Latent Variable Models and Signal Separation

Class 13. 07 Oct 2009

Separating Mixed Signals an example

榧
n "Raise my rent" by David Gilmour

A Thought Experiment

$$
63154124 \text {... }
$$

A person shoots dice repeatedly
The dice are loaded
You may observe the series of outcomes
After observing the outcomes for some time, you can form a good idea of how the dice is loaded
${ }_{q}$ Figure out what the probabilities of the various numbers are for dice
n $\quad \mathrm{P}$ (number) $=$ count(number)/sum(rolls)
n This is a maximum likelihood estimate
${ }_{q}$ Estimate that makes the observed sequence of numbers most probable 11-755 MLSP: Bhiksha Raj

A Thought Experiment

$$
63154124 \ldots
$$

44163212 ...

Two persons shoot dice repeatedly
The dice are loaded
${ }_{q}$ The dice are differently loaded for the two of them
You may observe the series of outcomes for both persons After observing the outcomes for some time, you can form a good idea of how each of the two dice is loaded

Figure out what the probabilities of the various numbers are on each set dice

Estimating Probabilities

Observation: Observe the sequence of numbers from the two shooters
${ }_{q}$ As indicated by the colors, we know who rolled what number

Estimating Probabilities

Observation: Observe the sequence of numbers from the two shooters

As indicated by the colors, we know who rolled what number

Segregation: Separate the blue observations from the red

$645123452214346216 \ldots$.	
$652421361 .$.	$413524426 .$.
Collection of "blue" numbers	Collection of "red" numbers

Estimating Probabilities

Observation: Observe the sequence of numbers from the two shooters
${ }_{9}$ As indicated by the colors, we know who rolled what number

Segregation: Separate the blue observations from the red

From each set compute probabilities for each of the 6 possible outcomes
$P($ number $)=\frac{\text { no. of times number was rolled }}{\text { total number of observed rolls }}$

A Thought Experiment

$$
63154124 \text {... }
$$

$44163212 \ldots$
n Now imagine that you cannot observe the dice yourself
n Instead there is a "caller" who randomly calls out the outcomes of the rolls
q 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
At any time, you do not know which of the two he is calling out How do you now determine the probability distributions for the two sets of dice?

A Thought Experiment

$63154124 \ldots$

44163212 ...
n Now imagine that you cannot observe the dice yourself Instead there is a "caller" who randomly calls out the outcomes of the rolls q. 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
At any time, you do not know which of the two he is calling out How do you now determine the probability distributions for the two sets of dice?
If you do not even know what fraction of time the blue numbers are called, and what fraction are red?

Probabilities to Estimate

n The caller will call out a number 6 in any given callout IF
q. He selects "RED", and the Red die rolls the number 6
q OR
q He selects "BLUE" and the Blue die rolls the number 6
n So the probability that he will call out 6 is:
${ }_{q} \operatorname{Prob}($ RED $) * P(6 \mid R E D)+\operatorname{Prob}(B L U E) * P(6 \mid B L U E)$
n More generically
q $P(X)=P($ Red $) P(X \mid$ Red $)+P($ Blue $) P(X \mid$ Blue $)$
n What we must estimate from the sequence of numbers called out
q $P($ RED $)$ and $P(B L U E)$ - the probabilities that he will select either die
q $P(X \mid R E D)$ and $P(X \mid B L U E)$ - the probability distribution of the numbers 1-6 for both dice!

Multinomials and Mixture Multinomials

A probability distribution over a collection of items, each of which may be drawn in any draw is a Multinomial

$$
P(X: X \text { belongs to a discrete set })=P(X)
$$

A probability distribution that combines (or mixes) draws from multiple multinomials is a mixture multinomial

Expectation Maximization

n It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm

First described in a landmark paper by Dempster, Laird and Rubin
${ }_{q}$ Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977

Much work on the algorithm since then
q McLachlan, Bashford,
The principles behind the algorithm existed for several years prior to the landmark paper, however.

EM results in maximum likelihood

 estimates$$
P(X)=\sum_{Z} P(Z) P(X \mid Z)
$$

${ }_{n} P(X)=P(O==X)$ is the probability that any observation O will take value X
${ }_{q}$ i.e. That the probability that number rolled is X
EM estimates of $P(Z)$ and $P(X \mid Z)$ are such that:

$$
\mathrm{P}\left(\mathrm{O}_{1}, \mathrm{O}_{2}, . . .\right)=\mathrm{P}\left(\mathrm{O}_{1}\right) \mathrm{P}\left(\mathrm{O}_{2}\right) \mathrm{P}\left(\mathrm{O}_{3}\right) . .
$$

is maximized
n This too is a maximum-likelihood solution

Expectation Maximization

${ }_{n}$ Iterative solution
Get some initial estimates for all parameters
${ }_{q}$ Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice

Two steps that are iterated:
${ }_{q}$ Expectation Step: Estimate statistically, the values of unseen variables
${ }_{q}$ Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

Expectation Maximization: Terminology

n Hidden variable: Z
${ }_{q}$ Dice: The identity of the shooter whose dice roll has been called out
A priori probability distribution of hidden variable $P(Z)$
${ }_{q}$ Dice: Probability that the caller will call the red shooter; probability that he will call the blue shooter
n For what fraction of a very large number of calls he calls the red shooter
Observed data: X
${ }_{q}$ The numbers called out
n Parameters that could be estimated, if the hidden variable was known: $\mathrm{P}(X \mid Z)$ and $\mathrm{P}(Z)$
${ }_{q}$ Dice: For the dice example, these would be the probabilities of the numbers $1-6$ for each shooter (6 values for each shooter, 12 in all)
${ }_{q}$ And, the probability that the caller selects either die

