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Separating Mixed Signals an example

n “Raise my rent” by David Gilmour
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A Thought Experiment

n A person shoots dice repeatedly

n The dice are loaded

n You may observe the series of outcomes

n After observing the outcomes for some time, you can form a good 

idea of how the dice is loaded

q Figure out what the probabilities of the various numbers are for dice

n P(number) = count(number)/sum(rolls)

n This is a maximum likelihood estimate

q Estimate that makes the observed sequence of numbers most probable

6 3 1 5 4 1 2 4 …
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A Thought Experiment

n Two persons shoot dice repeatedly

n The dice are loaded

q The dice are differently loaded for the two of them

n You may observe the series of outcomes for both persons

n After observing the outcomes for some time, you can form a 
good idea of how each of the two dice is loaded

q Figure out what the probabilities of the various numbers are on each 
set dice

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …
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Estimating Probabilities

n Observation: Observe the 
sequence of numbers from the 
two shooters

q As indicated by the colors, we 
know who rolled what number

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6…
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Estimating Probabilities

n Observation: Observe the 

sequence of numbers from the 

two shooters

q As indicated by the colors, 

we know who rolled what 

number

n Segregation: Separate the 

blue observations from the red

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6…
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Estimating Probabilities
n Observation: Observe the 

sequence of numbers from the 

two shooters

q As indicated by the colors, 

we know who rolled what 

number

n Segregation: Separate the blue 

observations from the red

n From each set compute 

probabilities for each of the 6 

possible outcomes

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6…
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A Thought Experiment

n Now imagine that you cannot observe the dice yourself

n Instead there is a “caller” who randomly calls out the outcomes of the 
rolls
q 40% of the time he calls out the number from the left shooter, and 60% 

of the time, the one from the right (and you know this)

n At any time, you do not know which of the two he is calling out

n How do you now determine the probability distributions for the two 
sets of dice?

6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …
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A Thought Experiment

n Now imagine that you cannot observe the dice yourself

n Instead there is a “caller” who randomly calls out the outcomes of the rolls
q 40% of the time he calls out the number from the left shooter, and 60% of the 

time, the one from the right (and you know this)

n At any time, you do not know which of the two he is calling out
n How do you now determine the probability distributions for the two sets of 

dice?

n If you do not even know what fraction of time the blue numbers are called, 
and what fraction are red? 

6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …
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Probabilities to Estimate
n The caller will call out a number 6 in any given callout IF

q He selects “RED”, and the Red die rolls the number 6

q OR

q He selects “BLUE” and the Blue die rolls the number 6

n So the probability that he will call out 6 is:

q Prob(RED)*P(6 | RED) + Prob(BLUE)*P(6|BLUE)

n More generically

q P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)

n What we must estimate from the sequence of numbers called out

q P(RED) and P(BLUE) – the probabilities that he will select either die

q P(X|RED) and P(X|BLUE) – the probability distribution of the 

numbers 1-6 for both dice!
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Multinomials and Mixture Multinomials

n A probability distribution over a collection of 

items, each of which may be drawn in any 

draw is a Multinomial

n A probability distribution that combines (or 

mixes) draws from multiple multinomials is a 

mixture multinomial

∑=
Z
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Expectation Maximization

n It is possible to estimate all parameters in this setup 
using the Expectation Maximization (or EM) algorithm

n First described in a landmark paper by Dempster, Laird 
and Rubin

q Maximum Likelihood Estimation from incomplete data, 
via the EM Algorithm, Journal of the Royal Statistical 
Society, Series B, 1977

n Much work on the algorithm since then

q McLachlan, Bashford, …….

n The principles behind the algorithm existed for several 
years prior to the landmark paper, however.
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EM results in maximum likelihood 
estimates

n P(X) = P(O==X) is the probability that any 

observation O will take value X

q i.e. That the probability that number rolled is X

n EM estimates of P(Z) and P(X|Z) are such that:

P(O1, O2, ..) = P(O1)P(O2)P(O3)..

is maximized 

n This too is a maximum-likelihood solution

∑=
Z

ZXPZPXP )|()()(
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Expectation Maximization
n Iterative solution

n Get some initial estimates for all parameters

q Dice shooter example: This includes probability 

distributions for dice AND the probability with which 
the caller selects the dice

n Two steps that are iterated:

q Expectation Step: Estimate statistically, the values 

of unseen variables

q Maximization Step: Using the estimated values of 

the unseen variables as truth, estimates of the 
model parameters
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Expectation Maximization: Terminology

n Hidden variable: Z

q Dice: The identity of the shooter whose dice roll has been called out

n A priori probability distribution of hidden variable P(Z)

q Dice: Probability that the caller will call the red shooter; probability 
that he will call the blue shooter

n For what fraction of a very large number of  calls he calls the red shooter

n Observed data: X

q The numbers called out

n Parameters that could be estimated, if the hidden variable was 

known: P(X | Z) and P(Z)

q Dice: For the dice example, these would be the probabilities of the 
numbers 1 – 6 for each shooter (6 values for each shooter, 12 in all)

q And, the probability that the caller selects either die
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Expectation Maximization

n If we knew the value of Z for every observation, we could estimate 
P(X|Z)

q If we knew which shooter rolled each number, we could 

estimate the probability of the dice for both shooters

n Unfortunately, we do not know Z – it is hidden from us!

