11-755 Machine Learning for Signal Processing

Latent Variable Models and Signal Separation

Class 13. 07 Oct 2009

Separating Mixed Signals an example

ⁿ "Raise my rent" by David Gilmour

11-755 MLSP: Bhiksha Raj

A Thought Experiment

63154124 ...

- n A person shoots dice repeatedly
- n The dice are loaded
- n You may observe the series of outcomes
- n After observing the outcomes for some time, you can form a good idea of how the dice is loaded
 - Figure out what the probabilities of the various numbers are for dice
- n P(number) = count(number)/sum(rolls)
- n This is a *maximum likelihood* estimate
 - G Estimate that makes the observed sequence of numbers most probable 11-755 MLSP: Bhiksha Raj

A Thought Experiment

63154124...

44163212...

- n Two persons shoot dice repeatedly
- n The dice are loaded
 - The dice are differently loaded for the two of them
- ⁿ You may observe the series of outcomes for both persons
- After observing the outcomes for some time, you can form a good idea of how each of the two dice is loaded
 - Figure out what the probabilities of the various numbers are on each set dice

Estimating Probabilities

- Observation: Observe the sequence of numbers from the two shooters
 - G As indicated by the colors, we know who rolled what number

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6...

Estimating Probabilities

- Dbservation: Observe the sequence of numbers from the two shooters
 - As indicated by the colors,
 we know who rolled what
 number
- Segregation: Separate the blue observations from the red

Estimating Probabilities

- Observation: Observe the sequence of numbers from the two shooters
 - As indicated by the colors,
 we know who rolled what
 number
- Segregation: Separate the blue observations from the red
- From each set compute
 probabilities for each of the 6
 possible outcomes

 $P(number) = \frac{\text{no. of times number was rolled}}{\text{total number of observed rolls}}$

63154124...

44163212...

- n Now imagine that you cannot observe the dice yourself
- n Instead there is a "caller" who randomly calls out the outcomes of the rolls
 - 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
- n At any time, you do not know which of the two he is calling out
- n How do you now determine the probability distributions for the two sets of dice?

63154124...

44163212...

- n Now imagine that you cannot observe the dice yourself
- n Instead there is a "caller" who randomly calls out the outcomes of the rolls
 - 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
- n At any time, you do not know which of the two he is calling out
- How do you now determine the probability distributions for the two sets of dice?
- If you do not even know what fraction of time the blue numbers are called, and what fraction are red?

Probabilities to Estimate

- n The caller will call out a number 6 in any given callout IF
 - $_{\rm q}$ $\,$ He selects "RED", and the Red die rolls the number 6 $\,$
 - q OR
 - ^q He selects "BLUE" and the Blue die rolls the number 6
- ⁿ So the probability that he will call out 6 is:
 - g Prob(RED)*P(6 | RED) + Prob(BLUE)*P(6|BLUE)
- n More generically
 - P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
- ⁿ What we must estimate from the sequence of numbers called out
 - $_{\rm q}$ P(RED) and P(BLUE) the probabilities that he will select either die
 - P(X|RED) and P(X|BLUE) the probability distribution of the numbers 1-6 for both dice!

Multinomials and Mixture Multinomials

 A probability distribution over a collection of items, each of which may be drawn in any draw is a *Multinomial*

P(X : X belongs to a discrete set) = P(X)

n A probability distribution that *combines* (or *mixes*) draws from multiple multinomials is a *mixture multinomial*

- It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm
- First described in a landmark paper by Dempster, Laird and Rubin
 - Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977
- Much work on the algorithm since then
 Mol coblen, Beebford
 - g McLachlan, Bashford,
- The principles behind the algorithm existed for several years prior to the landmark paper, however.

EM results in maximum likelihood estimates

 $P(X) = \sum_{Z} P(Z)P(X \mid Z)$

- P(X) = P(O==X) is the probability that any observation O will take value X
 - $_{\text{q}}$ *i.e.* That the probability that number rolled is X
- n EM estimates of P(Z) and P(X|Z) are such that: $P(O_1, O_2, ..) = P(O_1)P(O_2)P(O_3)..$ is maximized
- n This too is a maximum-likelihood solution

- n Iterative solution
- n Get some initial estimates for all parameters
 - Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- ⁿ Two steps that are iterated:
 - g **Expectation Step:** Estimate statistically, the values of **unseen** variables
 - Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

Expectation Maximization: Terminology

- n Hidden variable: Z
 - ^q Dice: The identity of the shooter whose dice roll has been called out
- ⁿ A priori probability distribution of hidden variable P(Z)
 - Dice: Probability that the caller will call the red shooter; probability that he will call the blue shooter
 - ⁿ For what fraction of a very large number of calls he calls the red shooter
- n Observed data: X
 - $_{\rm q}$ The numbers called out
- Parameters that could be estimated, if the hidden variable was known: P(X | Z) and P(Z)
 - ^q Dice: For the dice example, these would be the probabilities of the numbers 1 6 for each shooter (6 values for each shooter, 12 in all)
 - $_{\rm q}$ And, the probability that the caller selects either die