Expectation Maximization

n If we knew the value of Z for every observation, we could estimate $\mathrm{P}(X \mid Z)$
${ }_{q}$ If we knew which shooter rolled each number, we could estimate the probability of the dice for both shooters

Unfortunately, we do not know Z - it is hidden from us!
Reverse the problem: try to estimate Z after having seen X
${ }_{q}$ Guess who rolled the dice from the number
${ }_{q}$ If the blue shooter shoots " 4 " much more often than the red shooter, and if the caller calls out " 4 ", then the caller has probably called out the blue shooter
${ }_{q}$ This is an a posteriori estimate: estimation posterior to the observation

Expectation Maximization

The Expectation step of EM attempts to estimate the hidden variable Z from the observed data X

Since we can usually not be certain of the estimate for Z, Z is probabilistically estimated:
q Instead of saying "The caller called the Blue shooter", we say "After observing that the caller called a 4, we estimate that he may have called the blue shooter with probability 0.667 , and the red shooter with probability 0.333
${ }_{q}$ The post observation estimates of the probabilities of the various values of Z are called a posteriori probabilities

The a posteriori probabilities of the various values of Z are computed using Bayes' rule:

$$
P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{P(X)}=C P(X \mid Z) P(Z)
$$

11-755 MLSP: Bhiksha Raj

Expectation Maximization

n Hypothetical Dice Shooter Example:
${ }_{n}$ We obtain an initial estimate for the probability distribution of the two sets of dice (somehow):

n We obtain an initial estimate for the probability with which the caller calls out the two shooters (somehow)

Expectation Maximization

n Hypothetical Dice Shooter Example:
n We have an initial estimate:
q caller calls blue 0.5 of the time, and red 0.5 of the time
q Probability of " 4 " for blue die is 0.1 , for red die is 0.05 "
q Caller has just called out 4
Observation $X=4$. From initial estimates:
q $P(X \mid Z=$ red $)=0.1 ; P(X \mid Z=$ blue $)=0.05$
q $P(Z=$ red $)=0.5 ; P(Z=$ blue $)=0.5$

$$
\begin{aligned}
& P(\text { red } \mid X=4)=C P(X=4 \mid Z=\text { red }) P(Z=\text { red })=C \cdot 0.05 \cdot 0.5=C 0.025 \\
& P(\text { blue } \mid X=4)=C P(X=4 \mid Z=\text { blue }) P(Z=\text { blue })=C \cdot 0.1 \cdot 0.5=C 0.05
\end{aligned}
$$

Normalizing : $P($ red $\mid X=4)=0.33 ; \quad P($ blue $\mid X=4)=0.67$

Expectation Maximization

$$
645123452214346216
$$

For each observation $\mathrm{O}==X$, $P(Z \mid X)$ must be computed for every value of Z and for every observation O

In the dice example, we must compute both $P($ red $\mid X)$ and $P($ blue $\mid X)$ for every observation $\mathrm{O}==X$
${ }_{q}$ An observation here is a called out roll of the dice

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Each call is "fragmented"
Fragment sizes are proportional to the a posteriori probabilities of the colors
n $P(Z \mid X)$
The fragments are added to the collections associated with the different dice
${ }_{q}$ So a fragment of every observation ends up in the collection for any dice

Expectation Maximization

Expectation Maximization

Every observed roll of the dice contributes to both "Red" and "Blue"

Expectation Maximization

Expectation Maximization

Every observed roll of the dice contributes to both "Red" and "Blue"

Expectation Maximization

Every observed roll of the dice contributes to both "Red" and "Blue"

645123452214346216	
$6(0.8), 4(0.33)$,	$6(0.2), 4(0.67)$,
$5(0.33), 1(0.57)$,	$5(0.67), 1(0.43)$,
$2(0.14), 3(0.33)$,	$2(0.86), 3(0.67)$,
$4(0.33), 5(0.33)$,	$4(0.67), 5(0.67)$,
$2(0.14), 2(0.14)$,	$2(0.86), 2(0.86)$,
$1(0.57), 4(0.33)$,	$1(0.43), 4(0.67)$,
$3(0.33), 4(0.33)$,	$3(0.67), 4(0.67)$,
$6(0.8), 2(0.14)$,	$6(0.2), 2(0.86)$,
$1(0.57), 6(0.8)$	$1(0.43), 6(0.2)$

Expectation Maximization

Every observed roll of the dice contributes to both "Red" and "Blue"

Total count for "Red" is the sum of all the posterior probabilities in the red column
q 7.31
Total count for "Blue" is the sum of all the posterior probabilities in the blue column
q 10.69
q Note: $10.69+7.31=18=$ the total number of instances

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Red" : 7.31 Red:
q Total count for 1: 1.71

Called	$P($ red $\mid X)$	$P($ blue X X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Red" : 7.31 Red:
q Total count for 1: 1.71
q Total count for 2: 0.56

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Red" : 7.31 Red:
q Total count for 1: 1.71
q Total count for 2: 0.56
q Total count for 3: 0.66

Called	$P($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue X$)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Red" : 7.31 Red:
q Total count for 1: 1.71
q Total count for 2: 0.56
q Total count for 3: 0.66
q Total count for 4: 1.32

Called	$P($ red $\mid X)$	$P($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Red" : 7.31 Red:
q Total count for 1: 1.71
q Total count for 2: 0.56
q Total count for 3: 0.66
q Total count for 4: 1.32
q Total count for 5: 0.66