n Reverse the problem: try to estimate Z after having seen X

q Guess who rolled the dice from the number

q If the blue shooter shoots “4” much more often than the red 

shooter, and if the caller calls out “4”, then the caller has 

probably called out the blue shooter

q This is an a posteriori estimate: estimation posterior to the 

observation
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Expectation Maximization
n The Expectation step of EM attempts to estimate the hidden 

variable Z from the observed data X

n Since we can usually not be certain of the estimate for Z, Z is 

probabilistically estimated:

q Instead of saying “The caller called the Blue shooter”, we say “After 

observing that the caller called a 4, we estimate that he may have called the 

blue shooter with probability 0.667, and the red shooter with probability 

0.333

q The post observation estimates of the probabilities of the various values of Z

are called a posteriori probabilities

n The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule:
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Expectation Maximization

n Hypothetical Dice Shooter Example:

n We obtain an initial estimate for the probability distribution of the 
two sets of dice (somehow):  

n We obtain an initial estimate for the probability with which the
caller calls out the two shooters (somehow)
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Expectation Maximization

n Hypothetical Dice Shooter Example:

n We have an initial estimate:  

q caller calls blue 0.5 of the time, and red 0.5 of the time

q Probability of “4” for blue die is 0.1, for red die is 0.05”

q Caller has just called out 4

n Observation X = 4. From initial estimates:

q P(X | Z=red) = 0.1; P(X | Z=blue) = 0.05

q P(Z=red) = 0.5; P(Z=blue) = 0.5 

025.05.005.0)()|4()4|( CCredZPredZXCPXredP =··======

05.05.01.0)()|4()4|( CCblueZPblueZXCPXblueP =··======

67.0)4|(   ;33.0)4|(  :gNormalizin ==== XbluePXredP



11-755 MLSP: Bhiksha Raj

Expectation Maximization

n For each observation O==X, 

P(Z | X) must be computed for every 

value of Z and for every observation O

n In the dice example, we must compute 
both P(red | X) and P(blue | X) for every 

observation O==X

q An observation here is a called out roll of 
the dice
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Expectation Maximization

n Each call is “fragmented”
q Fragment sizes are proportional to the a posteriori probabilities of 

the colors
n P(Z|X)

n The fragments are added to the collections associated with the 
different dice
q So a fragment of every observation ends up in the collection for any 

dice

Collection of “blue”

numbers

Collection of “red”

numbers
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Expectation Maximization

n Every observed roll of the dice 

contributes to both “Red” and 

“Blue”

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6
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Expectation Maximization

n Every observed roll of the dice 

contributes to both “Red” and 

“Blue”

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6
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Expectation Maximization

n Every observed roll of the dice 

contributes to both “Red” and 

“Blue”

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

6 (0.8), 6 (0.2),4 (0.33) 4 (0.67)
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Expectation Maximization

n Every observed roll of the dice 

contributes to both “Red” and 

“Blue”

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

6 (0.8), 6 (0.2),4 (0.33), 4 (0.67),

5 (0.33), 5 (0.67),
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Expectation Maximization

n Every observed roll of the dice 

contributes to both “Red” and 

“Blue”

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6
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Expectation Maximization

n Every observed roll of the dice 
contributes to both “Red” and “Blue”

n Total count for “Red” is the sum of 
all the posterior probabilities in the 
red column

q 7.31

n Total count for “Blue” is the sum of 
all the posterior probabilities in the 
blue column

q 10.69

q Note: 10.69 + 7.31 = 18 = the total 

number of instances
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Expectation Maximization

n Total count for “Red” : 7.31

n Red:

q Total count for 1:  1.71
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Expectation Maximization

n Total count for “Red” : 7.31

n Red:

q Total count for 1:  1.71

q Total count for 2:  0.56
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Expectation Maximization

n Total count for “Red” : 7.31

n Red:

q Total count for 1:  1.71

q Total count for 2:  0.56

q Total count for 3:  0.66
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Expectation Maximization

