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This lecture’s overview 

  A motivating example 

  The theory 
  Decorrelation 

  Independence vs decorrelation 

  Independent component analysis 

  Separating sounds 
  Solving instantaneous mixtures 

  Solving convolutive mixtures 

  Data exploration and independence 
  Extracting audio features 

  Extracting multimodal features 
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A “simple” audio problem 

foo! 

bar! 
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Formalizing the problem 

  Each mic will receive a mix of both sounds 
  Sound waves superimpose linearly 

  We’ll ignore propagation delays for now 

  The simplified mixing model is: 

  We know x(t), but nothing else 
  How do we solve this system and find s(t)? 

s1 

s2 

x1(t) = a11s1(t) + a21s2 (t)

x2 (t) = a21s1(t) + a22s2 (t)

x(t) = A ⋅ s(t)
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When can we solve this? 

  The mixing equation is: 

  Our estimates of s(t) will be: 

  To recover s(t), A must be invertible: 
  We need as many mics as sources 

  The mics/sources must not coincide 

  All sources must be audible 

  Otherwise this is a different story … 

x(t) = A ⋅ s(t)
s1 

s2 

s1 
s2 

A = a1 a2⎡
⎣

⎤
⎦

ŝ(t) = A−1 ⋅x(t)

A =
a1 a2
a1 a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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A simple example 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

  A simple invertible problem 

  s(t) contains two structured waveforms 

  A is invertible (but we don’t know it) 

  x(t) looks messy, doesn’t reveal s(t) clearly  

  How do we solve this?  Any ideas? 
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What to look for 

  We can only use x(t) 

  Is there a property we can take advantage of? 

  Yes!  We know that different sounds are “statistically unrelated” 

  The plan: Find a solution that enforces this “unrelatedness” 

x(t) = A ⋅ s(t)
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A first try 

  Find s(t) by minimizing cross-correlation 

  Our estimate of s(t) is computed by: 

  If W ≈ A-1 then we have a good solution  

  The goal is that the output becomes uncorrelated: 

  We assume here that our signals are zero mean 

  So the overall problem to solve is: 

ŝ(t) =W ⋅x(t)

ŝi (t) ⋅ ŝ j (t) = 0,∀i ≠ j

argmin
W

aikxk (t)
k
∑ ⋅ ajkxk (t)

k
∑ ,∀i ≠ j
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How to solve for uncorrelatedness 

  Let’s use matrices instead of time-series: 

  The uncorrelatedness translates to: 

  We then need to diagonalize: 

 

x(t)→ X =
x1(1), , x1(N )
x2 (1), , x2 (N )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,etc

1
N
Ŝ ⋅ ŜT =

1
N
W ⋅X( ) W ⋅X( )T� 

1
N

ˆ S ⋅ ˆ S T =
c11 0
0 c22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

x(t) = A ⋅ s(t)   and   ˆ s (t) = W ⋅ x(t) ⇒

    ⇒ X = A ⋅S  and  ˆ S = W ⋅X
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How to solve for uncorrelatedness 

  This is actually a well known problem in linear algebra 

  One solution is Eigenanalysis: 

  Cov( X) is a symmetric matrix 

Cov Ŝ( ) = 1
N
Ŝ ⋅ ŜT

           = 1
N
W ⋅X( ) W ⋅X( )T

           = 1
N
W ⋅X ⋅XT ⋅WT

           =W ⋅Cov X( ) ⋅WT
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How to solve for uncorrelatedness 

  For any symmetric matrix Z we know that: 

  Where ui and di are Z’s eigenvectors and eigenvalues respectively 

  In our case if [U,D] = eig( Cov( X)) 

  This is actually Principal Component Analysis 

 

Z = U ⋅D ⋅UT =
↑ ↑
u1  uN
↓ ↓

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

d1


dN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

← u1 →

← uN →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cov Ŝ( ) =W ⋅Cov X( ) ⋅WT

           =W ⋅U ⋅D ⋅UT ⋅WT      let us replace W with UT

           = UT ⋅U ⋅D ⋅UT ⋅U       U is orthonormal U ⋅UT = I( )
           = D
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Another solution 

  We can also solve for a matrix inverse square root: 

 

Cov Ŝ( )∝W ⋅X ⋅XT ⋅WT

           = X ⋅XT( )− 1
2 ⋅X ⋅XT ⋅ XT ⋅X( )− 1

2      replace W with X ⋅XT( )− 1
2

           = I

X ⋅X( )− 1
2 = U ⋅

d1
−1 2


dN

−1 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅UT ,     where [U,D] = eig X ⋅XT( )
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Another approach 

  What if we want to do this in real-time? 

