Independent Component Analysis

Paris Smaragdis paris@adobe.com

This lecture's overview

- A motivating example
- The theory
 - Decorrelation
 - Independence vs decorrelation
 - Independent component analysis
- Separating sounds
 - Solving instantaneous mixtures
 - Solving convolutive mixtures
- Data exploration and independence
 - Extracting audio features
 - Extracting multimodal features

A "simple" audio problem

Formalizing the problem

- Each mic will receive a mix of both sounds
 - Sound waves superimpose linearly
 - We'll ignore propagation delays for now
- The simplified mixing model is:

$$\mathbf{x}(t) = \mathbf{A} \cdot \mathbf{s}(t)$$

We know x(t), but nothing else
How do we solve this system and find s(t)?

 $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$

When can we solve this?

- The mixing equation is: $\mathbf{x}(t) = \mathbf{A} \cdot \mathbf{s}(t)$
- Our estimates of $\mathbf{s}(t)$ will be: $\hat{\mathbf{s}}(t) = \mathbf{A}^{-1} \cdot \mathbf{x}(t)$
- To recover s(*t*), A must be invertible:
 - We need as many mics as sources
 - The mics/sources must not coincide
 - All sources must be audible
- Otherwise this is a different story ...

A simple example

- A simple invertible problem
 - **s**(*t*) contains two structured waveforms
 - A is invertible (but we don't know it)
 - **x**(*t*) looks messy, doesn't reveal **s**(*t*) clearly
- How do we solve this? Any ideas?

What to look for

$$\mathbf{x}(t) = \mathbf{A} \cdot \mathbf{s}(t)$$

- We can only use **x**(*t*)
- Is there a property we can take advantage of?
- Yes! We know that different sounds are "statistically unrelated"
- The plan: Find a solution that enforces this "unrelatedness"

A first try

- Find s(t) by minimizing cross-correlation
- Our estimate of **s**(*t*) is computed by:

$$\hat{\mathbf{s}}(t) = \mathbf{W} \cdot \mathbf{x}(t)$$

- If $\mathbf{W}\approx\mathbf{A}^{\text{-1}}$ then we have a good solution
- The goal is that the output becomes uncorrelated:

$$\langle \hat{s}_i(t) \cdot \hat{s}_j(t) \rangle = 0, \forall i \neq j$$

- · We assume here that our signals are zero mean
- So the overall problem to solve is:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}}\left\langle \sum_{k} a_{ik} x_{k}(t) \cdot \sum_{k} a_{jk} x_{k}(t) \right\rangle, \forall i \neq j$$

.

How to solve for uncorrelatedness

- Let's use matrices instead of time-series:

$$\mathbf{x}(t) \to \mathbf{X} = \begin{bmatrix} x_1(1), & \cdots, & x_1(N) \\ x_2(1), & \cdots, & x_2(N) \end{bmatrix}, etc \qquad \mathbf{x}(t) = \mathbf{A} \cdot \mathbf{s}(t) \text{ and } \hat{\mathbf{s}}(t) = \mathbf{W} \cdot \mathbf{x}(t) \Rightarrow$$
$$\Rightarrow \mathbf{X} = \mathbf{A} \cdot \mathbf{S} \text{ and } \hat{\mathbf{S}} = \mathbf{W} \cdot \mathbf{X}$$

• The uncorrelatedness translates to:

$$\frac{1}{N}\hat{\mathbf{S}}\cdot\hat{\mathbf{S}}^{T} = \begin{bmatrix} c_{11} & 0\\ 0 & c_{22} \end{bmatrix}$$

• We then need to diagonalize:

$$\frac{1}{N}\hat{\mathbf{S}}\cdot\hat{\mathbf{S}}^{T} = \frac{1}{N}(\mathbf{W}\cdot\mathbf{X})(\mathbf{W}\cdot\mathbf{X})^{T}$$

