Independent Component Analysis

Paris Smaragdis
paris@adobe.com

This lecture's overview

- A motivating example
- The theory
. Decorrelation
- Independence vs decorrelation
- Independent component analysis
- Separating sounds
- Solving instantaneous mixtures
- Solving convolutive mixtures
- Data exploration and independence
- Extracting audio features
- Extracting multimodal features

```
Formalizing the problem
```

- Each mic will receive a mix of both sounds
- Sound waves superimpose linearly
- We'll ignore propagation delays for now
- The simplified mixing model is

$$
\mathbf{x}(t)=\mathbf{A} \cdot \mathbf{s}(t)
$$

- We know $\mathbf{x}(t)$, but nothing else
- How do we solve this system and find $\mathbf{s}(t)$?

When can we solve this?

- The mixing equation is:

$$
\mathbf{x}(t)=\mathbf{A} \cdot \mathbf{s}(t)
$$

- Our estimates of $\mathbf{s}(t)$ will be:

$$
\hat{\mathbf{s}}(t)=\mathbf{A}^{-1} \cdot \mathbf{x}(t)
$$

- To recover $\mathbf{s}(t), \mathbf{A}$ must be invertible:
- We need as many mics as sources
- The mics/sources must not coincide
- All sources must be audible
- Otherwise this is a different story

What to look for

$\mathbf{x}(t)=\mathbf{A} \cdot \mathbf{s}(t)$

- We can only use $\mathbf{x}(t)$
- Is there a property we can take advantage of?
- Yes! We know that different sounds are "statistically unrelated"
- The plan: Find a solution that enforces this "unrelatedness"

A simple example

$\mathbf{x}(t)$
 A
 $\mathbf{s}(t)$

- A simple invertible problem
- $\mathbf{s}(t)$ contains two structured waveforms
- \mathbf{A} is invertible (but we don't know it)
- $\mathbf{x}(t)$ looks messy, doesn't reveal $\mathbf{s}(t)$ clearly

How do we solve this? Any ideas?

A first try

- Find $\mathbf{s}(t)$ by minimizing cross-correlation
- Our estimate of $\mathbf{s}(t)$ is computed by:

$$
\hat{\mathbf{s}}(t)=\mathbf{W} \cdot \mathbf{x}(t)
$$

- If $\mathbf{W} \approx \mathbf{A}^{-1}$ then we have a good solution
- The goal is that the output becomes uncorrelated:

$$
\left\langle\hat{s}_{i}(t) \cdot \hat{s}_{j}(t)\right\rangle=0, \forall i \neq j
$$

- We assume here that our signals are zero mean
- So the overall problem to solve is:

$$
\underset{\mathbf{w}}{\arg \min }\left\langle\sum_{k} a_{i k} x_{k}(t) \cdot \sum_{k} a_{j k} x_{k}(t)\right\rangle, \forall i \neq j
$$

How to solve for uncorrelatedness

- Let's use matrices instead of time-series:

- The uncorrelatedness translates to:

$$
\frac{1}{N} \hat{\mathbf{S}} \cdot \hat{\mathbf{S}}^{T}=\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]
$$

- We then need to diagonalize:

$$
\frac{1}{N} \hat{\mathbf{S}} \cdot \hat{\mathbf{S}}^{T}=\frac{1}{N}(\mathbf{W} \cdot \mathbf{X})(\mathbf{W} \cdot \mathbf{X})^{T}
$$

How to solve for uncorrelatedness

- This is actually a well known problem in linear algebra
- One solution is Eigenanalysis:

$$
\begin{aligned}
\operatorname{Cov}(\hat{\mathbf{S}}) & =\frac{1}{N} \hat{\mathbf{S}} \cdot \hat{\mathbf{S}}^{T} \\
& =\frac{1}{N}(\mathbf{W} \cdot \mathbf{X})(\mathbf{W} \cdot \mathbf{X})^{T} \\
& =\frac{1}{N} \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{X}^{T} \cdot \mathbf{W}^{T} \\
& =\mathbf{W} \cdot \operatorname{Cov}(\mathbf{X}) \cdot \mathbf{W}^{T}
\end{aligned}
$$