  We can also estimate W in an online manner: 

  Every time we see a new observation x(t) we update W 

  Using this adaptive approach we can see that: 

  We’ll skip the derivation details for now 

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT( )W

Cov W ⋅x(t)( ) = I,    ΔW = 0 

14 

Summary so far 

  For a mixture: 

  We can algebraically recover an uncorrelated output using 

  If W is the eigenvector matrix of Cov( X) 

  Or with W = Cov( X) -1/2 

  Or we can use an online estimator: 

X = A ⋅S

Ŝ =W ⋅X

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT( )W

15 

So how well does this work? 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

x(t) ŝ(t) W 

= −0.6 −0.4
−2.8 3.7

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

  Well, that was a waste of time … 
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What went wrong? 

  What does decorrelation mean? 
  That the two things compared are “not related” 

  Consider a mixture of two Gaussians 

 

s(t) =
N (0,2)
N (0,1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 x(t) = 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ s(t)
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Decorrelation 

  Now let us do what we derived so far on this signal: 

  After we are done the two Gaussians are “statistically independent” 
  i.e.,  

  We have in effect separated the original signals 
  Save for a scaling ambiguity 
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6

a) Find the eigenvectors b) Rotate and scale so that covariance is I 

P(s1, s2 ) = P(s1)P(s2 )
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Now lets try this on the original data 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

  Stating the obvious: These are not very Gaussian signals!! 
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Doing PCA doesn’t give us the right solution 

a) Find the eigenvectors b) Rotate and scale so that covariance is I 

  The result is not what we want 

  We are off by a rotation 

  This idea doesn’t seem to work for non-Gaussian signals 
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So what’s wrong? 

  For Gaussian data decorrelation means independence 
  Gaussians have up to second order statistics (1st is mean, 2nd is variance) 

  By minimizing the 2nd-order cross-statistics we achieve independence 

  These statistics can be expressed by the 2nd-order cumulants: 

  Which happen to be the diagonals of the covariance matrix 

  But real-world data are seldom Gaussian 
  Non-Gaussian data have higher orders which are not taken care of with PCA 

  We can measure their dependence using higher order cumulants: 

cum(x i , x j ) = xix j

3rd  order:    cum(xi , x j , xk ) = xix j xk

4 th  order:    cum(xi , x j , xk , xl ) = xix j xkxl − xix j xkxl − xixk x j xl − xixl xkx j
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Cumulants for Gaussian vs non-Gaussian case 
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Gaussian case 

Non-Gaussian case 

Cross-cumulants tend to zero Only 2nd order cross-cumulants tend to zero 

cum( xi , xj) 1e-13 

cum( xi , xj, xk) 0.0008, 0.0004 

cum( xi , xj, xk , xl) -0.003, 0.0005, 0.0007 

cum( xi , xj) -4e-14 

cum( xi , xj, xk) -0.08, -0.1 

cum( xi , xj, xk , xl) 0.42, -0.3, 0.16 

22 

The real problem to solve 

  For statistical independence we need to minimize all cross-cumulants 
  In practice up to 4th order is enough 

  For 2nd order we minimized the off-diagonal covariance elements 

  For 4th order we will do the same for a tensor  

  The process is similar to PCA, but in more dimensions 
  We now find “eigenmatrices” instead of eigenvectors 

  Algorithms like JADE and FOBI solve this problem 
  Can you see a potential problem though? 

cum(x1, x1) cum(x1, x2 )
cum(x2 , x1) cum(x2 , x2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Qi, j ,k ,l = cum(xi , x j , xk , xl )

23 

An alternative approach 

  Tensorial methods can be very very computationally intensive 

  How about an on-line method instead? 