Called	$P($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue X$)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Red" : 7.31
Red:
q Total count for 1: 1.71
q Total count for 2: 0.56
q Total count for 3: 0.66
q Total count for 4: 1.32
q Total count for 5: 0.66
q Total count for 6: 2.4

Called	$P($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue X$)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Red" : 7.31 Red:
q Total count for 1: 1.71
q Total count for 2: 0.56
q Total count for 3: 0.66
q Total count for 4: 1.32
q Total count for 5: 0.66
q Total count for 6: 2.4
Updated probability of Red dice:

$$
\begin{aligned}
& \mathrm{P}(1 \mid \text { Red })=1.71 / 7.31=0.234 \\
& \mathrm{P}(2 \mid \text { Red })=0.56 / 7.31=0.077 \\
& \mathrm{P}(3 \mid \text { Red })=0.66 / 7.31=0.090 \\
& \mathrm{P}(4 \mid \text { Red })=1.32 / 7.31=0.181 \\
& \mathrm{P}(5 \mid \text { Red })=0.66 / 7.31=0.090 \\
& \mathrm{P}(6 \mid \text { Red })=2.40 / 7.31=0.328
\end{aligned}
$$

Called	$P($ red $\mid X)$	$P($ blue X X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Blue" : 10.69 Blue:
q Total count for 1: 1.29

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Blue" : 10.69 Blue:
q Total count for 1: 1.29
q Total count for 2: 3.44

Called	$P($ red $\mid X)$	$P($ blue $\backslash X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Blue" : 10.69 Blue:
q Total count for 1: 1.29
q Total count for 2: 3.44
q Total count for 3: 1.34

Called	$P($ red $\mid X)$	$P($ blue $\backslash X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

n Total count for "Blue" : 10.69 Blue:
q Total count for 1: 1.29
q Total count for 2: 3.44
q Total count for 3: 1.34
q Total count for 4: 2.68

Called	$P($ red $\mid X)$	$P($ blue $\backslash X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Blue" : 10.69 Blue:
q Total count for 1: 1.29
q Total count for 2: 3.44
q Total count for 3: 1.34
q Total count for 4: 2.68
q Total count for 5: 1.34

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Blue" : 10.69 Blue:
q Total count for 1: 1.29
q Total count for 2: 3.44
q Total count for 3: 1.34
q Total count for 4: 2.68
q Total count for 5: 1.34
q Total count for 6: 0.6

Called	$P($ red $\mid X)$	$P($ blue $\backslash X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Blue" : 10.69
Blue:
q Total count for 1: 1.29
q Total count for 2: 3.44
q Total count for 3: 1.34
q Total count for 4: 2.68
q Total count for 5: 1.34
q Total count for 6: 0.6

Updated probability of Blue dice:

$$
\begin{aligned}
& \mathrm{P}(1 \mid \text { Blue })=1.29 / 11.69=0.122 \\
& \mathrm{P}(2 \mid \text { Blue })=0.56 / 11.69=0.322 \\
& \mathrm{P}(3 \mid \text { Blue })=0.66 / 11.69=0.125 \\
& \mathrm{P}(4 \mid \text { Blue })=1.32 / 11.69=0.250 \\
& \mathrm{P}(5 \mid \text { Blue })=0.66 / 11.69=0.125 \\
& \mathrm{P}(6 \mid \text { Blue })=2.40 / 11.69=0.056
\end{aligned}
$$

Called	$\mathrm{P}($ red X$)$	P (blue X$)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Expectation Maximization

Total count for "Red" : 7.31
Total count for "Blue" : 10.69
Total instances = 18
q Note $7.31+10.69=18$
We also revise our estimate for the probability that the caller calls out Red or Blue
${ }_{q}$ i.e the fraction of times that he calls Red and the fraction of times he calls Blue
n $\mathrm{P}(\mathrm{Z}=$ Red $)=7.31 / 18=0.41$
n $P(Z=$ Blue $)=10.69 / 18=0.59$

Called	$P($ red $\mid X)$	$P($ blue X X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

The updated values

Probability of Red dice:

$$
\begin{aligned}
& \mathrm{P}(1 \mid \text { Red })=1.71 / 7.31=0.234 \\
& \mathrm{P}(2 \mid \text { Red })=0.56 / 7.31=0.077 \\
& \mathrm{P}(3 \mid \text { Red })=0.66 / 7.31=0.090 \\
& \mathrm{P}(4 \mid \text { Red })=1.32 / 7.31=0.181 \\
& \mathrm{P}(5 \mid \text { Red })=0.66 / 7.31=0.090 \\
& \mathrm{P}(6 \mid \text { Red })=2.40 / 7.31=0.328
\end{aligned}
$$

Probability of Blue dice:

$$
\begin{aligned}
& \mathrm{P}(1 \mid \text { Blue })=1.29 / 11.69=0.122 \\
& \mathrm{P}(2 \mid \text { Blue })=0.56 / 11.69=0.322 \\
& \mathrm{P}(3 \mid \text { Blue })=0.66 / 11.69=0.125 \\
& \mathrm{P}(4 \mid \text { Blue })=1.32 / 11.69=0.250 \\
& \mathrm{P}(5 \mid \text { Blue })=0.66 / 11.69=0.125 \\
& \mathrm{P}(6 \mid \text { Blue })=2.40 / 11.69=0.056
\end{aligned}
$$

$\mathrm{P}(\mathrm{Z}=$ Red $)=7.31 / 18=0.41$
$\mathrm{P}(\mathrm{Z}=$ Blue $)=10.69 / 18=0.59$

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATION IS AN ITERATIVE PROCESS

The Dice Shooter Example

63154124 ...