- $\operatorname{Cov}(\mathbf{X})$ is a symmetric matrix

Another solution

- We can also solve for a matrix inverse square root:

$$
\begin{array}{rlrl}
\operatorname{Cov}(\hat{\mathbf{S}}) & \propto \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{X}^{T} \cdot \mathbf{W}^{T} \\
& =\left(\mathbf{X} \cdot \mathbf{X}^{T}\right)^{-1 / 2} \cdot \mathbf{X} \cdot \mathbf{X}^{T} \cdot\left(\mathbf{X}^{T} \cdot \mathbf{X}\right)^{-1 / 2} & \text { replace } \mathbf{W} \text { with }\left(\mathbf{X} \cdot \mathbf{X}^{T}\right)^{-1 / 2} \\
& =\mathbf{I} & \\
(\mathbf{X} \cdot \mathbf{X})^{-1 / 2}=\mathbf{U} \cdot\left[\begin{array}{lll}
d_{1}^{-1 / 2} & & \\
& \ddots & \\
& & d_{N}^{-1 / 2}
\end{array}\right] \cdot \mathbf{U}^{T}, & \text { where }[\mathbf{U}, \mathbf{D}]=\operatorname{eig}\left(\mathbf{X} \cdot \mathbf{X}^{T}\right)
\end{array}
$$

Another approach

- What if we want to do this in real-time?
- We can also estimate \mathbf{W} in an online manner
$\Delta \mathbf{W} \propto \mu\left(\mathbf{I}-\mathbf{W} \cdot \mathbf{x}(t) \cdot \mathbf{x}(t)^{T} \cdot \mathbf{W}^{T}\right) \mathbf{W}$
- Every time we see a new observation $\mathbf{x}(t)$ we update \mathbf{W}
- Using this adaptive approach we can see that:

$$
\operatorname{Cov}(\mathbf{W} \cdot \mathbf{x}(t))=\mathbf{I}, \quad \Delta \mathbf{W}=0
$$

- We'll skip the derivation details for now

So how well does this work?

- Well, that was a waste of time ..

Summary so far

- For a mixture:

$\mathbf{X}=\mathbf{A} \cdot \mathbf{S}$

- We can algebraically recover an uncorrelated output using

$\mathbf{S}=\mathbf{W} \cdot \mathbf{X}$

- If \mathbf{W} is the eigenvector matrix of $\operatorname{Cov}(\mathbf{X}$
- Or with $\mathbf{W}=\operatorname{Cov}(\mathbf{X})^{-1 / 2}$
- Or we can use an online estimator
$\Delta \mathbf{W} \propto \mu\left(\mathbf{I}-\mathbf{W} \cdot \mathbf{x}(t) \cdot \mathbf{x}(t)^{T} \cdot \mathbf{W}^{T}\right) \mathbf{W}$

What went wrong?

- What does decorrelation mean?
- That the two things compared are "not related"
- Consider a mixture of two Gaussians

Decorrelation

- Now let us do what we derived so far on this signal:

- After we are done the two Gaussians are "statistically independent" - i.e., $P\left(s_{1}, s_{2}\right)=P\left(s_{1}\right) P\left(s_{2}\right)$
- We have in effect separated the original signals
- Save for a scaling ambiguity

Doing PCA doesn't give us the right solution

- The result is not what we want
- We are off by a rotation
- This idea doesn't seem to work for non-Gaussian signals
a) Find the eigenvectors

b) Rotate and scale so that covariance is

Now lets try this on the original data

$\mathbf{x}(t) \quad \mathbf{A}$
$\mathbf{s}(t)$

\downarrow

- Stating the obvious: These are not very Gaussian signals!!

So what's wrong?

- For Gaussian data decorrelation means independence
- Gaussians have up to second order statistics ($1^{\text {st }}$ is mean, $2^{\text {nd }}$ is variance)
- By minimizing the $2^{\text {nd }}$-order cross-statistics we achieve independence
- These statistics can be expressed by the $2^{\text {nd }}$-order cumulants:

$$
\operatorname{cum}\left(x_{i}, x_{j}\right)=\left\langle x_{i} x_{j}\right\rangle
$$

- Which happen to be the diagonals of the covariance matrix
- But real-world data are seldom Gaussian
- Non-Gaussian data have higher orders which are not taken care of with PCA
- We can measure their dependence using higher order cumulants
$3^{\text {rid }}$ order: $\operatorname{cum}\left(x_{i}, x_{j}, x_{k}\right)=\left\langle x_{i} x_{j} x_{k}\right\rangle$
$4^{\text {th }}$ order: $\operatorname{cum}\left(x_{i}, x_{j}, x_{k}, x_{i}\right)=\left\langle x_{i} x_{j} x_{k} x_{i}\right\rangle-\left\langle x_{i} x_{j}\right\rangle\left\langle x_{k} x_{i}\right\rangle-\left\langle x_{i} x_{k}\right\rangle\left\langle x_{j} x_{i}\right\rangle-\left\langle x_{i} x_{l}\right\rangle\left\langle x_{k} x_{j}\right\rangle$