n Total count for “Red” : 7.31

n Red:

q Total count for 1:  1.71

q Total count for 2:  0.56

q Total count for 3:  0.66

q Total count for 4:  1.32
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Expectation Maximization

n Total count for “Red” : 7.31

n Red:

q Total count for 1:  1.71

q Total count for 2:  0.56

q Total count for 3:  0.66

q Total count for 4:  1.32

q Total count for 5:  0.66
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Expectation Maximization

n Total count for “Red” : 7.31

n Red:

q Total count for 1:  1.71

q Total count for 2:  0.56

q Total count for 3:  0.66

q Total count for 4:  1.32

q Total count for 5:  0.66

q Total count for 6:  2.4
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Expectation Maximization
n Total count for “Red” : 7.31

n Red:
q Total count for 1:  1.71

q Total count for 2:  0.56

q Total count for 3:  0.66

q Total count for 4:  1.32

q Total count for 5:  0.66

q Total count for 6:  2.4

n Updated probability of Red dice:
q P(1 | Red) = 1.71/7.31 = 0.234

q P(2 | Red) = 0.56/7.31 = 0.077

q P(3 | Red) = 0.66/7.31 = 0.090

q P(4 | Red) = 1.32/7.31 = 0.181

q P(5 | Red) = 0.66/7.31 = 0.090

q P(6 | Red) = 2.40/7.31 = 0.328
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Expectation Maximization

n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29
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Expectation Maximization

n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29

q Total count for 2:  3.44
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Expectation Maximization

n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29

q Total count for 2:  3.44

q Total count for 3:  1.34
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Expectation Maximization

n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29

q Total count for 2:  3.44

q Total count for 3:  1.34

q Total count for 4:  2.68
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Expectation Maximization

n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29

q Total count for 2:  3.44

q Total count for 3:  1.34

q Total count for 4:  2.68

q Total count for 5:  1.34
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Expectation Maximization

n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29

q Total count for 2:  3.44

q Total count for 3:  1.34

q Total count for 4:  2.68

q Total count for 5:  1.34

q Total count for 6:  0.6
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Expectation Maximization
n Total count for “Blue” : 10.69

n Blue:

q Total count for 1:  1.29

q Total count for 2:  3.44

q Total count for 3:  1.34

q Total count for 4:  2.68

q Total count for 5:  1.34

q Total count for 6:  0.6

n Updated probability of Blue dice:

q P(1 | Blue) = 1.29/11.69 = 0.122

q P(2 | Blue) = 0.56/11.69 = 0.322

q P(3 | Blue) = 0.66/11.69 = 0.125

q P(4 | Blue) = 1.32/11.69 = 0.250

q P(5 | Blue) = 0.66/11.69 = 0.125

q P(6 | Blue) = 2.40/11.69 = 0.056 .2.86
.43.571
.86.142
.2.86
.67.334
.67.333
.67.334
.43.571
.86.142
.86.142
.67.335
.67.334
.67.333
.86.142
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.67.335
.67.334
.2.86
P(blue|X)P(red|X)Called

7.31 10.69
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Expectation Maximization

n Total count for “Red” : 7.31

n Total count for “Blue” : 10.69

n Total instances = 18 

q Note 7.31+10.69 = 18

n We also revise our estimate for the 

probability that the caller calls out 

Red or Blue

q i.e the fraction of times that he 

calls Red and the fraction of times 

he calls Blue

n P(Z=Red) = 7.31/18 = 0.41

n P(Z=Blue) = 10.69/18 = 0.59 .2.86
.43.571
.86.142
.2.86
.67.334
.67.333
.67.334
.43.571
.86.142
.86.142
.67.335
.67.334
.67.333
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.67.335
.67.334
.2.86
P(blue|X)P(red|X)Called

7.31 10.69
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The updated values

n P(Z=Red) = 7.31/18 = 0.41

n P(Z=Blue) = 10.69/18 = 0.59 .2.86
.43.571
.86.142
.2.86
.67.334
.67.333
.67.334
.43.571
.86.142
.86.142
.67.335
.67.334
.67.333
.86.142
.43.571
.67.335
.67.334
.2.86
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n Probability of Blue dice:

q P(1 | Blue) = 1.29/11.69 = 0.122

q P(2 | Blue) = 0.56/11.69 = 0.322

q P(3 | Blue) = 0.66/11.69 = 0.125

q P(4 | Blue) = 1.32/11.69 = 0.250

q P(5 | Blue) = 0.66/11.69 = 0.125

q P(6 | Blue) = 2.40/11.69 = 0.056

n Probability of Red dice:

q P(1 | Red) = 1.71/7.31 = 0.234

q P(2 | Red) = 0.56/7.31 = 0.077

q P(3 | Red) = 0.66/7.31 = 0.090

q P(4 | Red) = 1.32/7.31 = 0.181

q P(5 | Red) = 0.66/7.31 = 0.090

q P(6 | Red) = 2.40/7.31 = 0.328

n THE UPDATED VALUES CAN BE USED TO REPEAT THE 
PROCESS. ESTIMATION IS AN ITERATIVE PROCESS
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The Dice Shooter Example