How to solve for uncorrelatedness

- This is actually a well known problem in linear algebra
- One solution is Eigenanalysis:

$$Cov(\hat{\mathbf{S}}) = \frac{1}{N} \hat{\mathbf{S}} \cdot \hat{\mathbf{S}}^{T}$$
$$= \frac{1}{N} (\mathbf{W} \cdot \mathbf{X}) (\mathbf{W} \cdot \mathbf{X})^{T}$$
$$= \frac{1}{N} \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{X}^{T} \cdot \mathbf{W}^{T}$$
$$= \mathbf{W} \cdot Cov(\mathbf{X}) \cdot \mathbf{W}^{T}$$

Cov(X) is a symmetric matrix

How to solve for uncorrelatedness

• For any symmetric matrix **Z** we know that:

$$\mathbf{Z} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{N} \\ \downarrow & \downarrow \end{bmatrix} \cdot \begin{bmatrix} d_{1} & & \\ & \ddots & \\ & & d_{N} \end{bmatrix} \cdot \begin{bmatrix} \leftarrow & \mathbf{u}_{1} & \rightarrow \\ \leftarrow & \mathbf{u}_{N} & \rightarrow \end{bmatrix}$$

- Where **u**_i and d_i are **Z**'s eigenvectors and eigenvalues respectively
- In our case if [U,D] = eig(Cov(X))

$$Cov(\hat{\mathbf{S}}) = \mathbf{W} \cdot Cov(\mathbf{X}) \cdot \mathbf{W}^{T}$$

= $\mathbf{W} \cdot \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T} \cdot \mathbf{W}^{T}$ let us replace \mathbf{W} with \mathbf{U}^{T}
= $\mathbf{U}^{T} \cdot \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T} \cdot \mathbf{U}$ U is orthonormal $(\mathbf{U} \cdot \mathbf{U}^{T} = \mathbf{I})$
= \mathbf{D}

- This is actually Principal Component Analysis

Another solution

• We can also solve for a matrix inverse square root:

$$Cov(\hat{\mathbf{S}}) \propto \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{X}^{T} \cdot \mathbf{W}^{T}$$

$$= (\mathbf{X} \cdot \mathbf{X}^{T})^{-\frac{1}{2}} \cdot \mathbf{X} \cdot \mathbf{X}^{T} \cdot (\mathbf{X}^{T} \cdot \mathbf{X})^{-\frac{1}{2}} \quad \text{replace } \mathbf{W} \text{ with } (\mathbf{X} \cdot \mathbf{X}^{T})^{-\frac{1}{2}}$$

$$= \mathbf{I}$$

$$(\mathbf{X} \cdot \mathbf{X})^{-\frac{1}{2}} = \mathbf{U} \cdot \begin{bmatrix} d_{1}^{-\frac{1}{2}} & & \\ & \ddots & \\ & & d_{N}^{-\frac{1}{2}} \end{bmatrix} \cdot \mathbf{U}^{T}, \quad \text{where } [\mathbf{U}, \mathbf{D}] = eig(\mathbf{X} \cdot \mathbf{X}^{T})$$

Another approach

- What if we want to do this in real-time?
- We can also estimate W in an online manner:

$$\Delta \mathbf{W} \propto \mu \left(\mathbf{I} - \mathbf{W} \cdot \mathbf{x}(t) \cdot \mathbf{x}(t)^T \cdot \mathbf{W}^T \right) \mathbf{W}$$

- Every time we see a new observation $\mathbf{x}(t)$ we update \mathbf{W}
- Using this adaptive approach we can see that: $Cov(\mathbf{W} \cdot \mathbf{x}(t)) = \mathbf{I}, \quad \Delta \mathbf{W} = 0$
- · We'll skip the derivation details for now

Summary so far

• For a mixture:

 $\mathbf{X} = \mathbf{A} \cdot \mathbf{S}$

• We can algebraically recover an uncorrelated output using

 $\hat{\mathbf{S}} = \mathbf{W} \cdot \mathbf{X}$

- If W is the eigenvector matrix of $\mathit{Cov}(\mathbf{X})$
- Or with $\mathbf{W} = Cov(\mathbf{X})^{-1/2}$
- Or we can use an online estimator:

 $\Delta \mathbf{W} \propto \mu \left(\mathbf{I} - \mathbf{W} \cdot \mathbf{x}(t) \cdot \mathbf{x}(t)^T \cdot \mathbf{W}^T \right) \mathbf{W}$

• Well, that was a waste of time ...