Cumulants for Gaussian vs non-Gaussian case

The real problem to solve

- For statistical independence we need to minimize all cross-cumulants
- In practice up to $4^{\text {th }}$ order is enough
- For $2^{\text {nd }}$ order we minimized the off-diagonal covariance elements

$$
\left[\begin{array}{cc}
\operatorname{cum}\left(x_{1}, x_{1}\right) & \operatorname{cum}\left(x_{1}, x_{2}\right) \\
\operatorname{cum}\left(x_{2}, x_{1}\right) & \operatorname{cum}\left(x_{2}, x_{2}\right)
\end{array}\right]
$$

- For $4^{\text {th }}$ order we will do the same for a tensor

$$
Q_{i, j, k, l}=\operatorname{cum}\left(x_{i}, x_{j}, x_{k}, x_{l}\right)
$$

- The process is similar to PCA, but in more dimensions
- We now find "eigenmatrices" instead of eigenvectors
- Algorithms like JADE and FOBI solve this problem
- Can you see a potential problem though?

Online ICA

- Conceptually this is very similar to online decorrelation
- For decorrelation:

$$
\Delta \mathbf{W} \propto \mu\left(\mathbf{I}-\mathbf{W} \cdot \mathbf{x}(t) \cdot \mathbf{x}(t)^{T} \cdot \mathbf{W}^{T}\right) \mathbf{W}
$$

- For non-linear decorrelation:

$$
\Delta \mathbf{W} \propto \mu\left(\mathbf{I}-f(\mathbf{W} \cdot \mathbf{x}(t)) \cdot g(\mathbf{W} \cdot \mathbf{x}(t))^{T}\right) \mathbf{W}
$$

- This adaptation method is known as the Cichocki-Unbehauen update
- But we can obtain it using many different ways
- But how do we pick the non-linearities?
- Depends on the prior we have on the sources

$$
f\left(x_{i}\right)=\left\{\begin{array}{l}
x+\tanh (x), \text { for super-Gaussians } \\
x-\tanh (x), \text { for sub-Gaussians }
\end{array}\right.
$$

Other popular approaches

- Minimum Mutual Information
- Minimize the mutual information of the output
- Creates maximally statistically independent outputs
- Infomax
- Maximize the entropy of the output or Mutual Information of input/output
- Non-Gaussianity
- Adding signals tends towards Gaussianity (Central Limit Theorem)
- Find the maximally non-Gaussian outputs undoes the mixing
- Maximum Likelihood
- Less straightforward at first, but elegant nevertheless
- Geometric methods
- Trying to "eyeball" the proper way to rotate

-

Trying this on our dataset

$\mathbf{x}(t) \quad \mathbf{A}$
$\mathbf{s}(t)$

$\hat{\mathbf{s}}(t)$
W
$\mathbf{x}(t)$

We actually separated the mixture!

Trying this on our dataset

A
$\mathbf{s}(t)$ $($ snm

But something is amiss

- There some things that ICA will not resolve
- Scale
- Statistical independence is invariant of scale (and sign)
- Order of inputs

Order of inputs is irrelevant when talking about independence

- ICA will actually recover:

$$
\hat{\mathbf{s}}(t)=\mathbf{D} \cdot \mathbf{P} \cdot \mathbf{s}(t)
$$

- Where \mathbf{D} is diagonal and \mathbf{P} is a permutation matrix

Problems with instantaneous mixing

- Sounds don't really mix instantaneously
- There are multiple effects
- Room reflections
- Sensor response
- Propagation delays
- Propagation and reflection filtering

- Most can be seen as filters
- We need a convolutive mixing model
$\hat{\mathbf{s}}(t)$
$\mathbf{s}(t)$

Convolutive mixing

- Instead of instantaneous mixing:

$$
x_{i}(t)=\sum_{j=1} a_{i j} s_{j}(t)
$$

- We now have convolutive mixing:

$$
x_{i}(t)=\sum_{j} \sum_{k} a_{i j}(k) s_{j}(t-k)
$$

- The mixing filters $a_{i j}(k)$ encapsulate all the mixing effects in this model

- But how do we do ICA now?
- This is an ugly equation!