- If we knew the value of Z for every observation, we could estimate P(X|Z)
 - If we knew which shooter rolled each number, we could estimate the probability of the dice for both shooters
- ⁿ Unfortunately, we do not know Z it is hidden from us!
- Reverse the problem: try to estimate Z after having seen X
 - Guess who rolled the dice *from the number*
 - If the blue shooter shoots "4" much more often than the red shooter, and if the caller calls out "4", then the caller has probably called out the blue shooter
 - This is an *a posteriori* estimate: estimation posterior to the observation

- The Expectation step of EM attempts to estimate the hidden variable Z from the observed data X
- Since we can usually not be certain of the estimate for Z, Z is probabilistically estimated:
 - Instead of saying "The caller called the Blue shooter", we say "After observing that the caller called a 4, we estimate that he may have called the blue shooter with probability 0.667, and the red shooter with probability 0.333
 - The post observation estimates of the probabilities of the various values of Z are called *a posteriori* probabilities
- The *a posteriori* probabilities of the various values of *Z* are computed using Bayes' rule:

$$P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{P(X)} = CP(X \mid Z)P(Z)$$

11-755 MLSP: Bhiksha Raj

- n Hypothetical Dice Shooter Example:
- We obtain an initial estimate for the probability distribution of the two sets of dice (somehow):

We obtain an initial estimate for the probability with which the caller calls out the two shooters (somehow)

- n Hypothetical Dice Shooter Example:
- ⁿ We have an initial estimate:
 - $_{\mbox{\tiny q}}$ caller calls blue 0.5 of the time, and red 0.5 of the time
 - $_{\mbox{\tiny T}}$ Probability of "4" for blue die is 0.1, for red die is 0.05"
 - Galler has just called out 4
- ⁿ Observation X = 4. From initial estimates:
 - P(X | Z = red) = 0.1; P(X | Z = blue) = 0.05

$$P(Z=red) = 0.5; P(Z=blue) = 0.5$$

 $P(red | X = 4) = CP(X = 4 | Z = red)P(Z = red) = C \cdot 0.05 \cdot 0.5 = C0.025$ $P(blue | X = 4) = CP(X = 4 | Z = blue)P(Z = blue) = C \cdot 0.1 \cdot 0.5 = C0.05$

Normalizing: P(red | X = 4) = 0.33; P(blue | X = 4) = 0.67

645123452214346216

- For each observation O == X, $P(Z \mid X)$ must be computed for every value of Z and for every observation O
- In the dice example, we must compute both $P(\text{red} \mid X)$ and $P(\text{blue} \mid X)$ for every observation O = = X
 - An observation here is a called out roll of the dice

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Each call is "fragmented"
 - Fragment sizes are proportional to the a posteriori probabilities of the colors

n P(Z|X)

- The fragments are added to the collections associated with the different dice
 - ^q So a fragment of *every* observation ends up in the collection for any dice

- Every observed roll of the dice contributes to both "Red" and "Blue"
- n Total count for "Red" is the sum of all the posterior probabilities in the red column
 - g **7.31**
- n Total count for "Blue" is the sum of all the posterior probabilities in the blue column
 - g **10.69**
 - Note: 10.69 + 7.31 = 18 = the total number of instances

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Red" : 7.31
- n Red:
 - $_{\rm q}$ Total count for 1: 1.71

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Red" : 7.31
- n Red:
 - $_{\rm q}$ Total count for 1: 1.71
 - $_{\rm q}$ Total count for 2: 0.56

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Red" : 7.31
- n Red:
 - $_{\rm q}$ Total count for 1: 1.71
 - ^q Total count for 2: 0.56
 - $_{\rm q}$ Total count for 3: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Red" : 7.31
- n Red:
 - $_{\rm q}$ Total count for 1: 1.71
 - $_{\rm q}$ Total count for 2: 0.56
 - $_{\rm q}$ Total count for 3: 0.66
 - g Total count for 4: 1.32

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

n Total count for "Red" : 7.31

n Red:

- $_{\rm q}$ Total count for 1: 1.71
- $_{\rm q}$ Total count for 2: 0.56
- $_{\rm q}$ Total count for 3: 0.66
- $_{\rm q}$ Total count for 4: 1.32
- $_{\rm q}$ Total count for 5: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

n Total count for "Red" : 7.31

n Red:

