

Fast Computation of Pixel Sums

Figure 3: The sum of the pixels within rectangle D can be computed with four array references. The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be computed as 4 + 1 - (2 + 3).

A Fast Way to Compute the Feature

- ⁿ Store pixel table for every pixel in the image
 - The sum of all pixel values to the left of and above the pixel
- Let A, B, C, D, E, F be the pixel table values at the locations shown
 - Total pixel value of black area = D + A B C
 - Total pixel value of white area = F + C D E
 - Feature value = (F + C D E) (D + A B C)

How many features?

- n Each checker board of width P and height H can start at
 - q (0,0), (0,1),(0,2), ... (0, N-P)
 - g (1,0), (1,1),(1,2), ... (1, N-P)
 - q ..
 - g (M-H,0), (M-H,1), (M-H,2), ... (M-H, N-P)
- n (M-H)*(N-P) possible starting locations
 - g Each is a unique checker feature
 - ⁿ E.g. at one location it may measure the forehead, at another the chin

How many features

- n Each feature can have many sizes
 - $_{\rm q}$ Width from (min) to (max) pixels
 - g Height from (min ht) to (max ht) pixels
- n At each size, there can be many starting locations
 - Total number of possible checkerboards of one type: No. of possible sizes x No. of possible locations
- ⁿ There are four types of checkerboards
 - Total no. of possible checkerboards: VERY VERY LARGE!

Learning: No. of features

- n Analysis performed on images of 24x24 pixels only
 - Reduces the no. of possible features to about 180000
- n Restrict checkerboard size
 - $_{\rm q}$ Minimum of 8 pixels wide
 - g Minimum of 8 pixels high
 - ⁿ Other limits, e.g. 4 pixels may be used too
 - Reduces no. of checkerboards to about 50000

No. of features

- ⁿ Each possible checkerboard gives us one feature
- n A total of up to 180000 features derived from a 24x24 image!
- Every 24x24 image is now represented by a set of 180000 numbers
 - This is the set of features we will use for classifying if it is a face or not!

The Classifier

- The Viola-Jones algorithm uses a simple Boosting based classifier
- ⁿ Each "weak learner" is a simple threshold
- At each stage find the best feature to classify the data with
 - I.e the feature that gives us the best classification of all the
training data
 - n Training data includes many examples of faces and non-face images
 - $_{\text{q}}$ The classification rule is of the kind
 - n If feature > threshold, face (or if feature < threshold, face)
 - ⁿ The optimal value of "threshold" must also be determined.

The Weak Learner

- ⁿ Training (for each weak learner):
 - ^q For each feature f (of all 180000 features)
 - Find a threshold q(f) and polarity p(f) (p(f) = -1 or p(f) = 1) such that $(f > p(f) *_q(f))$ performs the best classification of faces
 - g Lowest overall error in classifying all training data
 - s Error counted over *weighted* samples
 - Let the optimal overall error for *f* be error(*f*)
 - ^q Find the feature f' such that error(f') is lowest
 - The weak learner is the test $(f' > p(f')^* q(f')) = face$
- Note that the procedure for learning weak learners also identifies the most useful features for face recognition

The Viola Jones Classifier

- n A boosted threshold-based classifier
- n First weak learner: Find the best feature, and its optimal threshold
 - Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner)
 - Third weak learner: Find the best feature for the reweighted data and its optimal threshold (weighting from two weak learners)
 - Fourth weak learner: Find the best feature for the reweighted data and its optimal threhsold (weighting from three weak learners)

§ ..

To Train

- n Collect a large number of histogram equalized facial images
 - $_{\rm q}$ Resize all of them to 24x24
 - These are our "face" training set
- Collect a much much much larger set of 24x24 non-face images of all kinds
 - g Each of them is histogram equalized
 - These are our "non-face" training set
- n Train a boosted classifier

The Viola Jones Classifier

- n During tests:
 - $_{\rm q}$ Given any new 24x24 image
 - $H(f) = Sign(S_f a_f (f > p_f q(f)))$
 - n Only a small number of features (f < 100) typically used
- n Problems:
 - ^q Only classifies 24 x 24 images entirely as faces or non-faces
 - n Typical pictures are much larger
 - n They may contain many faces
 - n Faces in pictures can be much larger or smaller
 - qNot accurate enough

- n Scan the image
 - G Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- ⁿ For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

- n Scan the image
 - g Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- ⁿ For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

- n Scan the image
 - g Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- ⁿ For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

- n Scan the image
 - G Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- ⁿ For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

Face size solution

- n We already have a classifier
 - g That uses weak learners
- n Scale each classifier
 - $_{\mbox{\tiny Q}}$ Every weak learner
 - G Scale its size up by factor a. Scale the threshold up to a^2q .
 - g Do this for many scaling factors

Overall solution

- ⁿ Scan the picture with classifiers of size 24x24
- ⁿ Scale the classifier to 26x26 and scan
- ⁿ Scale to 28x28 and scan etc.
- Faces of different sizes will be found at different scales