FIR matrix algebra

- Matrices with FIR filters as elements

$$
\begin{aligned}
& \underline{\mathbf{A}}=\left[\begin{array}{ll}
\underline{a}_{11} & \underline{a}_{12} \\
\underline{a}_{21} & \underline{a}_{22}
\end{array}\right] \\
& \underline{a}_{i j}=\left[\begin{array}{lll}
a_{i j}(0) & \cdots & a_{i j}(k-1)
\end{array}\right]
\end{aligned}
$$

- FIR matrix multiplication performs convolution and accumulation

$$
\underline{\mathbf{A}} \cdot \underline{\mathbf{b}}=\left[\begin{array}{ll}
\underline{a}_{11} & \underline{a}_{12} \\
\underline{a}_{21} & \underline{a}_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
\underline{b}_{1} \\
\underline{b}_{2}
\end{array}\right]=\left[\begin{array}{l}
\underline{a}_{11} * \underline{b}_{1}+\underline{a}_{12} * \underline{b}_{2} \\
\underline{a}_{21} * \underline{b}_{1}+\underline{a}_{22} * \underline{b}_{2}
\end{array}\right]
$$

Back to convolutive mixing

- Now we can rewrite convolutive mixing as:

$$
\begin{aligned}
& x_{i}(t)=\sum_{j} \sum_{k} a_{i j}(k) s_{j}(t-k) \Rightarrow \\
& \Rightarrow \underline{\mathbf{x}}(t)=\underline{\mathbf{A}} \cdot \underline{\mathbf{s}}(t)=\left[\begin{array}{l}
a_{11} * s_{1}(t)+a_{12} * s_{2}(t) \\
a_{21} * s_{1}(t)+a_{22} * s_{2}(t)
\end{array}\right]
\end{aligned}
$$

- Tidier formulation!
- We can use the FIR matrix abstraction to solve this problem now

Complications with this approach

- Required convolutions are expensive
- Real-room filters are long
- Their FIR inverses are very long
- FIR products can become very time consuming
- Convergence is hard to achieve
- Huge parameter space
- Tightly interwoven parameter relationships
- A slow optimization nightmare!

FIR matrix algebra, part II

- FIR matrices have frequency domain counterparts:

$$
\begin{aligned}
& \underline{\mathbf{A}}=\left[\begin{array}{ll}
\underline{a}_{11} & \underline{a}_{12} \\
\underline{a}_{21} & \underline{a}_{22}
\end{array}\right] \xrightarrow{\text { frequency domain }} \underline{\hat{\mathbf{A}}}=\left[\begin{array}{ll}
\hat{a}_{11} & \hat{a}_{12} \\
\underline{\hat{a}}_{21} & \hat{a}_{22}
\end{array}\right] \\
& \hat{\underline{a}}_{i j}=\operatorname{DFT}\left[\underline{a}_{i j}\right]
\end{aligned}
$$

- And their products are simpler:

$$
\begin{aligned}
& \underline{\hat{\mathbf{a}}} \cdot \underline{\hat{\mathbf{b}}}=\left[\begin{array}{l}
\hat{a}_{11} \cdot \hat{\hat{b}}_{1}+\underline{\hat{a}}_{12} \cdot \hat{\hat{b}}_{2} \\
\underline{\hat{a}}_{21} \cdot \underline{\hat{b}}_{1}+\underline{\hat{a}}_{22} \cdot \underline{\hat{b}}_{2}
\end{array}\right] \\
& \underline{\hat{a}} \cdot \hat{\hat{b}}=\left[\begin{array}{lll}
a(0) \cdot b(0) & \cdots & a(k-1) \cdot b(k-1)
\end{array}\right]
\end{aligned}
$$

Overall flowgraph

Some complications

- Permutation issues
- We don't know which source will end up in each narrowband output
- Resulting output can have separated narrowband elements from both sounds!

- Scaling issues
- Narrowband outputs can be scaled arbitrarily
- This results in spectrally colored outputs

Scaling issue

- One simple fix is to normalize the separating matrices

$$
\mathbf{W}_{f}^{\text {norm }}=\mathbf{W}_{f}^{\text {orig }} \cdot\left|\mathbf{W}_{f}^{\text {orig }}\right|^{\frac{1}{N}}
$$

- Results into more reasonable scaling
- More sophisticated approaches exist
but this is not a major problem
- Some spectral coloration is however unavoidable
Original source Colored source © Corrected source ©

Beamforming and ICA

- If we know the placement of the sensors we can obtain the spatial response of the ICA solution
- ICA places nulls to cancel out interfering sources
- Just as in the instantaneous case we cancel out sources
- We can visualize the permutation problem now
- Out of place bands

Some solutions for permutation problems

- Continuity of unmixing matrices
- Adjacent unmixing matrices tend to be a little similar, we can permute/bias them accordingly
- Doesn't work that great
- Smoothness of spectral output
- Narrowband components from each source tend to modulate the same way
- Permute unmixing matrices to ensure adjacent narrowband output are similarly modulated
- Works fine
- The above can fail miserably for more than two sources! - Combinatorial explosion!