- $_{\rm q}$ Total count for 1: 1.71
- $_{\rm q}$ Total count for 2: 0.56
- $_{\rm q}$ Total count for 3: 0.66
- $_{\rm q}$ Total count for 4: 1.32
- $_{\rm q}$ Total count for 5: 0.66
- $_{\rm q}$ Total count for 6: 2.4

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Red" : 7.31
- n Red:
 - $_{\rm q}$ Total count for 1: 1.71
 - g Total count for 2: 0.56
 - ^q Total count for 3: 0.66
 - ^q Total count for 4: 1.32
 - ^q Total count for 5: 0.66
 - ^q Total count for 6: 2.4

n Updated probability of Red dice:

- g P(1 | Red) = 1.71/7.31 = 0.234
- $_{\text{q}}$ P(2 | Red) = 0.56/7.31 = 0.077
- P(3 | Red) = 0.66/7.31 = 0.090
- g P(4 | Red) = 1.32/7.31 = 0.181
- $_{\text{q}}$ P(5 | Red) = 0.66/7.31 = 0.090
- g P(6 | Red) = 2.40/7.31 = 0.328

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Blue" : 10.69
- n Blue:
 - g Total count for 1: 1.29

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Blue" : 10.69
- n Blue:
 - g Total count for 1: 1.29
 - g Total count for 2: 3.44

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Blue" : 10.69
- n Blue:
 - g Total count for 1: 1.29
 - ^q Total count for 2: 3.44
 - $_{\rm q}$ Total count for 3: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Blue" : 10.69
- n Blue:
 - g Total count for 1: 1.29
 - ^q Total count for 2: 3.44
 - ^q Total count for 3: 1.34
 - $_{\rm q}$ Total count for 4: 2.68

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Blue" : 10.69
- n Blue:
 - $_{\rm q}$ Total count for 1: 1.29
 - $_{\rm q}$ Total count for 2: 3.44
 - $_{\rm q}$ Total count for 3: 1.34
 - $_{\rm q}$ Total count for 4: 2.68
 - $_{\rm q}$ Total count for 5: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

n Total count for "Blue" : 10.69

n Blue:

- $_{\rm q}$ Total count for 1: 1.29
- ^q Total count for 2: 3.44
- $_{\rm q}$ Total count for 3: 1.34
- $_{\rm q}$ Total count for 4: 2.68
- $_{\rm q}$ Total count for 5: 1.34
- $_{\rm q}$ Total count for 6: 0.6

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Blue" : 10.69
- n Blue:
 - $_{\rm q}$ Total count for 1: 1.29
 - ^q Total count for 2: 3.44
 - g Total count for 3: 1.34
 - g Total count for 4: 2.68
 - g Total count for 5: 1.34
 - ^q Total count for 6: 0.6

n Updated probability of Blue dice:

- q $P(1 \mid Blue) = 1.29/11.69 = 0.122$ q $P(2 \mid Blue) = 0.56/11.69 = 0.322$ q $P(3 \mid Blue) = 0.66/11.69 = 0.125$
- g P(4 | Blue) = 1.32/11.69 = 0.250
- $_{\text{q}}$ P(5 | Blue) = 0.66/11.69 = 0.125
- g P(6 | Blue) = 2.40/11.69 = 0.056

0		
Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Total count for "Red" : 7.31
- n Total count for "Blue" : 10.69
- n Total instances = 18
 - ^q Note 7.31+10.69 = 18
- We also revise our estimate for the probability that the caller calls out Red or Blue
 - i.e the fraction of times that he calls Red and the fraction of times he calls Blue
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

The updated values

n Probability of Red dice:

- $_{\text{q}}$ P(2 | Red) = 0.56/7.31 = 0.077
- P(3 | Red) = 0.66/7.31 = 0.090
- g P(4 | Red) = 1.32/7.31 = 0.181
- P(5 | Red) = 0.66/7.31 = 0.090

$$P(6 | \text{Red}) = 2.40/7.31 = 0.328$$

ⁿ Probability of Blue dice:

g P(2 | Blue) = 0.56/11.69 = 0.322

g P(5 | Blue) = 0.66/11.69 = 0.125

$$P(6 | Blue) = 2.40/11.69 = 0.056$$

P(Z=Red) = 7.31/18 = 0.41

P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

n THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATION IS AN ITERATIVE PROCESS

The Dice Shooter Example

63154124...

44163212...