What went wrong?

- What does decorrelation mean?
 - That the two things compared are "not related"
- Consider a mixture of two Gaussians

Decorrelation

• Now let us do what we derived so far on this signal:

- After we are done the two Gaussians are "statistically independent"
 i.e., P(s₁,s₂) = P(s₁)P(s₂)
- We have in effect separated the original signals
 Save for a scaling ambiguity

Doing PCA doesn't give us the right solution

- The result is not what we want
 - We are off by a rotation
- This idea doesn't seem to work for non-Gaussian signals

a) Find the eigenvectors

b) Rotate and scale so that covariance is I

So what's wrong?

- · For Gaussian data decorrelation means independence
 - Gaussians have up to second order statistics (1st is mean, 2nd is variance)
 - By minimizing the 2nd-order cross-statistics we achieve independence
 - These statistics can be expressed by the 2nd-order cumulants: $cum(x_i,x_i) = \left< x_i x_i \right>$
 - · Which happen to be the diagonals of the covariance matrix

- But real-world data are seldom Gaussian

- · Non-Gaussian data have higher orders which are not taken care of with PCA
- We can measure their dependence using higher order cumulants: $\begin{array}{l}3^{\prime\prime} \ order: \ \ cum(x_i,x_j,x_k) = \left\langle x_i x_j x_k \right\rangle \\ 4^{\ast} \ \ order: \ \ cum(x_i,x_j,x_k,x_i) = \left\langle x_i x_j x_k x_i \right\rangle - \left\langle x_i x_j \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle \left\langle x_i x_i \right\rangle - \left\langle x_i x_i \right\rangle -$

The real problem to solve

- For statistical independence we need to minimize <u>all</u> cross-cumulants
 In practice up to 4th order is enough
- For 2nd order we minimized the off-diagonal covariance elements

 $\begin{bmatrix} cum(x_1,x_1) & cum(x_1,x_2) \\ cum(x_2,x_1) & cum(x_2,x_2) \end{bmatrix}$

- For 4th order we will do the same for a tensor

 $Q_{i,i,k,l} = cum(x_i, x_i, x_k, x_l)$

- The process is similar to PCA, but in more dimensions
 We now find *"eigenmatrices"* instead of eigenvectors
- Algorithms like JADE and FOBI solve this problem
 - Can you see a potential problem though?

An alternative approach

- Tensorial methods can be very very computationally intensive
- How about an on-line method instead?
- Independence can also be coined as "non-linear decorrelation"
 - x and y are independent if and only if:

$\langle f(x)g(y)\rangle = \langle f(x)\rangle\langle g(y)\rangle$

- For all continuous functions *f* and *g*
- This is a non-linear extension of 2^{nd} order independence where f(x) = g(x) = x
- We can try solving for that then

Online ICA

- Conceptually this is very similar to online decorrelation
 - For decorrelation:
 - $\Delta \mathbf{W} \propto \mu \left(\mathbf{I} \mathbf{W} \cdot \mathbf{x}(t) \cdot \mathbf{x}(t)^T \cdot \mathbf{W}^T \right) \mathbf{W}$
 - · For non-linear decorrelation:

$$\Delta \mathbf{W} \propto \mu \left(\mathbf{I} - f \left(\mathbf{W} \cdot \mathbf{x}(t) \right) \cdot g \left(\mathbf{W} \cdot \mathbf{x}(t) \right)^T \right) \mathbf{W}$$

- This adaptation method is known as the Cichocki-Unbehauen update
 - But we can obtain it using many different ways
- But how do we pick the non-linearities?
 - · Depends on the prior we have on the sources

$$f(x_i) = \begin{cases} x + \tanh(x), \text{ for super-Gaussians} \\ x - \tanh(x), \text{ for sub-Gaussians} \end{cases}$$