1. Initialize P(Z),  P(X | Z)

2. Estimate P(Z | X) for each Z, for each called out number

• Associate X with each value of Z, with weight P(Z | X)

3. Re-estimate P(X | Z) for every value of X and Z

4. Re-estimate P(Z)

5. If not converged, return to 2

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

6 4 1 5 3 2 2 2 …
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In Squiggles

n Given a sequence of observations O1, O2, ..

q NX is the number of observations of color X

n Initialize P(Z), P(X|Z) for dice Z and numbers X

n Iterate:

q For each number X:

q Update:
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Expectation Maximization
n The EM algorithm is used whenever proper statistical 

analysis of a phenomenon requires the knowledge of a 

hidden or missing variable (or a set of hidden/missing 

variables)

q The hidden variable is often called a “latent” variable

n Some examples:

q Estimating mixtures of distributions

n Only data are observed. The individual distributions and mixing 

proportions must both be learnt.

q Estimating the distribution of data, when some attributes are 
missing

q Estimating the dynamics of a system, based only on 
observations that may be a complex function of system state
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The Mad Caller

n The EM algorithm will give us one of many solutions, 
all equally valid!
q The probability of 6 being called out:

n Assigns Pr as the probability of 6 for the red die

n Assigns Pb as the probability of 6 for the blue die

q The following too is a valid solution [FIX]

n Assigns 1.0 as the a priori probability of the red die

n Assigns 0.0 as the probability of the blue die

n The solution is NOT unique

br PPbluePredPP baba +=+= )|6()|6()6(

( ) anythingPPP br 0.00.1)6( ++= ba
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A mild shift of metaphor

n Replacing the caller with a picker

q Who picks balls from Urns

n Replacing the Dice with an Urn

q Has 6 types of balls, marked “1”, “2”, “3”, “4”, “5”, “6”

q The probability of randomly drawing a ball marked “6” = P(6 | urn)

n Picker draws a ball from the urn, calls out the number and replaces the ball in 
the urn

n Exactly the same model as the dice

n Problem: From the sequence of numbers called by the picker, determine the 
fraction of balls in the urns that are marked with each number.

5

2
1 6 6

2
4

33
5 5 1 5

2
1 6 6

2
4

33
5 5 1
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More complex: TWO pickers

n Two different pickers are drawing balls from the same pots

q After each draw they call out the number and replace the ball

n They select the pots with different probabilities

n From the numbers they call we must determine

q Probabilities with which each of them select pots

q The distribution of balls within the pots

6 4 1 5 3 2 2 2 … 1 1 3 4 2 1 6

5

2
1 6 6

2
4

33
5 5 1 5

2
1 6 6

2
4

33
5 5 1
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Solution

n Analyze each of the callers separately

n Compute the probability of selecting pots 

separately for each caller

n But combine the counts of balls in the pots!!

6 4 1 5 3 2 2 2 … 1 1 3 4 2 1 6

5
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Recap with only one picker and two pots

n P(Z=Red) = 7.31/18 = 0.41

n P(Z=Blue) = 10.69/18 = 0.59

.2.86

.43.571

.86.142

.2.86

.67.334

.67.333

.67.334

.43.571

.86.142

.86.142

.67.335

.67.334

.67.333

.86.142

.43.571

.67.335

.67.334

.2.86
P(blue|X)P(red|X)Called

7.31
23

n Probability of Blue urn:

q P(1 | Blue) = 1.29/11.69 = 0.122

q P(2 | Blue) = 0.56/11.69 = 0.322

q P(3 | Blue) = 0.66/11.69 = 0.125

q P(4 | Blue) = 1.32/11.69 = 0.250

q P(5 | Blue) = 0.66/11.69 = 0.125

q P(6 | Blue) = 2.40/11.69 = 0.056

10.69

n Probability of Red urn:

q P(1 | Red) = 1.71/7.31 = 0.234

q P(2 | Red) = 0.56/7.31 = 0.077

q P(3 | Red) = 0.66/7.31 = 0.090

q P(4 | Red) = 1.32/7.31 = 0.181

q P(5 | Red) = 0.66/7.31 = 0.090

q P(6 | Red) = 2.40/7.31 = 0.328
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Two pickers