  Independence can also be coined as “non-linear decorrelation”  
  x and y are independent if and only if: 

  For all continuous functions f and g 

  This is a non-linear extension of 2nd order independence where f(x) = g(x) = x 

  We can try solving for that then 

f (x)g(y) = f (x) g(y)

24 

Online ICA 

  Conceptually this is very similar to online decorrelation 
  For decorrelation: 

  For non-linear decorrelation: 

  This adaptation method is known as the Cichocki-Unbehauen update 
  But we can obtain it using many different ways 

  But how do we pick the non-linearities? 
  Depends on the prior we have on the sources 

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT( )W

ΔW ∝ µ I − f W ⋅x(t)( ) ⋅ g W ⋅x(t)( )T( )W

f (xi ) =
x + tanh(x), for super-Gaussians
x − tanh(x), for sub-Gaussians   

⎧
⎨
⎪

⎩⎪
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Other popular approaches 

  Minimum Mutual Information 
  Minimize the mutual information of the output 

  Creates maximally statistically independent outputs 

  Infomax 
  Maximize the entropy of the output or Mutual Information of input/output 

  Non-Gaussianity 
  Adding signals tends towards Gaussianity (Central Limit Theorem) 

  Find the maximally non-Gaussian outputs undoes the mixing 

  Maximum Likelihood 
  Less straightforward at first, but elegant nevertheless 

  Geometric methods 
  Trying to “eyeball” the proper way to rotate 

26 

Trying this on our dataset 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 
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Trying this on our dataset 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

x(t) 

= −1.39 2.78
2.5 −2.58

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

W ŝ(t) 

  We actually separated the mixture! 

28 

Trying this on our dataset 

x(t) W ŝ(t) 
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But something is amiss .. 

  There some things that ICA will 
not resolve 

  Scale 
  Statistical independence is 

invariant of scale (and sign) 

  Order of inputs 
  Order of inputs is irrelevant when 

talking about independence 

  ICA will actually recover: 

  Where D is diagonal and P is a 
permutation matrix 

ŝ(t) 
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ŝ(t) = D ⋅P ⋅ s(t)
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This works really well for audio mixtures! 
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Problems with instantaneous mixing 

  Sounds don’t really mix 
instantaneously 

  There are multiple effects 
  Room reflections 

  Sensor response 
  Propagation delays 

  Propagation and reflection filtering 

  Most can be seen as filters 

  We need a convolutive mixing 
model 

2s
1s

2x1x

Estimated sources using 
the instantaneous model 

on convolutive mix 

32 
32 

Convolutive mixing 

  Instead of instantaneous mixing: 

  We now have convolutive mixing: 

  The mixing filters aij(k) encapsulate 
all the mixing effects in this model 

  But how do we do ICA now? 

  This is an ugly equation! 

2s
1s

2x1x

� 

xi(t) = aijs j (t)
j=1
∑

� 

xi(t) = aij (k)s j (t − k)
k
∑

j
∑
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FIR matrix algebra 

  Matrices with FIR filters as elements 

  FIR matrix multiplication performs convolution and accumulation 

  

� 

A =
a11 a12
a21 a22
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

aij = aij (0)  aij (k −1)[ ]

� 

A ⋅b =
a11 a12
a21 a22
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

b1
b2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

a11 ∗b1 + a12 ∗b2
a21 ∗b1 + a22 ∗b2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

34 
34 

Back to convolutive mixing 

  Now we can rewrite convolutive 
mixing as: 

  Tidier formulation! 

  We can use the FIR matrix 
abstraction to solve this problem 
now 

� 

xi(t) = aij (k)s j (t − k)
k
∑

j
∑ ⇒

⇒ x(t) = A ⋅ s(t) =
a11 ∗ s1(t) + a12 ∗ s2(t)
a21 ∗ s1(t) + a22 ∗ s2(t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2s
1s

2x1x

35 
35 

An easy way to solve convolutive mixing 

 Straightforward translation of instantaneous 
learning rules using FIR matrices: 

 Not so easy with algebraic approaches! 