- 1. Initialize P(Z), P(X | Z)
- Estimate $P(Z \mid X)$ for each Z, for each called out number
 - Associate X with each value of Z, with weight $P(Z \mid X)$
- 3. Re-estimate P(X | Z) for every value of X and Z
- 4. Re-estimate P(Z)
- 5. If not converged, return to 2

In Squiggles

- ⁿ Given a sequence of observations O_1 , O_2 , ...
 - $_{\rm q}~~N_X$ is the number of observations of color X
- n Initialize P(Z), P(X|Z) for dice Z and numbers X
- n Iterate:
 - For each number X: $P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{\sum P(Z')P(X \mid Z')}$
 - g Update:

$$P(X \mid Z) = \frac{\sum_{\substack{O \text{ such that } O ==X\\Z' \text{ } O \text{ such that } O ==X}} P(Z \mid X)}{\sum_{\substack{Z' \text{ } O \text{ such that } O ==X}} P(Z' \mid X)} = \frac{N_X P(Z \mid X)}{\sum_{\substack{Z' \text{ } V}} N_X P(Z' \mid X)}$$

$$P(Z) = \frac{\sum_{X} N_X P(Z \mid X)}{\sum_{Z'} \sum_{X} N_X P(Z \mid X)}$$

11-755 MLSP: Bhiksha Raj

- n The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
 - The hidden variable is often called a "latent" variable
- ⁿ Some examples:
 - g Estimating mixtures of distributions
 - n Only data are observed. The individual distributions and mixing proportions must both be learnt.
 - g Estimating the distribution of data, when some attributes are missing
 - Estimating the dynamics of a system, based only on observations that may be a complex function of system state

The Mad Caller

- The EM algorithm will give us one of many solutions, all equally valid!
 - The probability of 6 being called out:

 $P(6) = aP(6 | red) + bP(6 | blue) = aP_r + bP_b$

- ⁿ Assigns P_r as the probability of 6 for the red die
- n Assigns P_b as the probability of 6 for the blue die
- The following too is a valid solution [FIX]

 $P(6) = 1.0 \exists P_r + bP_b + 0.0 anything$

- n Assigns 1.0 as the a priori probability of the red die
- n Assigns 0.0 as the probability of the blue die
- n The solution is NOT unique

A mild shift of metaphor

- n Replacing the caller with a picker
 - ^q Who picks balls from Urns
 - n Replacing the Dice with an Urn
 - ^q Has 6 types of balls, marked "1", "2", "3", "4", "5", "6"
 - The probability of randomly drawing a ball marked "6" = P(6 | urn)
 - Picker draws a ball from the urn, calls out the number and replaces the ball in the urn
 - n Exactly the same model as the dice
 - n Problem: From the sequence of numbers called by the picker, determine the *fraction* of balls in the urns that are marked with each number.

More complex: TWO pickers

- ⁿ Two *different* pickers are drawing balls from the *same* pots
 - ^q After each draw they call out the number and replace the ball
- n They select the pots with different probabilities
- ⁿ From the numbers they call we must determine
 - ^q Probabilities with which each of them select pots
 - $_{\rm q}$ The distribution of balls within the pots

- n Analyze each of the callers separately
- Compute the probability of selecting pots separately for each caller
- ⁿ But *combine* the counts of balls in the pots!!

Recap with only one picker and two pots

n Probability of Red urn:
q P(1 | Red) =
$$1.71/7.31 = 0.234$$

q P(2 | Red) = $0.56/7.31 = 0.077$
q P(3 | Red) = $0.66/7.31 = 0.090$
q P(4 | Red) = $1.32/7.31 = 0.181$
q P(5 | Red) = $0.66/7.31 = 0.090$
q P(6 | Red) = $2.40/7.31 = 0.328$
n Probability of Blue urn:
q P(1 | Blue) = $1.29/11.69 = 0.122$
q P(2 | Blue) = $0.56/11.69 = 0.322$

$$P(4 | Blue) = 1.32/11.69 = 0.250$$

^q P(5 | Blue) = 0.66/11.69 = 0.125

 $_{\text{q}}$ P(6 | Blue) = 2.40/11.69 = 0.056

P(Z=Red) = 7.31/18 = 0.41P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

10.69

Two pickers

- n Probability of drawing a number X for the first picker:
 - $P_1(X) = P_1(red)^*P(X|red) + P_1(blue)^*P(X|blue)$
- n Probability of drawing X for the second picker
 - $P_2(X) = P_2(red)^*P(X|red) + P_2(blue)^*P(X|blue)$
- ⁿ Note: P(X|red) and P(X|blue) are the same for both pickers
 - The pots are the same, and the probability of drawing a ball marked with a particular number is the same for both
- The probability of *selecting* a particular pot is different for both pickers
 - $_{\text{q}}$ P₁(X) and P₂(X) are not related

- ⁿ Probability of drawing a number X for the first picker:
 - $P_1(X) = P_1(red)^*P(X|red) + P_1(blue)^*P(X|blue)$
- n Probability of drawing X for the second picker
 - $P_2(X) = P_2(red)^*P(X|red) + P_2(blue)^*P(X|blue)$
- n Problem: Given the set of numbers called out by both pickers estimate
 - $_{\text{q}}$ P₁(color) and P₂(color) for both colors
 - $_{\text{q}}$ P(X | red) and P(X | blue) for all values of X

