
10/1/09

1

1

Independent Component Analysis

Paris Smaragdis

paris@adobe.com

2

This lecture’s overview

  A motivating example

  The theory
  Decorrelation

  Independence vs decorrelation

  Independent component analysis

  Separating sounds
  Solving instantaneous mixtures

  Solving convolutive mixtures

  Data exploration and independence
  Extracting audio features

  Extracting multimodal features

3

A “simple” audio problem

foo!

bar!

4

Formalizing the problem

  Each mic will receive a mix of both sounds
  Sound waves superimpose linearly

  We’ll ignore propagation delays for now

  The simplified mixing model is:

  We know x(t), but nothing else
  How do we solve this system and find s(t)?

s1

s2

x1(t) = a11s1(t) + a21s2 (t)

x2 (t) = a21s1(t) + a22s2 (t)

x(t) = A ⋅ s(t)

10/1/09

2

5

When can we solve this?

  The mixing equation is:

  Our estimates of s(t) will be:

  To recover s(t), A must be invertible:
  We need as many mics as sources

  The mics/sources must not coincide

  All sources must be audible

  Otherwise this is a different story …

x(t) = A ⋅ s(t)
s1

s2

s1
s2

A = a1 a2⎡
⎣

⎤
⎦

ŝ(t) = A−1 ⋅x(t)

A =
a1 a2
a1 a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

6

A simple example

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

  A simple invertible problem

  s(t) contains two structured waveforms

  A is invertible (but we don’t know it)

  x(t) looks messy, doesn’t reveal s(t) clearly

  How do we solve this? Any ideas?

7

What to look for

  We can only use x(t)

  Is there a property we can take advantage of?

  Yes! We know that different sounds are “statistically unrelated”

  The plan: Find a solution that enforces this “unrelatedness”

x(t) = A ⋅ s(t)

8

A first try

  Find s(t) by minimizing cross-correlation

  Our estimate of s(t) is computed by:

  If W ≈ A-1 then we have a good solution

  The goal is that the output becomes uncorrelated:

  We assume here that our signals are zero mean

  So the overall problem to solve is:

ŝ(t) =W ⋅x(t)

ŝi (t) ⋅ ŝ j (t) = 0,∀i ≠ j

argmin
W

aikxk (t)
k
∑ ⋅ ajkxk (t)

k
∑ ,∀i ≠ j

10/1/09

3

9

How to solve for uncorrelatedness

  Let’s use matrices instead of time-series:

  The uncorrelatedness translates to:

  We then need to diagonalize:

x(t)→ X =
x1(1), , x1(N)
x2 (1), , x2 (N)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,etc

1
N
Ŝ ⋅ ŜT =

1
N
W ⋅X() W ⋅X()T�

1
N

ˆ S ⋅ ˆ S T =
c11 0
0 c22

⎡

⎣
⎢

⎤

⎦
⎥

�

x(t) = A ⋅ s(t) and ˆ s (t) = W ⋅ x(t) ⇒

 ⇒ X = A ⋅S and ˆ S = W ⋅X

10

How to solve for uncorrelatedness

  This is actually a well known problem in linear algebra

  One solution is Eigenanalysis:

  Cov(X) is a symmetric matrix

Cov Ŝ() = 1
N
Ŝ ⋅ ŜT

 = 1
N
W ⋅X() W ⋅X()T

 = 1
N
W ⋅X ⋅XT ⋅WT

 =W ⋅Cov X() ⋅WT

11

How to solve for uncorrelatedness

  For any symmetric matrix Z we know that:

  Where ui and di are Z’s eigenvectors and eigenvalues respectively

  In our case if [U,D] = eig(Cov(X))

  This is actually Principal Component Analysis

Z = U ⋅D ⋅UT =
↑ ↑
u1 uN
↓ ↓

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

d1

dN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

← u1 →

← uN →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cov Ŝ() =W ⋅Cov X() ⋅WT

 =W ⋅U ⋅D ⋅UT ⋅WT let us replace W with UT

 = UT ⋅U ⋅D ⋅UT ⋅U U is orthonormal U ⋅UT = I()
 = D

12

Another solution

  We can also solve for a matrix inverse square root:

Cov Ŝ()∝W ⋅X ⋅XT ⋅WT

 = X ⋅XT()− 1
2 ⋅X ⋅XT ⋅ XT ⋅X()− 1

2 replace W with X ⋅XT()− 1
2

 = I

X ⋅X()− 1
2 = U ⋅

d1
−1 2

dN

−1 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅UT , where [U,D] = eig X ⋅XT()

10/1/09

4

13

Another approach

  What if we want to do this in real-time?