44163212 ...

1. Initialize $P(Z), P(X \mid Z)$
2. Estimate $P(Z \mid X)$ for each Z, for each called out number

Associate X with each value of Z, with weight $P(Z \mid X)$
3. \quad Re-estimate $P(X \mid Z)$ for every value of X and Z
4. Re-estimate $P(Z)$
5. If not converged, return to 2

In Squiggles

${ }_{n}$ Given a sequence of observations $\mathrm{O}_{1}, \mathrm{O}_{2}, .$.
${ }_{q} N_{X}$ is the number of observations of color X
n Initialize $P(Z), P(X \mid Z)$ for dice Z and numbers X Iterate:
${ }^{\text {a }}$ For each number $\mathrm{X}: P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{\sum_{Z^{\prime}} P\left(Z^{\prime}\right) P\left(X \mid Z^{\prime}\right)}$
${ }_{q}$ Update:
$P(X \mid Z)=\frac{\sum_{O \text { such that } O==X} P(Z \mid X)}{\sum_{Z^{\prime}} \sum_{O \text { such that } O==X} P\left(Z^{\prime} \mid X\right)}=\frac{N_{X} P(Z \mid X)}{\sum_{Z^{\prime}} N_{X} P\left(Z^{\prime} \mid X\right)}$

$$
P(Z)=\frac{\sum_{X} N_{X} P(Z \mid X)}{\sum_{Z^{\prime}} \sum_{X} N_{X} P(Z \mid X)}
$$

Expectation Maximization

The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
${ }_{q}$ The hidden variable is often called a "latent" variable
n Some examples:
q Estimating mixtures of distributions
Only data are observed. The individual distributions and mixing proportions must both be learnt.
a Estimating the distribution of data, when some attributes are missing
q Estimating the dynamics of a system, based only on observations that may be a complex function of system state

The Mad Caller

The EM algorithm will give us one of many solutions, all equally valid!

The probability of 6 being called out:

$$
P(6)=a P(6 \mid \text { red })+b P(6 \mid \text { blue })=a P_{r}+b P_{b}
$$

${ }_{n}$ Assigns P_{r} as the probability of 6 for the red die
n Assigns P_{b} as the probability of 6 for the blue die
The following too is a valid solution [FIX]

$$
\left.P(6)=1.0 \text { b } P_{r}+b P_{b}\right)+0.0 \text { anything }
$$

n Assigns 1.0 as the a priori probability of the red die
${ }^{n}$ Assigns 0.0 as the probability of the blue die
The solution is NOT unique

A mild shift of metaphor

n Replacing the caller with a picker
q Who picks balls from Urns
Replacing the Dice with an Urn
q Has 6 types of balls, marked " 1 ", " 2 ", " 3 ", " 4 ", " 5 ", " 6 "
q The probability of randomly drawing a ball marked " 6 " $=P(6 \mid$ urn $)$
Picker draws a ball from the urn, calls out the number and replaces the ball in the urn
n Exactly the same model as the dice
n Problem: From the sequence of numbers called by the picker, determine the fraction of balls in the urns that are marked with each number.

More complex: TWO pickers

Two different pickers are drawing balls from the same pots
${ }_{q}$ After each draw they call out the number and replace the ball
They select the pots with different probabilities
From the numbers they call we must determine
${ }_{q}$ Probabilities with which each of them select pots
q The distribution of balls within the pots

Solution

Analyze each of the callers separately
n Compute the probability of selecting pots separately for each caller
n But combine the counts of balls in the pots!!

Recap with only one picker and two pots

n $\begin{aligned} & \text { Probability of Red urn: } \\ & q \quad P(1 \mid \text { Red })=1.71 / 7.31=0.234 \\ & q \quad P(2 \mid R e d)=0.56 / 7.31=0.077 \\ & q \quad P(3 \mid R e d)=0.66 / 7.31=0.090 \\ & q \quad P(4 \mid R e d)=1.32 / 7.31=0.181 \\ & q \quad P(5 \mid R e d)=0.66 / 7.31=0.090 \\ & q \quad P(6 \mid R e d)=2.40 / 7.31=0.328\end{aligned}$

$$
\begin{aligned}
& \text { (n } \begin{array}{l}
\text { Probability of Blue urn: } \\
\text { q } \\
\mathrm{P}(1 \mid \text { Blue })=1.29 / 11.69=0.122 \\
\mathrm{q}(2 \mid \text { Blue })=0.56 / 11.69=0.322 \\
\mathrm{q} \\
\mathrm{q}(3 \mid \text { Blue })=0.66 / 11.69=0.125 \\
\mathrm{q}(4 \mid \text { Blue })=1.32 / 11.69=0.250 \\
\mathrm{q}(5 \mid \text { Blue })=0.66 / 11.69=0.125 \\
\mathrm{q}(\mathrm{Z}=\text { Red })=7.31 / 18=0.41 \\
\mathrm{P}(\mathrm{Z}=\text { Blue })=2.40 / 11.69=0.056
\end{array} \\
& \hline 10.69 / 18=0.59
\end{aligned}
$$