For the First Picker

With TWO pickers: The first picker

- Picker 1 calls:
 6,4,5,1,2,3,4,5,2,2,1,4,3,4,6,2,1,6
- The table to the right is computed as before
 - Each instance of a number called is "split" between the two urns
 - The fraction of the instance going to any urn is the a posteriori probability of the urn, given the number called

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- n Picker 2 calls:
 - 4, 4, 3, 2, 1, 6, 5
 - Note: The number of observations is different from that for picker 1
 - In general, the *number* of observations for the two need not be the same
- We get the table to the right for the calls by picker 2
- n The table is computed exactly as we computed the table for the first picker

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

PICKER 1

10.69

PICKER 2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

4.20

2.80

- Two tables
- The probability of selecting pots is independently computed for the two pickers

n

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

PICKER 1

PICKER 2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

4.20

 \langle

P(RED | PICKER1) = 7.31 / 18

P(BLUE | PICKER1) = 10.69 / 18

P(RED | PICKER2) = 4.2 / 7 P(BLUE | PICKER2) = 2.8 / 7

2.80

11-755 MLSP: Bhiksha Raj

10.69

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

- To compute probabilities of numbers *combine* the tables
- n Total count of Red: 11.51
- n Total count of Blue: 13.49

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

n Total count for "Red" : 11.51

n Red:

- g Total count for 1: 2.46
- ^q Total count for 2: 0.83
- g Total count for 3: 1.23
- g Total count for 4: 2.46
- g Total count for 5: 1.23
- g Total count for 6: 3.30

g P(6|RED) = 3.3 / 11.51 = 0.29

In Squiggles

- ⁿ Given a sequence of observations $O_{k,1}$, $O_{k,2}$, ... from the kth picker
 - $_{\mbox{\tiny q}}$ $N_{k,X}$ is the number of observations of color X drawn by the k^{th} picker
- In Initialize $P_k(Z)$, P(X|Z) for pots Z and colors X
- n Iterate:
 - For each Color X, for each pot Z and each observer k:
 - Image: General systemImage: Update probability of numbers for the pots:
 - ^q Update the mixture weights: probability of urn selection for each picker

$$P(Z \mid X, k) = \frac{P(X \mid Z, k)P_k(Z)}{\sum_{Z'} P_k(Z')P(X \mid Z', k)}$$

$$P(X \mid Z) = \frac{\displaystyle\sum_{k} N_{k,X} P(Z \mid X, k)}{\displaystyle\sum_{k} \displaystyle\sum_{Z'} N_{k,X} P(Z' \mid X, k)}$$

$$P_k(Z) = \frac{\displaystyle\sum_X N_{k,X} P(Z \mid X, k)}{\displaystyle\sum_{Z'} \displaystyle\sum_X N_{k,X} P(Z' \mid X, k)}$$

11-755 MLSP: Bhiksha Raj

Signal Separation with the Urn model

- Multiple with the probability of drawing balls from Urns have to do with sounds?
 - $_{\rm q}$ Or Images?
- n We shall see..

- ⁿ We represent signals spectrographically
 - g Sequence of magnitude spectral vectors estimated from (overlapping) segments of signal
 - G Computed using the short-time Fourier transform
 - Note: Only retaining the magnitude of the STFT for our operations
 - ^q We will, however need the phase later for conversion to a signal

11-755 MLSP: Bhiksha Raj

A Multinomial Model for Spectra

- ⁿ A generative model for one frame of a spectrogram
 - A magnitude spectral vector obtained from a DFT represents spectral magnitude against discrete frequencies

¹¹⁻⁷⁵⁵ MLSP: Bhiksha Raj

A more complex model

- n A "picker" has multiple urns
- In each draw he first selects an urn, and then a ball from the urn
 - $_{q}$ Overall probability of drawing f is a *mixture multinomial*
 - ⁿ Since several multinomials (urns) are combined
 - Two aspects the probability with which he selects any urn, and the probability of frequencies with the urns

11-755 MLSP: Bhiksha Raj

The Picker Generates a Spectrogram

- n The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- n He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- ⁿ Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- n And so on, until he has constructed the entire spectrogram

- n The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- n He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- n Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- n And so on, until he has constructed the entire spectrogram

- n The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- n He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- n Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- n And so on, until he has constructed the entire spectrogram

- n The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- n He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- n Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- n And so on, until he has constructed the entire spectrogram

- n The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- n He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- n Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- n And so on, until he has constructed the entire spectrogram

- n The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- n He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- n Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_{I}(z)$
- n And so on, until he has constructed the entire spectrogram
 - The number of draws in each frame represents the rms energy in that frame