n Probability of drawing a number X for the first picker:

q P1(X) = P1(red)*P(X|red) + P1(blue)*P(X|blue)

n Probability of drawing X for the second picker

q P2(X) = P2(red)*P(X|red) + P2(blue)*P(X|blue)

n Note: P(X|red) and P(X|blue) are the same for both pickers

q The pots are the same, and the probability of drawing a ball 
marked with a particular number is the same for both

n The probability of selecting a particular pot is different for both 

pickers

q P1(X) and P2(X)  are not related
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Two pickers

n Probability of drawing a number X for the first picker:

q P1(X) = P1(red)*P(X|red) + P1(blue)*P(X|blue)

n Probability of drawing X for the second picker

q P2(X) = P2(red)*P(X|red) + P2(blue)*P(X|blue)

n Problem: Given the set of numbers called out by both pickers estimate

q P1(color) and P2(color) for both colors

q P(X | red) and P(X | blue) for all values of X

6 4 1 5 3 2 2 2 … 1 1 3 4 2 1 6

5
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For the First Picker
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With TWO pickers: The first picker

n Picker 1 calls:

6,4,5,1,2,3,4,5,2,2,1,4,3,4,6,2,1,6

n The table to the right is computed 
as before

q Each instance of a number called 
is “split” between the two urns

q The fraction of the instance going 
to any urn is the a posteriori 
probability of the urn, given the 
number called

.2.86

.43.571

.86.142

.2.86

.67.334

.67.333

.67.334

.43.571

.86.142

.86.142

.67.335

.67.334

.67.333

.86.142

.43.571

.67.335

.67.334

.2.86

P(blue|X)P(red|X)Called

7.31 10.69
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With TWO pickers: The SECOND picker
n Picker 2 calls:

4, 4, 3, 2, 1, 6, 5

q Note: The number of observations is different from 

that for picker 1

q In general, the number of observations for the two 

need not be the same

n We get the table to the right for the calls by 
picker 2

n The table is computed exactly as we computed 
the table for the first picker

.43.575

.10.906

.25.751

.73.272

.43.573

.43.574

.43.574

P(blue|X)P(red|X)Called

4.20 2.80

∑
=

'

2

2

)'()'|(

)()|(
)|(

color

colorPcolornobservatioP

colorPcolornobservatioP
nobservatiocolorP



11-755 MLSP: Bhiksha Raj

With TWO pickers: The SECOND picker

n Two tables

n The probability of 

selecting pots is 
independently computed 
for the two pickers

.43.575

.10.906

.25.751

.73.272

.43.573

.43.574

.43.574

P(blue|X)P(red|X)Called

4.20 2.80

.2.86

.43.571

.86.142

.2.86

.67.334

.67.333

.67.334

.43.571

.86.142

.86.142

.67.335

.67.334

.67.333

.86.142

.43.571

.67.335

.67.334

.2.86

P(blue|X)P(red|X)Called

7.31 10.69PICKER 1

PICKER 2
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With TWO pickers: The SECOND picker

.43.575

.10.906

.25.751

.73.272

.43.573

.43.574

.43.574

P(blue|X)P(red|X)Called

4.20 2.80

.2.86

.43.571

.86.142

.2.86

.67.334

.67.333

.67.334

.43.571

.86.142

.86.142

.67.335

.67.334

.67.333

.86.142

.43.571

.67.335

.67.334

.2.86

P(blue|X)P(red|X)Called

7.31 10.69PICKER 1

PICKER 2

P(RED | PICKER1) = 7.31 / 18

P(BLUE | PICKER1) = 10.69 / 18

P(RED | PICKER2) = 4.2 / 7

P(BLUE | PICKER2) = 2.8 / 7
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With TWO pickers: The SECOND picker

n To compute probabilities 
of numbers combine the 
tables

n Total count of Red: 11.51

n Total count of Blue: 13.49

.43.575

.10.906

.25.751

.73.272

.43.573

.43.574

.43.574

P(blue|X)P(red|X)Called

.2.86

.43.571

.86.142

.2.86

.67.334

.67.333

.67.334

.43.571

.86.142

.86.142

.67.335

.67.334

.67.333

.86.142

.43.571

.67.335

.67.334

.2.86

P(blue|X)P(red|X)Called
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With TWO pickers: The SECOND picker