Other popular approaches

- Minimum Mutual Information
 - Minimize the mutual information of the output
 - · Creates maximally statistically independent outputs
- Infomax
 - Maximize the entropy of the output or Mutual Information of input/output
- Non-Gaussianity
 - Adding signals tends towards Gaussianity (Central Limit Theorem)
 - · Find the maximally non-Gaussian outputs undoes the mixing
- Maximum Likelihood
 - · Less straightforward at first, but elegant nevertheless
- Geometric methods
 - Trying to "eyeball" the proper way to rotate

• We actually separated the mixture!

Problems with instantaneous mixing

- Sounds don't really mix instantaneously
- There are multiple effects
 - Room reflections
 - Sensor response
 - Propagation delays
 - Propagation and reflection filtering
- Most can be seen as filters
- We need a *convolutive mixing* model

Convolutive mixing

Instead of instantaneous mixing:

$$x_i(t) = \sum_{j=1}^{n} a_{ij} s_j(t)$$

• We now have *convolutive* mixing:

$$x_i(t) = \sum_j \sum_k a_{ij}(k) s_j(t-k)$$

- The mixing filters a_{ij}(k) encapsulate all the mixing effects in this model
- But how do we do ICA now?
 - This is an ugly equation!

FIR matrix algebra

- Matrices with FIR filters as elements

$$\underline{\mathbf{A}} = \begin{bmatrix} \underline{a}_{11} & \underline{a}_{12} \\ \underline{a}_{21} & \underline{a}_{22} \end{bmatrix}$$
$$\underline{a}_{ij} = \begin{bmatrix} a_{ij}(0) & \cdots & a_{ij}(k-1) \end{bmatrix}$$

• FIR matrix multiplication performs convolution and accumulation

$$\underline{\mathbf{A}} \cdot \underline{\mathbf{b}} = \begin{bmatrix} \underline{a}_{11} & \underline{a}_{12} \\ \underline{a}_{21} & \underline{a}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{b}_1 \\ \underline{b}_2 \end{bmatrix} = \begin{bmatrix} \underline{a}_{11} * \underline{b}_1 + \underline{a}_{12} * \underline{b}_2 \\ \underline{a}_{21} * \underline{b}_1 + \underline{a}_{22} * \underline{b}_2 \end{bmatrix}$$

Back to convolutive mixing

 Now we can rewrite convolutive mixing as:

$$\begin{aligned} x_i(t) &= \sum_j \sum_k a_{ij}(k) s_j(t-k) \Rightarrow \\ \Rightarrow \mathbf{\underline{x}}(t) &= \mathbf{\underline{A}} \cdot \mathbf{\underline{s}}(t) = \begin{bmatrix} a_{11} * s_1(t) + a_{12} * s_2(t) \\ a_{21} * s_1(t) + a_{22} * s_2(t) \end{bmatrix} \end{aligned}$$

- Tidier formulation!
- We can use the FIR matrix abstraction to solve this problem now

An easy way to solve convolutive mixing

• Straightforward translation of instantaneous learning rules using FIR matrices:

$$\Delta \underline{\mathbf{W}} \propto \left(\mathbf{I} + f(\underline{\mathbf{W}} \cdot \underline{\mathbf{x}}) \cdot (\underline{\mathbf{W}} \cdot \underline{\mathbf{x}})^T \right) \cdot \underline{\mathbf{W}}$$

- Not so easy with algebraic approaches!
- Multiple other (and more rigorous/better behaved) approaches have been developed

Complications with this approach

- Required convolutions are expensive
 - Real-room filters are long
 - Their FIR inverses are very long
 - FIR products can become very time consuming
- Convergence is hard to achieve
 - Huge parameter space
 - Tightly interwoven parameter relationships
- A slow optimization nightmare!