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Two pickers

${ }_{n}$ Probability of drawing a number X for the first picker:
${ }_{q} P_{1}(X)=P_{1}(\text { red })^{*} P(X \mid$ red $)+P_{1}(\text { blue })^{*} P(X \mid$ blue $)$
${ }_{n}$ Probability of drawing X for the second picker
${ }_{q} P_{2}(X)=P_{2}(\text { red })^{*} P(X \mid$ red $)+P_{2}(\text { blue })^{*} P(X \mid$ blue $)$
n Note: $P(X \mid r e d)$ and $P(X \mid b l u e)$ are the same for both pickers
${ }_{q}$ The pots are the same, and the probability of drawing a ball marked with a particular number is the same for both
The probability of selecting a particular pot is different for both pickers
${ }_{q} P_{1}(X)$ and $P_{2}(X)$ are not related

Two pickers

n Probability of drawing a number X for the first picker:
${ }_{q} \quad P_{1}(X)=P_{1}(\text { red })^{*} P(X \mid$ red $)+P_{1}(\text { blue })^{*} P(X \mid$ blue $)$
n Probability of drawing X for the second picker
${ }_{q} \quad P_{2}(X)=P_{2}($ red $){ }^{*} P(X \mid$ red $)+P_{2}(\text { blue })^{*} P(X \mid$ blue $)$
n Problem: Given the set of numbers called out by both pickers estimate
${ }_{q} \quad P_{1}$ (color) and P_{2} (color) for both colors
${ }_{q} \quad P(X \mid$ red $)$ and $P(X \mid$ blue $)$ for all values of X

For the First Picker

With TWO pickers: The first picker

Picker 1 calls:
6,4,5,1,2,3,4,5,2,2,1,4,3,4,6,2,1,6

The table to the right is computed as before
q Each instance of a number called is "split" between the two urns
${ }_{q}$ The fraction of the instance going to any urn is the a posteriori probability of the urn, given the number called

$$
P(\text { color } \mid \text { observation })=\frac{P(\text { observation } \mid \text { color }) P_{1}(\text { color })}{\sum_{\text {color }} P\left(\text { observation } \mid \text { color } r^{\prime}\right) P_{1}(\text { color })}
$$

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

$7.31 \quad 10.69$

With TWO pickers: The SECOND picker

Picker 2 calls:
4, 4, 3, 2, 1, 6, 5
q Note: The number of observations is different from that for picker 1
${ }_{q}$ In general, the number of observations for the two need not be the same

We get the table to the right for the calls by picker 2
The table is computed exactly as we computed the table for the first picker

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

$$
P(\text { color } \mid \text { observation })=\frac{P(\text { observation } \mid \text { color }) P_{2}(\text { color })}{\sum_{\text {color }}{ }^{\prime} P\left(\text { observation } \mid \text { color }{ }^{\prime}\right) P_{2}\left(\text { color }{ }^{\prime}\right)}
$$

With TWO pickers: The SECOND picker

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

[^0]| Called | P(red X) | P(blue\|X) | | |
| :--- | :--- | :--- | :---: | :---: |
| 4 | .57 | .43 | | |
| 4 | .57 | .43 | | |
| 3 | .57 | .43 | | |
| 2 | .27 | .73 | | |
| 1 | .75 | .25 | | |
| 6 | .90 | .10 | | |
| 5 | .57 | .43 | | |
| 4.20 | | | | 2.80 |

Two tables
The probability of selecting pots is independently computed for the two pickers

With TWO pickers: The SECOND picker

With TWO pickers: The SECOND picker

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Called	$P($ red \mid X)	$P($ blue \mid X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

n To compute probabilities of numbers combine the tables
Total count of Red: 11.51
Total count of Blue: 13.49

With TWO pickers: The SECOND picker

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	P (blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

Total count for "Red" : 11.51
Red:
q Total count for 1: 2.46
q Total count for 2: 0.83
q Total count for 3: 1.23
q Total count for 4: 2.46
q Total count for 5: 1.23
q Total count for 6: 3.30
$P(6 \mid$ RED $)=3.3 / 11.51=0.29$

In Squiggles

Given a sequence of observations $\mathrm{O}_{\mathrm{k}, 1}, \mathrm{O}_{\mathrm{k}, 2}$,.. from the $\mathrm{k}^{\text {th }}$ picker ${ }_{q} N_{k, X}$ is the number of observations of color X drawn by the $k^{\text {th }}$ picker n Initialize $P_{k}(Z), P(X \mid Z)$ for pots Z and colors X
n Iterate:
${ }_{q}$ For each Color X, for each pot Z and each observer k :

$$
P(Z \mid X, k)=\frac{P(X \mid Z, k) P_{k}(Z)}{\sum_{Z^{\prime}} P_{k}\left(Z^{\prime}\right) P\left(X \mid Z^{\prime}, k\right)}
$$

q Update probability of numbers for the pots:

Update the mixture

$$
P(X \mid Z)=\frac{\sum_{k} N_{k, X} P(Z \mid X, k)}{\sum_{k} \sum_{Z^{\prime}} N_{k, X} P\left(Z^{\prime} \mid X, k\right)}
$$ weights: probability of urn selection for each picker

$$
P_{k}(Z)=\frac{\sum_{X} N_{k, X} P(Z \mid X, k)}{\sum_{Z^{\prime}} \sum_{X} N_{k, X} P\left(Z^{\prime} \mid X, k\right)}
$$

Signal Separation with the Urn model

n What does the probability of drawing balls from Urns have to do with sounds?
© Or Images?
n We shall see..