False Rejection vs. False detection

- n False Rejection: There's a face in the image, but the classifier misses it
 - Rejects the hypothesis that there's a face
- ⁿ False detection: Recognizes a face when there is none.
- n Classifier:
 - Standard boosted classifier: $H(x) = \text{sign}(S_t a_t h_t(x))$
 - Modified classifier $H(x) = \text{sign}(S_t a_t h_t(x) + Y)$
 - ⁿ Y is a bias that we apply to the classifier.
 - n If Y is large, then we assume the presence of a face even when we are not sure
 - ^q By increasing Y, we can reduce false rejection, while increasing false detection
 - ⁿ Many instances for which $S_t a_t h_t(x)$ is negative get classified as faces

ROC

- Ideally false rejection will be 0%, false detection will also be 0%
- n As Y increases, we reject faces less and less
 - g But accept increasing amounts of garbage as faces
- ⁿ Can set Y so that we rarely miss a face

Problem: Not accurate enough, too slow

If we set Y high enough, we will never miss a face

g But will classify a lot of junk as faces

- Solution: Classify the output of the first classifier with a second classifier
 - $_{\rm q}$ And so on.

Cascaded Classifiers

- n Build the first classifier to have near-zero false rejection rate
 - g But will reject a large number of non-face images

Cascaded Classifiers

- n Build the first classifier to have near-zero false rejection rate
 - g But will reject a large number of non-face images
- n Filter all training data with this classifier
- Build a second classifier on the data that have been passed by the first classifier, to have near-zero false rejection rate
 - This classifier will be different from the first one
 - n Different data set

Cascaded Classifiers

- n Build the first classifier to have near-zero false rejection rate
 - g But will reject a large number of non-face images
- n Filter all training data with this classifier
- Build a second classifier on the data that have been passed by the first classifier, to have near-zero false rejection rate
 - This classifier will be different from the first one
 - Different data set
- n Filter all training data with the cascade of the first two classifiers
- n Build a third classifier on data passed by the cascade..
 - \mathbf{q} And so on..

Final Cascade of Classifiers

Useful Features Learned by Boosting

11-755 MLSP: Bhiksha Raj

Detection in Real Images

- n Basic classifier operates on 24 x 24 subwindows
- n Scaling:
 - ^q Scale the detector (rather than the images)
 - Features can easily be evaluated at any scale
 - $_{\rm q}$ Scale by factors of 1.25
- n Location:
 - ^q Move detector around the image (e.g., 1 pixel increments)
- n Final Detections
 - ^q A real face may result in multiple nearby detections
 - Postprocess detected subwindows to combine overlapping detections into a single detection

Training

 In paper, 24x24 images of faces and non faces (positive and negative examples).

Sample results using the Viola-Jones

Detector

n Notice detection at multiple scales

More Detection Examples

11-755 MLSP: Bhiksha Raj

Practical implementation

- n Details discussed in Viola-Jones paper
- Training time = weeks (with 5k faces and 9.5k nonfaces)
- n Final detector has 38 layers in the cascade, 6060 features
- n 700 Mhz processor:
 - G Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)

n MORE RECAPS

11-755 MLSP: Bhiksha Raj

- Left panel: What does the value of X tell you about the average value of Y?
 - g But what does X tell you about the distribution of Y?
- n Right panel: What does the value of X tell you about the average value of Y?
 - g What about the distribution?
 - $_{\text{q}}$ X and Y are independent!

- Pick "basis" vectors such that projections along one tell you *nothing* about projections along another
 - ^q Not merely such that they do not tell you anything about the average value
- ⁿ These represent "independent" factors that compose the data
 - E.g. knowing where one note occurs in music tells you nothing about where another note occurs
 - ^q These are independent factors

Non-negative Matrix Factorization

- n Some times components only add
 - $_{\rm q}$ $\,$ Notes in a piece of music are purely additive
 - Playing one note will not cancel out another that is simultaneously played
- PCA / Eigen analysis result in bases that combine both additively and subtractively
 - E.g. for the piece of music above, the first eigen vector includes frequencies that are not in the first note. They must be subtracted out by subsequent eigen vectors

Non-negative Matrix Factorization

- n NMF will give you purely additive bases
 - $_{\rm q}$ Bases will be non-negative
 - They will only add and never subtract
- For the music above this *automatically* discovers the notes

Multi-Dimensional Scaling

	x1	x2	x3	x4
x1	0	1.9	7	6.2
x2		0	11	5.3
x3			0	4.9
x4				0

- Given only the distances between data, how do you find their locations in some Ndimensional space
 - $_{\rm q}\,$ The distances may be from anything
 - ⁿ KL distances, counts, etc.

- n Given vectors with very large dimensionality
 - E.g. spectral vectors: 1025 components (frequencies)
 - ^q Images: 10000 components (pixels)
- n Compute for each vector Y a new low-dimensional vector Y' such that the distances between vectors is preserved
 - G Compute distances between all vector pairs
 - g Employ MDS to get new low-dimensional vectors
 - n E.g. 100 dimensions instead of 10000

Additional Topics

n Covered later as required