  We can also estimate W in an online manner:

  Every time we see a new observation x(t) we update W

  Using this adaptive approach we can see that:

  We’ll skip the derivation details for now

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT()W

Cov W ⋅x(t)() = I, ΔW = 0

14

Summary so far

  For a mixture:

  We can algebraically recover an uncorrelated output using

  If W is the eigenvector matrix of Cov(X)

  Or with W = Cov(X) -1/2

  Or we can use an online estimator:

X = A ⋅S

Ŝ =W ⋅X

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT()W

15

So how well does this work?

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

x(t) ŝ(t) W

= −0.6 −0.4
−2.8 3.7

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

  Well, that was a waste of time …

M
ix

in
g

sy
st

em

U
nm

ix
in

g
sy

st
em

16

What went wrong?

  What does decorrelation mean?
  That the two things compared are “not related”

  Consider a mixture of two Gaussians

s(t) =
N (0,2)
N (0,1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

 x(t) = 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ s(t)

10/1/09

5

17

Decorrelation

  Now let us do what we derived so far on this signal:

  After we are done the two Gaussians are “statistically independent”
  i.e.,

  We have in effect separated the original signals
  Save for a scaling ambiguity

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

a) Find the eigenvectors b) Rotate and scale so that covariance is I

P(s1, s2) = P(s1)P(s2)

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

18

Now lets try this on the original data

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

  Stating the obvious: These are not very Gaussian signals!!

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

19

Doing PCA doesn’t give us the right solution

a) Find the eigenvectors b) Rotate and scale so that covariance is I

  The result is not what we want

  We are off by a rotation

  This idea doesn’t seem to work for non-Gaussian signals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

20

So what’s wrong?

  For Gaussian data decorrelation means independence
  Gaussians have up to second order statistics (1st is mean, 2nd is variance)

  By minimizing the 2nd-order cross-statistics we achieve independence

  These statistics can be expressed by the 2nd-order cumulants:

  Which happen to be the diagonals of the covariance matrix

  But real-world data are seldom Gaussian
  Non-Gaussian data have higher orders which are not taken care of with PCA

  We can measure their dependence using higher order cumulants:

cum(x i , x j) = xix j

3rd order: cum(xi , x j , xk) = xix j xk

4 th order: cum(xi , x j , xk , xl) = xix j xkxl − xix j xkxl − xixk x j xl − xixl xkx j

10/1/09

6

21

Cumulants for Gaussian vs non-Gaussian case

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

Gaussian case

Non-Gaussian case

Cross-cumulants tend to zero Only 2nd order cross-cumulants tend to zero

cum(xi , xj) 1e-13

cum(xi , xj, xk) 0.0008, 0.0004

cum(xi , xj, xk , xl) -0.003, 0.0005, 0.0007

cum(xi , xj) -4e-14

cum(xi , xj, xk) -0.08, -0.1

cum(xi , xj, xk , xl) 0.42, -0.3, 0.16

22

The real problem to solve

  For statistical independence we need to minimize all cross-cumulants
  In practice up to 4th order is enough

  For 2nd order we minimized the off-diagonal covariance elements

  For 4th order we will do the same for a tensor

  The process is similar to PCA, but in more dimensions
  We now find “eigenmatrices” instead of eigenvectors

  Algorithms like JADE and FOBI solve this problem
  Can you see a potential problem though?

cum(x1, x1) cum(x1, x2)
cum(x2 , x1) cum(x2 , x2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Qi, j ,k ,l = cum(xi , x j , xk , xl)

23

An alternative approach

  Tensorial methods can be very very computationally intensive

  How about an on-line method instead?