The representation

We represent signals spectrographically
${ }_{q}$ Sequence of magnitude spectral vectors estimated from (overlapping) segments of signal
${ }_{q}$ Computed using the short-time Fourier transform
q Note: Only retaining the magnitude of the STFT for our operations
${ }_{q}$ We will, however need the phase later for conversion to a signal

A Multinomial Model for Spectra

n A generative model for one frame of a spectrogram
q A magnitude spectral vector obtained from a DFT represents spectral magnitude against discrete frequencies
q This may be viewed as a histogram of draws from a multinomial

Probability distribution underlying the t-th spectral vector

A more complex model

n A "picker" has multiple urns
n In each draw he first selects an urn, and then a ball from the urn
${ }_{q}$ Overall probability of drawing f is a mixture multinomial
${ }^{n}$ Since several multinomials (urns) are combined
${ }_{q}$ Two aspects - the probability with which he selects any urn, and the probability of frequencies with the urns

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns
${ }_{q}$ Each urn has a different probability distribution over f
n He draws the spectrum for the first frame
${ }_{q}$ In which he selects urns according to some probability $P_{0}(z)$
n Then draws the spectrum for the second frame
${ }^{q}$ In which he selects urns according to some probability $P_{1}(z)$
n And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns
${ }_{q}$ Each urn has a different probability distribution over f
n He draws the spectrum for the first frame
${ }_{q}$ In which he selects urns according to some probability $P_{0}(z)$
n Then draws the spectrum for the second frame
${ }_{9}$ In which he selects urns according to some probability $P_{1}(z)$
n And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns
${ }_{q}$ Each urn has a different probability distribution over f
n He draws the spectrum for the first frame
${ }_{q}$ In which he selects urns according to some probability $P_{0}(z)$
n Then draws the spectrum for the second frame
${ }^{q}$ In which he selects urns according to some probability $P_{1}(z)$
n And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns
${ }_{q}$ Each urn has a different probability distribution over f
n He draws the spectrum for the first frame
${ }_{q}$ In which he selects urns according to some probability $P_{0}(z)$
n Then draws the spectrum for the second frame
${ }_{4}$ In which he selects urns according to some probability $P_{1}(z)$
n And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns
${ }_{q}$ Each urn has a different probability distribution over f
n He draws the spectrum for the first frame
${ }_{q}$ In which he selects urns according to some probability $P_{0}(z)$
n Then draws the spectrum for the second frame
${ }^{q}$ In which he selects urns according to some probability $P_{1}(z)$
n And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns
${ }_{q}$ Each urn has a different probability distribution over f
n He draws the spectrum for the first frame
${ }_{q}$ In which he selects urns according to some probability $P_{0}(z)$
n Then draws the spectrum for the second frame
${ }_{q}$ In which he selects urns according to some probability $P_{I}(z)$
n And so on, until he has constructed the entire spectrogram
${ }_{q}$ The number of draws in each frame represents the rms energy in that frame

The Picker Generates a Spectrogram

n The URNS are the same for every frame
These are the component multinomials or bases for the source that generated the signal

The only difference between frames is the probability with which he selects the urns
$\begin{aligned} & \text { Frame-specific } \\ & \text { spectral distribution }\end{aligned} P_{t}(f)=\sum_{z} P_{t}(z) P(f \mid z) \longrightarrow \begin{aligned} & \text { SOURCE specific }\end{aligned}$
Frame(time) specific mixture weight

Spectral View of Component Multinomials

n Each component multinomial (urn) is actually a normalized histogram over frequencies $P(f \mid z)$
q l.e. a spectrum
Component multinomials represent latent spectral structures (bases) for the given sound source

The spectrum for every analysis frame is explained as an additive combination of these latent spectral structures

Spectral View of Component Multinomials

By "learning" the mixture multinomial model for any sound source we "discover" these latent spectral structures for the source

The model can be learnt from spectrograms of a small amount of audio from the source using the EM algorithm

EM learning of bases

n Initialize bases
${ }_{q} P(f \mid z)$ for all z, for all f
n Must decide on the number of urns
For each frame
${ }_{q}$ Initialize $\mathrm{P}_{\mathrm{t}}(\mathrm{z})$

EM Update Equations

n Iterative process:
${ }_{q}$ Compute a posteriori probability of the $z^{\text {th }}$ urn for the source for each f

$$
P_{t}(z \mid f)=\frac{P_{t}(z) P(f \mid z)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime}\right) P\left(f \mid z^{\prime}\right)}
$$

${ }_{q}$ Compute mixture weight of $\mathrm{z}^{\text {th }}$ urn

$$
P_{t}(z)=\frac{\sum_{f} P_{t}(z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(z^{\prime} \mid f\right) S_{t}(f)}
$$

Compute the probabilities of the frequencies for the $z^{\text {th }}$ urn

$$
P(f \mid z)=\frac{\sum_{t} P_{t}(z \mid f) S_{t}(f)}{\sum_{f^{\prime}} \sum_{t} P_{t}\left(z \mid f^{\prime}\right) S_{t}\left(f^{\prime}\right)}
$$

How the bases compose the signal

$=$

$+$

The overall signal simply the sum of the contributions of each of the urns to the signal

Each urn contributes a different amount to each frame
n The contribution of the z-th urn to the t-th frame is given by $P(f \mid z) P_{t}(z) S_{t}$ ${ }_{q} \quad S_{t}=S_{f} S_{t}(f)$

Learning Speech Structures

Basis-specific spectrograms

How meaningful are these structures

If bases capture data structure they must
${ }_{q}$ Allow prediction of data
n Hearing only the low-frequency components of a note, we can still know the note
${ }_{n}$ Which means we can predict its higher frequencies
q Be resolvable in complex sounds
n Must be able to pull them out of complex mixtures
${ }_{q}$ Denoising
q Signal Separation from Monaural Recordings