Using beamforming to resolve permutations

- Spatial information can be used to resolve permutations
- Find permutations that preserve zeros or smooth out the responses
- Works fine, although it can be flaky if the array response is not that clean

The N-input N -output problem

- ICA, in either formulation inverts a square matrix (whether scalar, or FIR)
- This implies that we have the same number of input as outputs
- E.g. in a street with 30 noise sources we need at least 30 mics!
- Solutions exist for M ins $-N$ outs where $M>N$
- If $N>M$ we can only beamform
- In some cases extra sources can be treated as noise
- This can be restrictive in some situations

ICA for data exploration

- ICA is also great for data exploration - If PCA is, then ICA should be, right?
- With data of large dimensionalities we want to find structure
- PCA can reduce the dimensionality - And clean up the data structure a bit
- But ICA can find much more intuitive projections

Separation recap

- Orthogonality is not independence!!
- Not all signals are Gaussian which is a usual assumption
- We can model instantaneous mixtures with ICA and get good results
- ICA algorithms can optimize a variety of objectives, but ultimately result in statistical independence between the outputs
- Same model is useful for all sorts of mixing situations
- Convolutive mixtures are more challenging but solvable
- There's more ambiguity, and a closer link to signal processing approaches

Example cases of PCA vs ICA

- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
- This is great for Gaussian data
- Also great if we are into LS models
- Real-world is not Gaussian though
- ICA finds directions that are more "revealing"

Non-Gaussian data

Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases - Do you see why?
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
- ICA returns localizes edge filters

Enhancing PCA with ICA

- ICA cannot perform dimensionality reduction
- The goal is to find independent components, hence there is no sense of order
- PCA does a great job at reducing dimensionality
- Keeps the elements that carry most of the input's energy
- It turns out that PCA is a great preprocessor for ICA
- There is no guarantee that the PCA subspace will be appropriate for the independent components but for most practical purposes this doesn't make a big difference

A Video Example

- The movie is a series of frames
- Each frame is a data point
- 126, 80×60 pixel frames
- Data X will be 4800×126

- Using PCA/ICA
- $\mathbf{X}=\mathbf{W} \times \mathbf{H}$
- W will contain visual components
- H will contain their time weights

PCA Results

- Nothing special about the visual components
- They are orthogonal pictures
- Does this mean anything? (not really ...)
- Some segmentation of constant vs. moving parts
- Some highlighting of the action in the weights

A Video Example

- The movie is a series of frames
- Each frame is a data point
- 315, 80×60 pixel frames
- Data \mathbf{X} will be 4800×315
- Using PCA/ICA
- $\mathbf{X}=\mathbf{W} \times \mathbf{H}$
- W will contain visual components
- H will contain their time weights

ICA Results

- Much more interesting visual components
- They are independent
- Unrelated elements (left/ right hands, background) are
 now highlighted


```
What about the soundtrack?
```

- We can also analyze audio in a similar way
- We do a frequency transform and get an audio spectrogram \mathbf{X}
- \mathbf{X} is frequencies \times time
- Distinct audio elements can be seen in \mathbf{X}
- Unlike before we have only one input this time

PCA on Audio

- Umm ... it sucks!
- Orthogonality doesn't mean much for audio components
- Results are mathematically optimal, perceptually useless
(0) 0

Audio Visual Components?

- We can can even take in both audio and video data and try to find structure
- Sometimes there is a very strong correlation between auditory and visual elements
- We should be able to discover that automatically

ICA on Audio

- A definite improvement
- Independence helps pick up somewhat more meaningful sound objects
- Not too clean results, but the intentions are clear
- Misses some details

0 © 0

Which allows us to play with output

- And of course once we have such a nice description we can resynthesize at will

Resynthesis

Recap

- A motivating example
- The theory
- Decorrelation
- Independence vs decorrelation
- Independent component analysis
- Separating sounds
- Solving instantaneous mixtures
- Solving convolutive mixtures
- Data exploration and independence
- Extracting audio features
- Extracting multimodal features