 Multiple other (and more rigorous/better behaved) 
approaches have been developed 

ΔW ∝ I + f (W ⋅x) ⋅ (W ⋅x)T( ) ⋅W

36 
36 

Complications with this approach 

  Required convolutions are expensive 
  Real-room filters are long 

  Their FIR inverses are very long 

  FIR products can become very time consuming 

  Convergence is hard to achieve 
  Huge parameter space 

  Tightly interwoven parameter relationships 

  A slow optimization nightmare! 
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FIR matrix algebra, part II 

  FIR matrices have frequency domain counterparts: 

  And their products are simpler: 

][ DFTˆ
ˆˆ
ˆˆˆ

2221

1211 

2221

1211

ijij

domainfrequency

aa
aa
aa

aa
aa

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎯⎯⎯⎯⎯ →⎯⎥

⎦

⎤
⎢
⎣

⎡
= AA

  

� 

ˆ A ⋅ ˆ b =
ˆ a 11 ⋅ ˆ b 1 + ˆ a 12 ⋅ ˆ b 2
ˆ a 21 ⋅ ˆ b 1 + ˆ a 22 ⋅ ˆ b 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ˆ a ⋅ ˆ b =  a(0) ⋅b(0)  a(k −1) ⋅b(k −1)[ ]

38 
38 

Yet another convolutive mixing formulation 

 We can now model the process 
in the frequency domain: 

 For every frequency we have: 

 Hey, that’s instantaneous mixing! 
  We can solve that! 

SAX ˆˆˆ ⋅=

tftt fff ,  ),()( ∀⋅= SAX

2s
1s

2x1x

39 
39 

Overall flowgraph 

M Point 
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M point 
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Convolved Mixtures 

Frequency Transform 

Mixed 
Frequency Bins 

Instantaneous 
ICA unmixers 

Unmixed 
Frequency Bins 

Time Transform 

Recovered Sources 

40 
40 

Some complications … 

  Permutation issues 
  We don’t know which source will end up in each narrowband output … 

  Resulting output can have separated narrowband elements from both sounds! 

  Scaling issues 
  Narrowband outputs can be scaled arbitrarily 

  This results in spectrally colored outputs 

Original source Colored source 

Extracted source 
with permutation 
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Scaling issue 

  One simple fix is to normalize the separating matrices 

  Results into more reasonable scaling 

  More sophisticated approaches exist       
but this is not a major problem 

  Some spectral coloration is however unavoidable 

Norig
f

orig
f

norm
f

1

WWW ⋅=

Original source Colored source Corrected source 

42 
Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

42 

Some solutions for permutation problems 

  Continuity of unmixing matrices 
  Adjacent unmixing matrices tend to be a little similar, we can 

permute/bias them accordingly 
  Doesn’t work that great 

  Smoothness of spectral output 
  Narrowband components from each source tend to modulate the 

same way 

  Permute unmixing matrices to ensure adjacent narrowband output 
are similarly modulated 

  Works fine 

  The above can fail miserably for more than two  sources! 
  Combinatorial explosion! 

43 
Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

43 

Beamforming and ICA 

  If we know the placement of the 
sensors we can obtain the spatial 
response of the ICA solution 

  ICA places nulls to cancel out 
interfering sources 
  Just as in the instantaneous case we 

cancel out sources 

  We can visualize the permutation 
problem now 
  Out of place bands 

Bands with 
permutation 

problems 

44 
Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

Using beamforming to resolve permutations 

  Spatial information 
can be used to 
resolve permutations 
  Find permutations that 

preserve zeros or 
smooth out the 
responses 

  Works fine, although it 
can be flaky if the 
array response is not 
that clean 
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Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

45 

The N-input N-output problem 

  ICA, in either formulation inverts a square matrix (whether 
scalar, or FIR) 
  This implies that we have the same number of input as outputs 
  E.g. in a street with 30 noise sources we need at least 30 mics! 

  Solutions exist for M ins - N outs where M > N 

  If N > M we can only beamform 
  In some cases extra sources can be treated as noise 

  This can be restrictive in some situations 

46 

Separation recap 

  Orthogonality is not independence!! 
  Not all signals are Gaussian which is a usual assumption 

  We can model instantaneous mixtures with ICA and get good results 
  ICA algorithms can optimize a variety of objectives, but ultimately result in 

statistical independence between the outputs 

  Same model is useful for all sorts of mixing situations 

  Convolutive mixtures are more challenging but solvable 
  There’s more ambiguity, and a closer link to signal processing approaches 

47 

ICA for data exploration 

  ICA is also great for data exploration  
  If PCA is, then ICA should be, right? 