.43.575

.10.906

.25.751

.73.272

.43.573

.43.574

.43.574

P(blue|X)P(red|X)Called

.2.86

.43.571

.86.142

.2.86

.67.334

.67.333

.67.334

.43.571

.86.142

.86.142

.67.335

.67.334

.67.333

.86.142

.43.571

.67.335

.67.334

.2.86

P(blue|X)P(red|X)Called

n Total count for “Red” : 11.51

n Red:
q Total count for 1:  2.46
q Total count for 2:  0.83
q Total count for 3:  1.23
q Total count for 4:  2.46
q Total count for 5:  1.23
q Total count for 6:  3.30

q P(6|RED) = 3.3 / 11.51 = 0.29
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In Squiggles
n Given a sequence of observations Ok,1, Ok,2, .. from the kth picker

q Nk,X is the number of observations of color X drawn by the kth picker

n Initialize Pk(Z), P(X|Z) for pots Z and colors X

n Iterate:

q For each Color X, for each
pot Z and each observer k:

q Update probability of 
numbers for the pots:

q Update the mixture
weights: probability
of urn selection for each
picker
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Signal Separation with the Urn model

n What does the probability of drawing balls 

from Urns have to do with sounds?

q Or Images?

n We shall see..



11-755 MLSP: Bhiksha Raj

The representation

n We represent signals spectrographically

q Sequence of magnitude spectral vectors estimated from (overlapping) 
segments of signal

q Computed using the short-time Fourier transform

q Note: Only retaining the magnitude of the STFT for our operations

q We will, however need the phase later for conversion to a signal

TIME

AMPL FREQ

TIME
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n A generative model for one frame of a spectrogram

q A magnitude spectral vector obtained from a DFT represents 
spectral magnitude against discrete frequencies

q This may be viewed as a histogram of draws from a multinomial

FRAME t

f

f

FRAME t

HISTOGRAM

Pt (f )

A Multinomial Model for Spectra

Probability distribution underlying the t-th spectral vector

Power spectrum of frame t

The balls are
marked with
discrete frequency
indices from the DFT
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n A “picker” has multiple urns

n In each draw he first selects an urn, and then a ball 

from the urn

q Overall probability of drawing f is a mixture multinomial

n Since several multinomials (urns) are combined

q Two aspects – the probability with which he selects any 

urn, and the probability of frequencies with the urns

A more complex model

multiple draws

HISTOGRAM
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The Picker Generates a Spectrogram

n The picker has a fixed set of Urns

q Each urn has a different probability distribution over f

n He draws the spectrum for the first frame

q In which he selects urns according to some probability P0(z)

n Then draws the spectrum for the second frame

q In which he selects urns according to some probability P1(z)

n And so on, until he has constructed the entire spectrogram



11-755 MLSP: Bhiksha Raj

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns

q Each urn has a different probability distribution over f

n He draws the spectrum for the first frame

q In which he selects urns according to some probability P0(z)

n Then draws the spectrum for the second frame

q In which he selects urns according to some probability P1(z)

n And so on, until he has constructed the entire spectrogram



11-755 MLSP: Bhiksha Raj

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns

q Each urn has a different probability distribution over f

n He draws the spectrum for the first frame

q In which he selects urns according to some probability P0(z)

n Then draws the spectrum for the second frame

q In which he selects urns according to some probability P1(z)

n And so on, until he has constructed the entire spectrogram



11-755 MLSP: Bhiksha Raj

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns

q Each urn has a different probability distribution over f

n He draws the spectrum for the first frame

q In which he selects urns according to some probability P0(z)

n Then draws the spectrum for the second frame

q In which he selects urns according to some probability P1(z)

n And so on, until he has constructed the entire spectrogram



11-755 MLSP: Bhiksha Raj

The Picker Generates a Spectrogram

n The picker has a fixed set of Urns

q Each urn has a different probability distribution over f

n He draws the spectrum for the first frame

q In which he selects urns according to some probability P0(z)
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The Picker Generates a Spectrogram

n The picker has a fixed set of Urns

q Each urn has a different probability distribution over f

n He draws the spectrum for the first frame

q In which he selects urns according to some probability P0(z)

n Then draws the spectrum for the second frame

q In which he selects urns according to some probability P1(z)

n And so on, until he has constructed the entire spectrogram

q The number of draws in each frame represents the rms energy in 
that frame
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( ) ( ) ( | )t tz
P f P z P f z=∑

The Picker Generates a Spectrogram

n The URNS are the same for every frame
q These are the component multinomials or bases for the source 

that generated the signal

n The only difference between frames is the probability with which
he selects the urns