  Independence can also be coined as “non-linear decorrelation”
  x and y are independent if and only if:

  For all continuous functions f and g

  This is a non-linear extension of 2nd order independence where f(x) = g(x) = x

  We can try solving for that then

f (x)g(y) = f (x) g(y)

24

Online ICA

  Conceptually this is very similar to online decorrelation
  For decorrelation:

  For non-linear decorrelation:

  This adaptation method is known as the Cichocki-Unbehauen update
  But we can obtain it using many different ways

  But how do we pick the non-linearities?
  Depends on the prior we have on the sources

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT()W

ΔW ∝ µ I − f W ⋅x(t)() ⋅ g W ⋅x(t)()T()W

f (xi) =
x + tanh(x), for super-Gaussians
x − tanh(x), for sub-Gaussians

⎧
⎨
⎪

⎩⎪

10/1/09

7

25

Other popular approaches

  Minimum Mutual Information
  Minimize the mutual information of the output

  Creates maximally statistically independent outputs

  Infomax
  Maximize the entropy of the output or Mutual Information of input/output

  Non-Gaussianity
  Adding signals tends towards Gaussianity (Central Limit Theorem)

  Find the maximally non-Gaussian outputs undoes the mixing

  Maximum Likelihood
  Less straightforward at first, but elegant nevertheless

  Geometric methods
  Trying to “eyeball” the proper way to rotate

26

Trying this on our dataset

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

27

Trying this on our dataset

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

x(t)

= −1.39 2.78
2.5 −2.58

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

W ŝ(t)

  We actually separated the mixture!

28

Trying this on our dataset

x(t) W ŝ(t)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

= −1.39 2.78
2.5 −2.58

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

10/1/09

8

29

But something is amiss ..

  There some things that ICA will
not resolve

  Scale
  Statistical independence is

invariant of scale (and sign)

  Order of inputs
  Order of inputs is irrelevant when

talking about independence

  ICA will actually recover:

  Where D is diagonal and P is a
permutation matrix

ŝ(t)

−1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s(t)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ŝ(t) = D ⋅P ⋅ s(t)

30

This works really well for audio mixtures!

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

−10 −5 0 5 10 15

−8

−6

−4

−2

0

2

4

6

8

10

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

Input Mix Output

31
31

Problems with instantaneous mixing

  Sounds don’t really mix
instantaneously

  There are multiple effects
  Room reflections

  Sensor response
  Propagation delays

  Propagation and reflection filtering

  Most can be seen as filters

  We need a convolutive mixing
model

2s
1s

2x1x

Estimated sources using
the instantaneous model

on convolutive mix

32
32

Convolutive mixing

  Instead of instantaneous mixing:

  We now have convolutive mixing:

  The mixing filters aij(k) encapsulate
all the mixing effects in this model

  But how do we do ICA now?

  This is an ugly equation!

2s
1s

2x1x

�

xi(t) = aijs j (t)
j=1
∑

�

xi(t) = aij (k)s j (t − k)
k
∑

j
∑

10/1/09

9

33
33

FIR matrix algebra

  Matrices with FIR filters as elements

  FIR matrix multiplication performs convolution and accumulation

�

A =
a11 a12
a21 a22
⎡

⎣
⎢

⎤

⎦
⎥

aij = aij (0) aij (k −1)[]

�

A ⋅b =
a11 a12
a21 a22
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

b1
b2
⎡

⎣
⎢

⎤

⎦
⎥ =

a11 ∗b1 + a12 ∗b2
a21 ∗b1 + a22 ∗b2
⎡

⎣
⎢

⎤

⎦
⎥

34
34

Back to convolutive mixing

  Now we can rewrite convolutive
mixing as:

  Tidier formulation!

  We can use the FIR matrix
abstraction to solve this problem
now

�

xi(t) = aij (k)s j (t − k)
k
∑

j
∑ ⇒

⇒ x(t) = A ⋅ s(t) =
a11 ∗ s1(t) + a12 ∗ s2(t)
a21 ∗ s1(t) + a22 ∗ s2(t)
⎡

⎣
⎢

⎤

⎦
⎥

2s
1s

2x1x

35
35

An easy way to solve convolutive mixing

 Straightforward translation of instantaneous
learning rules using FIR matrices:

 Not so easy with algebraic approaches!

 Multiple other (and more rigorous/better behaved)
approaches have been developed

ΔW ∝ I + f (W ⋅x) ⋅ (W ⋅x)T() ⋅W

36
36

Complications with this approach

  Required convolutions are expensive
  Real-room filters are long

  Their FIR inverses are very long

  FIR products can become very time consuming

  Convergence is hard to achieve
  Huge parameter space

  Tightly interwoven parameter relationships

  A slow optimization nightmare!