Prediction

n The full basis is known
${ }_{n}$ The presence of the basis is identified from the observation of a part of it
n The obscured remaining spectral pattern can be guessed

Bandwidth Expansion

q Problem: A given speech signal only has frequencies in the $300 \mathrm{~Hz}-3.5 \mathrm{Khz}$ range

Telephone quality speech
${ }_{q}$ Can we estimate the rest of the frequencies
11-755 MLSP: Bhiksha Raj

Bandwidth Expansion

n The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

n The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

n The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

n The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

The picker has drawn the histograms for every frame in the signal

n However, we are only able to observe the number of draws of some frequencies and not the others
n We must estimate the number of draws of the unseen frequencies

Bandwidth Expansion: Step 1 - Learning

n From a collection of full-bandwidth training data that are similar to the bandwidthreduced data, learn spectral bases
${ }_{q}$ Using the procedure described earlier
n Each magnitude spectral vector is a mixture of a common set of bases
n Use the EM to learn bases from them

Bandwidth Expansion: Step 2 - Estimation

Using only the observed frequencies in the bandwidth-reduced data, estimate mixture weights for the bases learned in step 1.

Step 2

Iterative process:
q Compute a posteriori probability of the $z^{\text {th }}$ urn for the speaker for each f

$$
P_{t}(z \mid f)=\frac{P_{t}(z) P(f \mid z)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime}\right) P\left(f \mid z^{\prime}\right)}
$$

${ }_{q}$ Compute mixture weight of $z^{\text {th }}$ urn for each frame t

${ }_{q} \mathrm{P}(\mathrm{f} \mid z)$ was obtained from training data and will not be reestimated

Step 3 and Step 4

n Compose the complete probability distribution for each frame, using the mixture weights estimated in Step 2

$$
P_{t}(f)=\sum_{z} P_{t}(z) P(f \mid z)
$$

Note that we are using mixture weights estimated from the reduced set of observed frequencies
${ }_{q}$ This also gives us estimates of the probabilities of the unobserved frequencies
n Use the complete probability distribution $P_{t}(f)$ to predict the unobserved frequencies!

Predicting from $P_{\dagger}(f)$: Simplified Example

${ }_{n}$ A single Urn with only red and blue balls
Given that out an unknown number of draws, exactly m were red, how many were blue?
n One Simple solution:
q Total number of draws $N=m / P($ red $)$
q The number of tails drawn $=\mathrm{N}^{*} \mathrm{P}$ (blue)
q Actual multinomial solution is only slightly more complex

Estimating unobserved frequencies

${ }_{n}$ Expected value of the number of draws:

$$
\hat{N}_{t}=\frac{\sum_{.(\text {observed frequencies) }}^{\sum S_{t}(f)}}{\sum_{f . \text { (observed frequencies) }} P_{t}(f)}
$$

Estimated spectrum in unobserved frequencies

$$
\hat{S}_{t}(f)=N_{t} P_{t}(f)
$$

Overall Solution

Learn the "urns" for the signal source from broadband training data

n For each frame of the reduced bandwidth test utterance, find mixture weights for the urns
${ }_{q}$ Ignore (marginalize) the unseen frequencies

n Given the complete mixture multinomial distribution for each frame, estimate spectrum (histogram) at unseen frequencies

Some Results

- Reasonable reconstructions are achieved
- The reconstruction is speaker specific however (since the urns represent spectral structures for the speaker)

Signal Separation from Monaural

Recordings
The problem:
${ }_{q}$ Multiple sources are producing sound simultaneously
q The combined signals are recorded over a single microphone
${ }_{q}$ The goal is to selectively separate out the signal for a target source in the mixture

Or at least to enhance the signals from a selected source

Problem Specification

n The mixed signal contains components from multiple sources
Each source has its own "bases" In each frame
q Each source draws from its own collection of bases to compose a spectrum

Bases are selected with a frame specific mixture weight
${ }_{q}$ The overall spectrum is a mixture
 of the spectra of individual sources
n I.e. a histogram combining draws from both sources
n Underlying model: Spectra are histograms over frequencies

Ball-and-urn model for a mixed signal The caller!!

Each sound source is represented by its own picker and urns
q Urns represent the distinctive spectral structures for that source
${ }_{q}$ Assumed to be known beforehand (learned from some separate training data)
n The caller selects a picker at random
${ }_{q}$ The picker selects an urn randomly and draws a ball
q. The caller calls out the frequency on the ball

A spectrum is a histogram of frequencies called out
${ }_{q}$ The total number of draws of any frequency includes contributions from both sources

Separating the sources

${ }_{n}$ Goal: Estimate number of draws from each source
q The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
${ }_{q}$ The individual distributions are mixture multinomials
q And the urns are known

Separating the sources

n Goal: Estimate number of draws from each source
q The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
${ }_{q}$ The individual distributions are mixture multinomials

- And the urns are known

11-755 MLSP: Bhiksha Raj

Separating the sources

Goal: Estimate number of draws from each source
q The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
${ }_{q}$ The individual distributions are mixture multinomials
${ }_{q}$ And the urns are known
${ }_{q}$ Estimate remaining terms using EM