Frame(time) specific mixture weight

SOURCE specific
bases

Frame-specific
spectral distribution
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Spectral View of Component Multinomials

n Each component multinomial (urn) is actually a normalized 

histogram over frequencies P(f |z)

q I.e. a spectrum

n Component multinomials represent latent spectral structures 

(bases) for the given sound source

n The spectrum for every analysis frame is explained as an 

additive combination of these latent spectral structures
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Spectral View of Component Multinomials
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n By “learning” the mixture multinomial model for any 
sound source we “discover” these latent spectral 

structures for the source

n The model can be learnt from spectrograms of a 
small amount of audio from the source using the EM 

algorithm
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EM learning of bases

n Initialize bases

q P(f|z) for all z, for all f

n Must decide on the number of urns 

n For each frame

q Initialize Pt(z)
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EM Update Equations
n Iterative process:

q Compute a posteriori probability of the zth urn for 
the source for each f

q Compute mixture weight of zth urn

q Compute the probabilities of the frequencies for 
the zth urn
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How the bases compose the signal

n The overall signal simply the sum of the contributions of each of the 
urns to the signal
q Each urn contributes a different amount to each frame

n The contribution of the z-th urn to the t-th frame is given by P(f|z)Pt(z)St

q St = SfSt (f)
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Learning Structures
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Speech Signal bases Basis-specific spectrograms
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From Bach’s Fugue in Gm
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How meaningful are these structures

n If bases capture data structure they must

q Allow prediction of data

n Hearing only the low-frequency components of a 

note, we can still know the note

n Which means we can predict its higher frequencies

q Be resolvable in complex sounds

n Must be able to pull them out of complex mixtures

q Denoising

q Signal Separation from Monaural Recordings
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Prediction
n The full basis is known

n The presence of the basis is 

identified from the observation
of a part of it

n The obscured remaining spectral

pattern can be guessed

n Bandwidth Expansion

q Problem: A given speech signal only has frequencies in the 
300Hz-3.5Khz range

n Telephone quality speech

q Can we estimate the rest of the frequencies
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Bandwidth Expansion
n The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
n The picker has drawn the histograms for every 

frame in the signal

n However, we are only able to observe the number 

of draws of some frequencies and not the others

n We must estimate the number of draws of the 

unseen frequencies
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Bandwidth Expansion: Step 1 – Learning

n From a collection of full-bandwidth training 

data that are similar to the bandwidth-

reduced data, learn spectral bases

q Using the procedure described earlier

n Each magnitude spectral vector is a mixture of a 

common set of bases

n Use the EM to learn bases from them
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Bandwidth Expansion: Step 2 – Estimation

n Using only the observed frequencies in the 

bandwidth-reduced data, estimate mixture 

weights for the bases learned in step 1.

P1(z)
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Step 2
n Iterative process:

q Compute a posteriori probability of the zth urn for 
the speaker for each f

q Compute mixture weight of zth urn for each frame t

q P(f|z) was obtained from training data and will not 
be reestimated
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Step 3 and Step 4

n Compose the complete probability distribution for each 
frame, using the mixture weights estimated in Step 2

n Note that we are using mixture weights estimated from 

the reduced set of observed frequencies

q This also gives us estimates of the probabilities of the 
unobserved frequencies

n Use the complete probability distribution Pt (f ) to predict 

the unobserved frequencies!
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Predicting from Pt(f ): Simplified Example

n A single Urn with only red and blue balls

n Given that out an unknown number of draws, 
exactly m were red, how many were blue?

n One Simple solution:
q Total number of draws N = m / P(red)

q The number of tails drawn = N*P(blue)

q Actual multinomial solution is only slightly more complex



11-755 MLSP: Bhiksha Raj

Estimating unobserved frequencies

n Expected value of the number of draws: 
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n Estimated spectrum in unobserved 

frequencies
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Overall Solution
n Learn the “urns” for the signal source 

from broadband training data

n For each frame of the reduced 

bandwidth test utterance, find mixture 

weights for the urns 

q Ignore (marginalize) the unseen 
frequencies

n Given the complete mixture multinomial 

distribution for each frame, estimate 

spectrum (histogram) at unseen 

frequencies
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Some Results

• Reasonable reconstructions are achieved
• The reconstruction is speaker specific however 

(since the urns represent spectral structures for the speaker)
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Signal Separation from Monaural 
Recordings
n The problem:

q Multiple sources are producing sound 
simultaneously

q The combined signals are recorded over a single 

microphone

q The goal is to selectively separate out the signal 

for a target source in the mixture

n Or at least to enhance the signals from a selected 

source
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Problem Specification

n The mixed signal contains 
components from multiple 

sources

n Each source has its own “bases”

n In each frame

q Each source draws from its own 
collection of bases to compose a 
spectrum

n Bases are selected with a frame 

specific mixture weight

q The overall spectrum is a mixture 
of the spectra of individual 
sources

n I.e. a histogram combining draws 

from both sources

n Underlying model: Spectra are 

histograms over frequencies
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Ball-and-urn model for a mixed signal