10/1/09

10

37
37

FIR matrix algebra, part II

  FIR matrices have frequency domain counterparts:

  And their products are simpler:

][DFTˆ
ˆˆ
ˆˆˆ

2221

1211

2221

1211

ijij

domainfrequency

aa
aa
aa

aa
aa

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎯⎯⎯⎯⎯ →⎯⎥

⎦

⎤
⎢
⎣

⎡
= AA

�

ˆ A ⋅ ˆ b =
ˆ a 11 ⋅ ˆ b 1 + ˆ a 12 ⋅ ˆ b 2
ˆ a 21 ⋅ ˆ b 1 + ˆ a 22 ⋅ ˆ b 2

⎡

⎣
⎢

⎤

⎦
⎥

ˆ a ⋅ ˆ b = a(0) ⋅b(0) a(k −1) ⋅b(k −1)[]

38
38

Yet another convolutive mixing formulation

 We can now model the process
in the frequency domain:

 For every frequency we have:

 Hey, that’s instantaneous mixing!
  We can solve that!

SAX ˆˆˆ ⋅=

tftt fff ,),()(∀⋅= SAX

2s
1s

2x1x

39
39

Overall flowgraph

M Point
STFT

M point
ISTFT .

.

.

2W

1W

MW

.

.

.

.

.

.

2s
1s

Ns

2x
1x

Nx

Convolved Mixtures

Frequency Transform

Mixed
Frequency Bins

Instantaneous
ICA unmixers

Unmixed
Frequency Bins

Time Transform

Recovered Sources

40
40

Some complications …

  Permutation issues
  We don’t know which source will end up in each narrowband output …

  Resulting output can have separated narrowband elements from both sounds!

  Scaling issues
  Narrowband outputs can be scaled arbitrarily

  This results in spectrally colored outputs

Original source Colored source

Extracted source
with permutation

10/1/09

11

41
41

Scaling issue

  One simple fix is to normalize the separating matrices

  Results into more reasonable scaling

  More sophisticated approaches exist
but this is not a major problem

  Some spectral coloration is however unavoidable

Norig
f

orig
f

norm
f

1

WWW ⋅=

Original source Colored source Corrected source

42
Interspeec
h 2006

Microphone Array Processing and
Source Separation

42

Some solutions for permutation problems

  Continuity of unmixing matrices
  Adjacent unmixing matrices tend to be a little similar, we can

permute/bias them accordingly
  Doesn’t work that great

  Smoothness of spectral output
  Narrowband components from each source tend to modulate the

same way

  Permute unmixing matrices to ensure adjacent narrowband output
are similarly modulated

  Works fine

  The above can fail miserably for more than two sources!
  Combinatorial explosion!

43
Interspeec
h 2006

Microphone Array Processing and
Source Separation

43

Beamforming and ICA

  If we know the placement of the
sensors we can obtain the spatial
response of the ICA solution

  ICA places nulls to cancel out
interfering sources
  Just as in the instantaneous case we

cancel out sources

  We can visualize the permutation
problem now
  Out of place bands

Bands with
permutation

problems

44
Interspeec
h 2006

Microphone Array Processing and
Source Separation

Using beamforming to resolve permutations

  Spatial information
can be used to
resolve permutations
  Find permutations that

preserve zeros or
smooth out the
responses

  Works fine, although it
can be flaky if the
array response is not
that clean

10/1/09

12

45
Interspeec
h 2006

Microphone Array Processing and
Source Separation

45

The N-input N-output problem

  ICA, in either formulation inverts a square matrix (whether
scalar, or FIR)
  This implies that we have the same number of input as outputs
  E.g. in a street with 30 noise sources we need at least 30 mics!

  Solutions exist for M ins - N outs where M > N

  If N > M we can only beamform
  In some cases extra sources can be treated as noise

  This can be restrictive in some situations

46

Separation recap

  Orthogonality is not independence!!
  Not all signals are Gaussian which is a usual assumption

  We can model instantaneous mixtures with ICA and get good results
  ICA algorithms can optimize a variety of objectives, but ultimately result in

statistical independence between the outputs

  Same model is useful for all sorts of mixing situations

  Convolutive mixtures are more challenging but solvable
  There’s more ambiguity, and a closer link to signal processing approaches

47

ICA for data exploration

  ICA is also great for data exploration
  If PCA is, then ICA should be, right?