FIR matrix algebra, part II

• FIR matrices have frequency domain counterparts:

$$\underline{\mathbf{A}} = \begin{bmatrix} \underline{a}_{11} & \underline{a}_{12} \\ \underline{a}_{21} & \underline{a}_{22} \end{bmatrix} \xrightarrow{\text{frequency domain}} \hat{\mathbf{A}} = \begin{bmatrix} \underline{\hat{a}}_{11} & \underline{\hat{a}}_{12} \\ \underline{\hat{a}}_{21} & \underline{\hat{a}}_{22} \\ \underline{\hat{a}}_{ij} = \text{DFT}[\underline{a}_{ij}]$$

- And their products are simpler:

$$\hat{\underline{\mathbf{A}}} \cdot \hat{\underline{\mathbf{b}}} = \begin{bmatrix} \hat{a}_{11} \cdot \hat{\underline{b}}_1 + \hat{a}_{12} \cdot \hat{\underline{b}}_2 \\ \hat{\underline{a}}_{21} \cdot \hat{\underline{b}}_1 + \hat{\underline{a}}_{22} \cdot \hat{\underline{b}}_2 \end{bmatrix}$$
$$\hat{\underline{a}} \cdot \hat{\underline{b}} = \begin{bmatrix} a(0) \cdot b(0) & \cdots & a(k-1) \cdot b(k-1) \end{bmatrix}$$

- We can now model the process in the frequency domain: $\hat{\mathbf{X}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{S}}$
- For every frequency we have: $\mathbf{X}_{f}(t) = \mathbf{A}_{f} \cdot \mathbf{S}_{f}(t), \ \forall f, t$
- Hey, that's instantaneous mixing!
 - We can solve that!

Some complications ...

- Permutation issues
 - · We don't know which source will end up in each narrowband output ...
 - Resulting output can have separated narrowband elements from both sounds!

- Scaling issues
 - Narrowband outputs can be scaled arbitrarily
 - This results in spectrally colored outputs

Scaling issue

One simple fix is to normalize the separating matrices

$$\mathbf{W}_{f}^{norm} = \mathbf{W}_{f}^{orig} \cdot \left| \mathbf{W}_{f}^{orig} \right|^{\frac{1}{N}}$$

- Results into more reasonable scaling
- More sophisticated approaches exist but this is not a major problem
- Some spectral coloration is however unavoidable

Some solutions for permutation problems

- Continuity of unmixing matrices
 - Adjacent unmixing matrices tend to be a little similar, we can permute/bias them accordingly
 - Doesn't work that great
- Smoothness of spectral output
 - Narrowband components from each source tend to modulate the same way
 - Permute unmixing matrices to ensure adjacent narrowband output are similarly modulated
 - Works fine
- The above can fail miserably for more than two sources!
 - Combinatorial explosion!

Beamforming and ICA

- If we know the placement of the sensors we can obtain the spatial response of the ICA solution
- ICA places nulls to cancel out interfering sources
 - Just as in the instantaneous case we cancel out sources
- We can visualize the permutation problem now
 - Out of place bands

Corrected source

Using beamforming to resolve permutations

- Spatial information can be used to resolve permutations
 - Find permutations that preserve zeros or smooth out the responses
- Works fine, although it can be flaky if the array response is not that clean

The N-input N-output problem

- ICA, in either formulation inverts a square matrix (whether scalar, or FIR)
- This implies that we have the same number of input as outputs
- E.g. in a street with 30 noise sources we need at least 30 mics!
- Solutions exist for *M* ins *N* outs where *M* > *N*
- If *N* > *M* we can only beamform
 - In some cases extra sources can be treated as noise
- · This can be restrictive in some situations

Separation recap

- Orthogonality is not independence!!
 - Not all signals are Gaussian which is a usual assumption
- · We can model instantaneous mixtures with ICA and get good results
 - ICA algorithms can optimize a variety of objectives, but ultimately result in statistical independence between the outputs
 - · Same model is useful for all sorts of mixing situations
- Convolutive mixtures are more challenging but solvable
 - · There's more ambiguity, and a closer link to signal processing approaches