The URNS are the same for every frame n

- These are the *component multinomials* or *bases* for the source that generated the signal
- The only difference between frames is the probability with which n he selects the urns

Frame-specific spectral distribution

bases

 $P_t(z)P(f)$

SOURCE specific

Frame(time) specific mixture weight

11-755 MLSP: Bhiksha Raj

- Each component multinomial (urn) is actually a normalized histogram over frequencies P(f|z)
 - ^q I.e. a spectrum
- Component multinomials represent latent spectral structures (bases) for the given sound source
- The spectrum for *every* analysis frame is explained as an additive combination of these latent spectral structures

Spectral View of Component Multinomials

- By "learning" the mixture multinomial model for any sound source we "discover" these latent spectral structures for the source
- The model can be learnt from spectrograms of a small amount of audio from the source using the EM algorithm

EM learning of bases

- n Initialize bases
 - $_{\text{q}}$ P(f|z) for all z, for all f
 - n Must decide on the number of urns
- n For each frame
 - $_{\text{q}}$ Initialize $P_t(z)$

EM Update Equations

- n Iterative process:
 - $\ensuremath{\,^{_{\rm Q}}}$ Compute a posteriori probability of the z^{th} urn for the source for each f

$$P_{t}(z \mid f) = \frac{P_{t}(z)P(f \mid z)}{\sum_{z'} P_{t}(z')P(f \mid z')}$$

 $_{\rm q}~$ Compute mixture weight of z^{th} urn

$$P_{t}(z) = \frac{\sum_{f} P_{t}(z \mid f) S_{t}(f)}{\sum_{z'} \sum_{f} P_{t}(z' \mid f) S_{t}(f)}$$

Compute the probabilities of the frequencies for the z^{th} urn $\sum_{r,(z|f)S_r(f)} \sum_{r} P_r(z|f) S_r(f)$

$$P(f \mid z) = \frac{\sum_{f'} P_t(z \mid f) S_t(f)}{\sum_{f'} \sum_{t} P_t(z \mid f') S_t(f')}$$

How the bases compose the signal

- n The overall signal simply the sum of the contributions of each of the urns to the signal
 - Each urn contributes a different amount to each frame
- ⁿ The contribution of the z-th urn to the t-th frame is given by $P(f|z)P_t(z)S_t$

$$S_{t} = S_{f}S_{t} (f)$$

How meaningful are these structures

- n If bases capture data structure they must
 - g Allow prediction of data
 - Hearing only the low-frequency components of a note, we can still know the note
 - **n** Which means we can predict its higher frequencies
 - g Be resolvable in complex sounds
 - n Must be able to pull them out of complex mixtures
 - q **Denoising**
 - **G** Signal Separation from Monaural Recordings

Prediction

- n The full basis is known
- The presence of the basis is identified from the observation of a part of it
- The obscured remaining spectral pattern can be guessed

n Bandwidth Expansion

- Problem: A given speech signal only has frequencies in the 300Hz-3.5Khz range
 - n Telephone quality speech
- $_{\mbox{\tiny q}}$ Can we estimate the rest of the frequencies

- n However, we are only able to observe the number of draws of some frequencies and not the others
- We must estimate the number of draws of the unseen frequencies

- n From a collection of *full-bandwidth* training data that are similar to the bandwidth-reduced data, learn spectral bases
 - $_{\rm q}$ Using the procedure described earlier
 - Each magnitude spectral vector is a mixture of a common set of bases
 - ⁿ Use the EM to learn bases from them

Bandwidth Expansion: Step 2 – Estimation

n Using only the observed frequencies in the bandwidth-reduced data, estimate mixture weights for the bases learned in step 1.

Step 2

- n Iterative process:
 - G Compute a posteriori probability of the zth urn for the speaker for each *f*

$$P_{t}(z \mid f) = \frac{P_{t}(z)P(f \mid z)}{\sum_{z'} P_{t}(z')P(f \mid z')}$$

G Compute mixture weight of z^{th} urn for each frame t

 $_{\rm q}~~P(f|z)$ was obtained from training data and will not be reestimated

Step 3 and Step 4

 Compose the complete probability distribution for each frame, using the mixture weights estimated in Step 2

$$P_t(f) = \sum_{z} P_t(z) P(f \mid z)$$

- Note that we are using mixture weights estimated from the reduced set of observed frequencies
 - This also gives us estimates of the probabilities of the *unobserved* frequencies
- ⁿ Use the complete probability distribution $P_t(f)$ to predict the unobserved frequencies!