  With data of large dimensionalities
we want to find structure

  PCA can reduce the dimensionality
  And clean up the data structure a bit

  But ICA can find much more
 intuitive projections

48

Example cases of PCA vs ICA

−0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Non-Gaussian data

ICA
PCA

  Motivation for using ICA vs PCA

  PCA will indicate orthogonal directions
of maximal variance

  This is great for Gaussian data

  Also great if we are into LS models

  Real-world is not Gaussian though

  ICA finds directions that are
 more “revealing”

10/1/09

13

49

Finding useful transforms with ICA

  Audio preprocessing example

  Take a lot of audio snippets
and concatenate them in a big
matrix, do component analysis

  PCA results in the DCT bases
  Do you see why?

  ICA returns time/freq localized
sinusoids which is a better
way to analyze sounds

  Ditto for images
  ICA returns localizes edge filters

50

Enhancing PCA with ICA

  ICA cannot perform dimensionality reduction
  The goal is to find independent components, hence there is no sense of order

  PCA does a great job at reducing dimensionality
  Keeps the elements that carry most of the input’s energy

  It turns out that PCA is a great preprocessor for ICA
  There is no guarantee that the PCA subspace will be appropriate for the independent

components but for most practical purposes this doesn’t make a big difference

M×N input M×K PCA K×K ICA K×N ICs

≈
⋅ ⋅

51

Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces

52

A Video Example

  The movie is a series of frames
  Each frame is a data point

  126, 80×60 pixel frames

  Data X will be 4800×126

  Using PCA/ICA
  X = W×H

  W will contain visual components

  H will contain their time weights

10/1/09

14

53

PCA Results

  Nothing special about the
visual components

  They are orthogonal
pictures
  Does this mean anything?

(not really …)
  Some segmentation of

constant vs. moving parts

  Some highlighting of the
action in the weights

54

ICA Results

  Much more interesting
visual components

  They are independent
  Unrelated elements (left/

right hands, background) are
now highlighted

  We have some
decomposition by parts

  Components weights are
now describing the scene

55

A Video Example

  The movie is a series of frames
  Each frame is a data point

  315, 80×60 pixel frames

  Data X will be 4800×315

  Using PCA/ICA
  X = W×H

  W will contain visual components

  H will contain their time weights

Independent neighborhoods

Input movie

56

What about the soundtrack?

  We can also analyze audio in a
similar way

  We do a frequency transform
and get an audio spectrogram X

  X is frequencies × time

  Distinct audio elements can be
seen in X

  Unlike before we have only one
input this time

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205 230 256 282

10/1/09

15

57

PCA on Audio

  Umm … it sucks!

  Orthogonality doesn’t
mean much for audio
components
  Results are mathematically

optimal, perceptually
useless

Input

20 40 60 80 100 120 140 160 180 200 220

50

100

150

200

250

20 40 60 80 100 120 140 160 180 200 220
1

2

3

4

1

2

3

4

Principal Component Weights

58

ICA on Audio

  A definite improvement

  Independence helps pick
up somewhat more
meaningful sound objects
  Not too clean results, but

the intentions are clear

  Misses some details

20 40 60 80 100 120 140 160 180 200 220
1

2

3

4

Independent Component Weights

Input

20 40 60 80 100 120 140 160 180 200 220

50

100

150

200

250

59

Audio Visual Components?

  We can can even take in both
audio and video data and try to
find structure

  Sometimes there is a very
strong correlation between
auditory and visual elements

  We should be able to discover
that automatically

Input video

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205

Input audio

60

Audio/Visual Components

10/1/09

16

61

Which allows us to play with output

  And of course once we have such a nice
description we can resynthesize at will Resynthesis

62

Recap

  A motivating example

  The theory
  Decorrelation

  Independence vs decorrelation

  Independent component analysis

  Separating sounds
  Solving instantaneous mixtures

  Solving convolutive mixtures

  Data exploration and independence
  Extracting audio features

  Extracting multimodal features