Algorithm

n For each frame:
${ }^{q}$ Initialize $P_{t}(s)$
The fraction of balls obtained from source s
${ }_{n}$ Alternately, the fraction of energy in that frame from source s
${ }_{q}$ Initialize $P_{\mathrm{t}}(\mathrm{z} \mid \mathrm{s})$
${ }^{n}$ The mixture weights of the urns in frame t for source s
q Reestimate the above two iteratively
Note: $\mathrm{P}(\mathrm{f} \mid \mathrm{z}, \mathrm{s})$ is not frame dependent
${ }_{9}$ It is also not re-estimated
${ }_{9}$ Since it is assumed to have been learned from separately obtained unmixed training data for the source

Iterative algorithm

n Iterative process:
${ }_{q}$ Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for each speaker for each f

$$
P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)}
$$

${ }_{q}$ Compute the a priori weight of speaker s

$$
P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

${ }_{q}$ Compute mixture weight of $z^{\text {th }}$ urn for speaker s

$$
P_{t}(z \mid s)=\frac{\sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

What is $\mathrm{P}_{\mathrm{t}}(\mathrm{s}, \mathrm{z} \mid \mathrm{f})$

${ }_{n}$ Compute how each ball (frequency) is split between the urns of the various sources
n The ball is first split between the sources

$$
P_{t}(s \mid f)=\frac{P_{t}(s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right)}
$$

The fraction of the ball attributed to any source s is split between its urns:

$$
P_{t}(z \mid s, f)=\frac{P_{t}(z \mid s) P(f \mid z, s)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s\right) P\left(f \mid z^{\prime}, s\right)}
$$

The portion attributed to any urn of any source is a product of the two

$$
P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)}
$$

Reestimation

The reestimate of source weights is simply the proportion of all balls that was attributed to the sources

$$
P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

The reestimate of mixture weights is the proportion of all balls attributed to each urn

$$
P_{t}(z \mid s)=\frac{\sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

Separating the Sources

n For each frame:
${ }_{n}$ Given
${ }_{q} S_{t}(f)$ - The spectrum at frequency f of the mixed signal
n Estimate
${ }_{q} S_{t, i}(\mathrm{f})$ - The spectrum of the separated signal for the i-th source at frequency f
${ }_{n}$ A simple maximum a posteriori estimator

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

11-755 MLSP: Bhiksha Raj

If we have only have bases for one source?

n Only the bases for one of the two sources is given

Or, more generally, for $\mathrm{N}-1$ of N sources

$$
P_{t}(f)=P_{t}\left(s_{1}\right) P_{t}\left(f \mid s_{1}\right)+P_{t}\left(s_{2}\right) P_{t}\left(f \mid s_{2}\right)
$$

$$
P_{t}(f)=P_{t}\left(s_{1}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{1}\right)+P_{t}\left(s_{2}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{2}\right)
$$

11-755 MLSP: Bhiksha Raj

If we have only have bases for one source?

n Only the bases for one of the two sources is given
${ }_{q}$ Or, more generally, for $\mathrm{N}-1$ of N sources
${ }_{q}$ The unknown bases for the remaining source must also be estimated!

11-755 MLSP: Bhiksha Raj

Partial information: bases for one source

 unknown${ }_{n} P(f \mid z, s)$ must be initialized for the additional source
${ }_{n}$ Estimation procedure now estimates bases along with mixture weights and source probabilities
${ }_{q}$ From the mixed signal itself
The final separation is done as before

Iterative algorithm

n Iterative process:
${ }_{q}$ Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for the speaker for each f

$$
P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)}
$$

q Compute the a priori weight of speaker s and mixture

$$
P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

$$
P_{t}(z \mid s)=\frac{\sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

${ }_{q}$ Compute unknown bases

$$
P(f \mid z, s)=\frac{\sum_{t} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{f^{\prime}} \sum_{t} P_{t}\left(s, z \mid f^{\prime}\right) S_{t}\left(f^{\prime}\right)}
$$

Partial information: bases for one source

 unknown${ }_{n} P(f \mid z, s)$ must be initialized for the additional source
${ }_{n}$ Estimation procedure now estimates bases along with mixture weights and source probabilities
${ }_{q}$ From the mixed signal itself
The final separation is done as before

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

11-755 MLSP: Bhiksha Raj

Separating Mixed Signals: Examples

n "Raise my rent" by David Gilmour
n Background music "bases" learnt from 5 -seconds of music-only segments within the song

Lead guitar "bases" bases
n Norah Jones singing "Sunrise"
n A more difficult problem:
a Original audio clipped!
Background music bases learnt from 5 seconds of music-only segments learnt from the rest of the song

Where it works

${ }_{n}$ When the spectral structures of the two sound sources are distinct

Don't look much like one another
a E.g. Vocals and music
${ }_{9}$ E.g. Lead guitar and music
${ }_{n}$ Not as effective when the sources are similar
q Voice on voice

Separate overlapping speech

n Bases for both speakers learnt from 5 second recordings of individual speakers
n Shows improvement of about 5dB in Speaker-toSpeaker ratio for both speakers
${ }_{q}$ Improvements are worse for same-gender mixtures

Can it be improved?

n Yes!
${ }_{n}$ More training data per source
More bases per source
${ }_{q}$ Typically about 40, but going up helps.
Adjusting FFT sizes and windows in the signal processing

And / Or..

More on the topic

${ }_{n}$ Sparse overcomplete representations
${ }_{n}$ Nearest-neighbor representations
${ }_{n}$ Convolutive basis decompositions
n Transform invariance
${ }_{n}$ Etc..

[^0]: $\begin{array}{llll}\text { PICKER } 1 & 7.31 & 10.69\end{array}$