- n A single Urn with only red and blue balls
- Given that out an unknown number of draws, exactly *m* were red, how many were blue?
- n One Simple solution:
 - Total number of draws N = m / P(red)
 - The number of tails drawn = $N^*P(blue)$
 - aActual multinomial solution is only slightly more complex

Estimating unobserved frequencies

n Expected value of the number of draws:

n Estimated spectrum in unobserved frequencies

$$\hat{S}_t(f) = N_t P_t(f)$$

Overall Solution

- Learn the "urns" for the signal source from broadband training data
- For each frame of the reduced bandwidth test utterance, find mixture weights for the urns
 - Ignore (marginalize) the unseen frequencies
- Given the complete mixture multinomial distribution for each frame, estimate spectrum (histogram) at unseen frequencies

Some Results

- Reasonable reconstructions are achieved
- The reconstruction is speaker specific however (since the urns represent spectral structures for the speaker)

Signal Separation from Monaural Recordings

- ⁿ The problem:
 - Image: groupMultiple sources are producing soundsimultaneously
 - The combined signals are recorded over a single microphone
 - The goal is to selectively separate out the signal for a target source in the mixture
 - Or at least to enhance the signals from a selected source

Problem Specification

- The mixed signal contains components from multiple sources
- n Each source has its own "bases"
- n In each frame
 - Each source draws from its own collection of bases to compose a spectrum
 - Bases are selected with a frame specific mixture weight
 - The overall spectrum is a mixture of the spectra of individual sources
 - I.e. a histogram combining draws from both sources
- Underlying model: Spectra are histograms over frequencies

- n Each sound source is represented by its own picker and urns
 - g Urns represent the distinctive spectral structures for that source
 - Assumed to be known beforehand (learned from some separate training data)
- n The caller selects a picker at random
 - ^q The picker selects an urn randomly and draws a ball
 - ^q The caller calls out the frequency on the ball
- n A spectrum is a histogram of frequencies called out
 - The total number of draws of any frequency includes contributions from *both* sources

Separating the sources

- ⁿ Goal: Estimate number of draws from each source
 - The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
 - The individual distributions are mixture multinomials
 - $_{\rm q}$ And the urns are known

Separating the sources

- ⁿ Goal: Estimate number of draws from each source
 - The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
 - ^q The individual distributions are mixture multinomials
 - $_{\rm q}$ And the urns are known

 $P_t(f) = P_t(s_1)P_t(f \mid s_1) + P_t(s_2)P_t(f \mid s_2)$

$$P_{t}(f) = P_{t}(s_{1})\sum_{z} P_{t}(z \mid s_{1})P(f \mid z, s_{1}) + P_{t}(s_{2})\sum_{z} P_{t}(z \mid s_{1})P(f \mid z, s_{2})$$

Separating the sources

- n Goal: Estimate number of draws from each source
 - The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
 - ^q The individual distributions are mixture multinomials
 - ^q And the urns are known
 - $_{\rm q}$ Estimate remaining terms using EM

¹¹⁻⁷⁵⁵ MLSP: Bhiksha Raj

Algorithm

- ⁿ For each frame:
 - $_{\text{q}}$ Initialize $P_t(s)$
 - n The fraction of balls obtained from source s
 - n Alternately, the fraction of energy in that frame from source s
 - $_{\text{q}}$ Initialize $P_t(z|s)$
 - ⁿ The mixture weights of the urns in frame *t* for source s
 - **Reestimate the above two iteratively**
- Note: P(f|z,s) is not frame dependent
 - It is also not re-estimated
 - ^q Since it is assumed to have been learned from separately obtained unmixed training data for the source

Iterative algorithm

- n Iterative process:
 - G Compute a posteriori probability of the combination of speaker s and the zth urn for each speaker for each f

$$P_t(s, z \mid f) = \frac{P_t(s)P_t(z \mid s)P(f \mid z, s)}{\sum_{s'} P_t(s')\sum_{z'} P_t(z' \mid s')P(f \mid z', s')}$$

 $_{\mbox{\tiny q}}$ Compute the a priori weight of speaker s

$$P_{t}(s) = \frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s'} \sum_{z'} \sum_{f} P_{t}(s', z' \mid f) S_{t}(f)}$$

 $_{\mbox{\tiny q}}$ Compute mixture weight of z^{th} urn for speaker s

What is $P_t(s,z|f)$

- n Compute how each ball (frequency) is split between the urns of the various sources
- ⁿ The ball is first split between the sources

$$P_t(s \mid f) = \frac{P_t(s)}{\sum_{s'} P_t(s')}$$

The fraction of the ball attributed to any source s is split between its urns:

$$P_t(z \mid s, f) = \frac{P_t(z \mid s)P(f \mid z, s)}{\sum_{z'} P_t(z' \mid s)P(f \mid z', s)}$$

The portion attributed to any urn of any source is a product of the two

$$P_t(s, z \mid f) = \frac{P_t(s)P_t(z \mid s)P(f \mid z, s)}{\sum_{s'} P_t(s')\sum_{z'} P_t(z' \mid s')P(f \mid z', s')}$$