  With data of large dimensionalities 
we want to find structure 

  PCA can reduce the dimensionality 
  And clean up the data structure a bit 

  But ICA can find much more 
 intuitive projections 

48 

Example cases of PCA vs ICA 
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Non-Gaussian data 

ICA 
PCA 

  Motivation for using ICA vs PCA 

  PCA will indicate orthogonal directions 
of maximal variance 

  This is great for Gaussian data 

  Also great if we are into LS models 

  Real-world is not Gaussian though 

  ICA finds directions that are  
 more “revealing”  
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Finding useful transforms with ICA 

  Audio preprocessing example 

  Take a lot of audio snippets 
and concatenate them in a big 
matrix, do component analysis 

  PCA results in the DCT bases 
  Do you see why? 

  ICA returns time/freq localized 
sinusoids which is a better 
way to analyze sounds 

  Ditto for images 
  ICA returns localizes edge filters 

50 

Enhancing PCA with ICA 

  ICA cannot perform dimensionality reduction 
  The goal is to find independent components, hence there is no sense of order 

  PCA does a great job at reducing dimensionality 
  Keeps the elements that carry most of the input’s energy 

  It turns out that PCA is a great preprocessor for ICA 
  There is no guarantee that the PCA subspace will be appropriate for the independent 

components but for most practical purposes this doesn’t make a big difference 

M×N input M×K PCA K×K ICA K×N ICs 

≈ 
⋅ ⋅ 

51 

Example case: ICA-faces vs. Eigenfaces 

ICA-faces Eigenfaces 

52 

A Video Example 

  The movie is a series of frames 
  Each frame is a data point 

  126, 80×60 pixel frames 

  Data X will be 4800×126 

  Using PCA/ICA 
  X = W×H 

  W will contain visual components 

  H will contain their time weights 
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PCA Results 

  Nothing special about the 
visual components 

  They are orthogonal 
pictures 
  Does this mean anything? 

(not really …) 
  Some segmentation of 

constant vs. moving parts 

  Some highlighting of the 
action in the weights 

54 

ICA Results 

  Much more interesting 
visual components 

  They are independent 
  Unrelated elements (left/

right hands, background) are 
now highlighted 

  We have some 
decomposition by parts 

  Components weights are 
now describing the scene 
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A Video Example 

  The movie is a series of frames 
  Each frame is a data point 

  315, 80×60 pixel frames 

  Data X will be 4800×315 

  Using PCA/ICA 
  X = W×H 

  W will contain visual components 

  H will contain their time weights 

Independent neighborhoods 

Input movie 
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What about the soundtrack? 

  We can also analyze audio in a 
similar way 

  We do a frequency transform 
and get an audio spectrogram X 

  X is frequencies × time 

  Distinct audio elements can be 
seen in X  

  Unlike before we have only one 
input this time 

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205 230 256 282
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PCA on Audio 

  Umm … it sucks! 

  Orthogonality doesn’t 
mean much for audio 
components 
  Results are mathematically 

optimal, perceptually 
useless 
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ICA on Audio 

  A definite improvement 

  Independence helps pick 
up somewhat more 
meaningful sound objects  
  Not too clean results, but 

the intentions are clear 

  Misses some details 
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Audio Visual Components? 

  We can can even take in both 
audio and video data and try to 
find structure 

  Sometimes there is a very 
strong correlation between 
auditory and visual elements 

  We should be able to discover 
that automatically 

Input video 

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205

Input audio 
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Audio/Visual Components 
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Which allows us to play with output 

  And of course once we have such a nice 
description we can resynthesize at will Resynthesis 
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Recap 

  A motivating example 

  The theory 
  Decorrelation 

  Independence vs decorrelation 

  Independent component analysis 

  Separating sounds 
  Solving instantaneous mixtures 

  Solving convolutive mixtures 

  Data exploration and independence 
  Extracting audio features 

  Extracting multimodal features 