n Each sound source is represented by its own picker and urns
q Urns represent the distinctive spectral structures for that source

q Assumed to be known beforehand (learned from some separate training data)

n The caller selects a picker at random
q The picker selects an urn randomly and draws a ball

q The caller calls out the frequency on the ball

n A spectrum is a histogram of frequencies called out
q The total number of draws of any frequency includes contributions from both sources
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n Goal: Estimate number of draws from each source

q The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

q The individual distributions are mixture multinomials

q And the urns are known

Separating the sources
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n Goal: Estimate number of draws from each source

q The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

q The individual distributions are mixture multinomials

q And the urns are known

Separating the sources
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n Goal: Estimate number of draws from each source

q The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sources

q The individual distributions are mixture multinomials

q And the urns are known

q Estimate remaining terms using EM

Separating the sources
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Algorithm

n For each frame:

q Initialize Pt(s)

n The fraction of balls obtained from source s

n Alternately, the fraction of energy in that frame from source s

q Initialize Pt(z|s)

n The mixture weights of the urns in frame t for source s

q Reestimate the above two iteratively

n Note:  P(f|z,s) is not frame dependent

q It is also not re-estimated

q Since it is assumed to have been learned from separately 

obtained unmixed training data for the source



11-755 MLSP: Bhiksha Raj

Iterative algorithm
n Iterative process:

q Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each f

q Compute the a priori weight of speaker s

q Compute mixture weight of zth urn for speaker s 

' '

( , | ) ( )

( )
( ', ' | ) ( )

t t

z f

t

t t

s z f

P s z f S f

P s
P s z f S f

=

∑∑

∑∑∑

'

( , | ) ( )

( | )
( ', ' | ) ( )

t t

f

t

t t

z f

P s z f S f

P z s
P s z f S f

=

∑

∑∑

∑ ∑
=

' '

)','|()'|'()'(

),|()|()(
)|,(

s z

tt

tt
t

szfPszPsP

szfPszPsP
fzsP



11-755 MLSP: Bhiksha Raj

What is Pt(s,z|f)
n Compute how each ball (frequency) is split between the urns of 

the various sources

n The ball is first split between the sources

n The fraction of the ball attributed to any source s is split between 

its urns:

n The portion attributed to any urn of any source is a product of the 

two
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Reestimation
n The reestimate of source weights is simply 

the proportion of all balls that was attributed 

to the sources

n The reestimate of mixture weights is the 

proportion of all balls attributed to each urn
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Separating the Sources

n For each frame:

n Given

q St(f) – The spectrum at frequency f of the mixed 

signal

n Estimate

q St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f

n A simple maximum a posteriori estimator
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If we have only have bases for one source?

n Only the bases for one of the two sources is 

given

q Or, more generally, for N-1 of N sources
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If we have only have bases for one source?

n Only the bases for one of the two sources is given

q Or, more generally, for N-1 of N sources

q The unknown bases for the remaining source must also be 

estimated!
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Partial information: bases for one source 
unknown

n P(f|z,s) must be initialized for the additional 

source

n Estimation procedure now estimates bases 

along with mixture weights and source 

probabilities

q From the mixed signal itself

n The final separation is done as before
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Iterative algorithm
n Iterative process:

q Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each f

q Compute the a priori weight of speaker s and mixture 

weights

q Compute unknown bases
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Partial information: bases for one source 
unknown

n P(f|z,s) must be initialized for the additional 

source

n Estimation procedure now estimates bases 

along with mixture weights and source 

probabilities

q From the mixed signal itself

n The final separation is done as before
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Separating Mixed Signals: Examples

n “Raise my rent” by David 
Gilmour

n Background music “bases”
learnt from 5-seconds of 
music-only segments within 
the song

n Lead guitar “bases” bases 
learnt from the rest of the song

n Norah Jones singing “Sunrise”

n A more difficult problem:

q Original audio clipped!

n Background music bases 
learnt from 5 seconds of 
music-only segments
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Where it works

n When the spectral structures of the two 

sound sources are distinct

q Don’t look much like one another

q E.g. Vocals and music

q E.g. Lead guitar and music

n Not as effective when the sources are similar

q Voice on voice
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Separate overlapping speech

n Bases for both speakers learnt from 5 second 
recordings of individual speakers

n Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers
q Improvements are worse for same-gender mixtures
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Can it be improved?

n Yes!

n More training data per source

n More bases per source

q Typically about 40, but going up helps.

n Adjusting FFT sizes and windows in the 

signal processing

n And / Or..
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More on the topic

n Sparse overcomplete representations

n Nearest-neighbor representations

n Convolutive basis decompositions

n Transform invariance

n Etc..