11-755 MLSP: Bhiksha Raj

Reestimation

 The reestimate of source weights is simply the proportion of all balls that was attributed to the sources

$$P_{t}(s) = \frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s'} \sum_{z'} \sum_{f} P_{t}(s', z' \mid f) S_{t}(f)}$$

The reestimate of mixture weights is the proportion of all balls attributed to each urn

$$P_t(z \mid s) = \frac{\sum_{f} P_t(s, z \mid f) S_t(f)}{\sum_{z' = f} P_t(s', z' \mid f) S_t(f)}$$

Separating the Sources

- ⁿ For each frame:
- n Given
 - $_{\mbox{\tiny G}}~~S_t(f)$ The spectrum at frequency f of the mixed signal
- n Estimate
 - $\space{1.5}\space{1.$
- ⁿ A simple maximum a posteriori estimator

$$\hat{S}_{t,i}(f) = S_t(f) \sum_{z} P_t(z, s \mid f)$$

If we have only have bases for one source?

- n Only the bases for one of the two sources is given
 - $_{\rm q}\,$ Or, more generally, for N-1 of N sources

 $P_t(f) = P_t(s_1)P_t(f \mid s_1) + P_t(s_2)P_t(f \mid s_2)$

$$P_{t}(f) = P_{t}(s_{1})\sum_{z} P_{t}(z \mid s_{1})P(f \mid z, s_{1}) + P_{t}(s_{2})\sum_{z} P_{t}(z \mid s_{1})P(f \mid z, s_{2})$$
11.755 MLCD: Philade Bei

If we have only have bases for one source?

- n Only the bases for one of the two sources is given
 - $_{\mbox{\tiny q}}$ Or, more generally, for N-1 of N sources
 - The unknown bases for the remaining source must also be estimated!

11-755 MLSP: Bhiksha Raj

Partial information: bases for one source unknown

- n P(f|z,s) must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
 - g From the *mixed signal itself*
- ⁿ The final separation is done as before

Iterative algorithm

- n Iterative process:
 - G Compute a posteriori probability of the combination of speaker s and the zth urn for the speaker for each f

$$P_t(s, z \mid f) = \frac{P_t(s)P_t(z \mid s)P(f \mid z, s)}{\sum_{s'} P_t(s')\sum_{z'} P_t(z' \mid s')P(f \mid z', s')}$$

 $_{\rm q}$ Compute the a priori weight of speaker s and mixture

 $P_{t}(s) = \frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s'} \sum_{z'} \sum_{f} P_{t}(s', z' \mid f) S_{t}(f)}$

$$P(z \mid s) = \frac{\sum_{f} P_t(s, z \mid f) S_t(f)}{\sum_{z' = f} P_t(s', z' \mid f) S_t(f)}$$

G Compute unknown bases

$$P(f \mid z, s) = \frac{\sum_{t} P_t(s, z \mid f) S_t(f)}{\sum_{f'} \sum_{t} P_t(s, z \mid f') S_t(f')}$$
Partial information: bases for one source unknown

- n P(f|z,s) must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
 - g From the *mixed signal itself*
- ⁿ The final separation is done as before

$$\hat{S}_{t,i}(f) = S_t(f) \sum_{z} P_t(z, s \mid f)$$

11-755 MLSP: Bhiksha Raj

Separating Mixed Signals: Examples

- n "Raise my rent" by David Gilmour
- Background music "bases" learnt from 5-seconds of music-only segments within the song
- Lead guitar "bases" bases
 learnt from the rest of the song

- n Norah Jones singing "Sunrise"
- n A more difficult problem:
 - ^q Original audio clipped!
- Background music bases learnt from 5 seconds of music-only segments

11-755 MLSP: Bhiksha Raj

Where it works

- n When the spectral structures of the two sound sources are distinct
 - g Don't look much like one another
 - $_{\rm q}\,$ E.g. Vocals and music
 - $_{\rm q}$ E.g. Lead guitar and music
- n Not as effective when the sources are similar $_{\rm q}$ Voice on voice

Separate overlapping speech

- Bases for both speakers learnt from 5 second recordings of individual speakers
- Shows improvement of about 5dB in Speaker-to-Speaker ratio for both speakers
 - $_{\rm q}$ Improvements are worse for same-gender mixtures

11-755 MLSP: Bhiksha Raj

Can it be improved?

- n Yes!
- n More training data per source
- n More bases per source
 - $_{\rm q}\,$ Typically about 40, but going up helps.
- n Adjusting FFT sizes and windows in the signal processing
- n And / Or..

More on the topic

- ⁿ Sparse overcomplete representations
- n Nearest-neighbor representations
- n Convolutive basis decompositions
- n Transform invariance
- n Etc..