ICA for data exploration

- ICA is also great for data exploration
- If PCA is, then ICA should be, right?
- With data of large dimensionalities we want to find structure
- PCA can reduce the dimensionality
 And clean up the data structure a bit
- But ICA can find much more intuitive projections

Example cases of PCA vs ICA

- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
 - This is great for Gaussian data
 - Also great if we are into LS models
- Real-world is not Gaussian though
- ICA finds directions that are more "revealing"

Non-Gaussian data

Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
 Do you see why?
- ICA returns time/freq localize sinusoids which is a better way to analyze sounds
- Ditto for images
 - ICA returns localizes edge filters

е	Λ		1	1		1		
	\mathcal{N}			m				~~W
ig sis		~N			~~~			
es	WM				-+	\sim		
ام ا	-1/1-	~	-	\mathcal{M}			~	
a	sllp	-		Mhr			Ŵ	-
		W	+	Mpr-		-	\wedge	
s	\searrow	.	ļ	Alp	∲	+	\mathcal{M}	
	WW	·)m	ļ	Www	 	J	

Enhancing PCA with ICA

- ICA cannot perform dimensionality reduction
 - · The goal is to find independent components, hence there is no sense of order
- · PCA does a great job at reducing dimensionality
 - · Keeps the elements that carry most of the input's energy
- It turns out that PCA is a great preprocessor for ICA
 - There is no guarantee that the PCA subspace will be appropriate for the independent
 components but for most practical purposes this doesn't make a big difference

A Video Example

- The movie is a series of frames
 - · Each frame is a data point
 - 126, 80×60 pixel frames
 - Data X will be 4800×126
- Using PCA/ICA
 - $\mathbf{X} = \mathbf{W} \times \mathbf{H}$
 - W will contain visual components
 - H will contain their time weights

PCA Results

- Nothing special about the visual components
- They are orthogonal pictures
- Does this mean anything? (not really ...)
- Some segmentation of constant vs. moving parts
- Some highlighting of the action in the weights

	Component weights
1	
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3	
	T .

ICA Results

- Much more interesting visual components
- They are *independent*
 - Unrelated elements (left/ right hands, background) are now highlighted
 - We have some decomposition by parts
- Components weights are now describing the scene

	Component weights
1	
	\neg \neg \neg \neg
5	
3	Time

A Video Example

- The movie is a series of frames
 - Each frame is a data point
 - 315, 80×60 pixel frames
 - Data X will be 4800×315
- Using PCA/ICA
 - $\mathbf{X} = \mathbf{W} \times \mathbf{H}$
 - W will contain visual components
 - H will contain their time weights

\sim	

What about the soundtrack?

- We can also analyze audio in a similar way
- We do a frequency transform and get an audio spectrogram X
 - X is frequencies × time
 - Distinct audio elements can be seen in X
- Unlike before we have only one input this time

54

PCA on Audio

• Umm ... it sucks!

useless

 Orthogonality doesn't mean much for audio components

Results are mathematically

optimal, perceptually

200			WARD								
150											
100											
50											
	20	40	60	80	100	120	140	160	180	200	220
				Prin	cipal Corr	(triange	Neichts				
4				Prin	cipal Corr	nponent 1	Weights				
4		~		Prin	cipal Corr	nponent 1	Weights		γ		
4 3 2 1		~~	~	Prin		aponent 1			\sim		

· · · · · ·

Input

- ICA on Audio
- A definite improvement
- Independence helps pick up somewhat more meaningful sound objects
- Not too clean results, but the intentions are clear
- Misses some details

Audio Visual Components?

- We can can even take in both audio and video data and try to find structure
- Sometimes there is a very strong correlation between auditory and visual elements
- We should be able to discover that automatically

Audio/Visual Components

Component weights

Which allows us to play with output

 And of course once we have such a nice description we can resynthesize at will

Recap

- A motivating example
- The theory
 - Decorrelation
 - Independence vs decorrelation
 - Independent component analysis
- Separating sounds
 - Solving instantaneous mixtures
 - Solving convolutive mixtures
- Data exploration and independence
 - Extracting audio features
 - Extracting multimodal features

61