Non-Negative Matrix Factorization And Its Application to Audio

Tuomas Virtanen
Tampere University of Technology
tuomas.virtanen@tut.fi

Contents

- Introduction to audio signals
- Spectrogram representation
- Sound source separation
- Non-negative matrix factorization
 - Application to sound source separation
 - Algorithms
 - Probabilistic formulation
 - Bayesian extensions
 - Supervised NMF
 - Further analysis of the NMF components
- Applications & extensions of NMF

Introduction to audio signals

- Audio signal: representation of sound
- Can exist in different forms
 - Acoustic (that's how we hear and often produce it)
 - Electrical voltage (ouput of a microphone, input of a loudspeaker)
 - Digital (mp3 files, compact disc, mobile phone)

Representations of audio signals

- The amplitude as a function of time is a natural representation of ausio signals
 - Describes the variation of the sound pressure level around the DC
 - Easy to record using a microphone and to reproduce by a loudspeaker
- Digital signals: sampling frequency 44.1 kHz commonly used
 - Allows representing frequencies 0 22.05 kHz
 - Humans can hear frequencies 20 Hz-20 kHz
 - Lower / higher sampling frequencies also used
 - Most of the information in low frequencies

Spectrum of a sound

- Obtained e.g. by calculating the DFT of the signal
- Perceptual properties of a sound are more clearly visible in the spectrum
- Amplitude in dB closer to the loudness perception
- Phases less meaningful often magnitudes only are used

Spectrogram representation

- Represents the intensity of a sound as a function of time and frequency
- Obtained by calculating the spectrum in short frames (10-50 ms typically in the case of audio)

Linear superposition

When multiple sound sources are present, the signals add linearly

Spectrogram of polyphonic music

- Mid-level representation suitable for audio analysis (Ellis & Rosenthal 1998)
- The rhythmic structure is still visible

Source separation

- In practical situations other sounds interfere the target sound
- Automatic recognition / processing of sounds within mixtures extremely difficult
- Applications:
 - Robust speech recognition
 - Speech enchacement
 - Music content analysis (transcription, instrument identification, singer identification, lyrics transcription)
 - Audio manipulation
 - Object-based coding
- Very important in many other fields

How to separate

- Prior information about sources
- General assumptions: statistical independence, etc.
- Multiple microphones: direction of arrival
- How does the human auditory system separate sources?

Blind source separation

- No prior information about sources
- Only generic assumptions that are valid for all the possible sources
 - E.g. statistical independence
- Involves unsupervised learning
- In many practical situations we have less sensors than sources:
 - How to to estimate multiple signals from a smaller amount of observations?

Sparseness in broad sense

- Assumption: a source signal can be described using a small number of parameters in some domain
- One possible approach: latent variable decompositions

Example signal

Notes C4 and G4 played by guitar, first separately and then together

Sparseness of the time-domain signal

Five frames of the first note:

Sparseness of magnitude spectrum

 Five magnitude spectra of the first note: phase-invariant representation leads to much more compact models

Mixture spectrogram

Linear model for the mixture

Spectrum vector \mathbf{x}_t is decomposed into weighted sum of frequency basis vectors \mathbf{a}_1 and \mathbf{a}_2

$$\mathbf{x}_{t} = \mathbf{a}_{1} S_{1t} + \mathbf{a}_{2} S_{2t}$$

- \mathbf{a}_1 and \mathbf{a}_2 represent the spectra of note 1 and 2, respectively
- \mathbf{s}_{1t} and s_{2t} represent the gain of the notes over time
- Model in vector-matrix form:

$$\begin{bmatrix} x_{1t} \\ x_{2t} \\ \vdots \\ x_{Ft} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{F1} & a_{F2} \end{bmatrix} \bullet \begin{bmatrix} s_{1t} \\ s_{2t} \end{bmatrix} \qquad \mathbf{x}_t = \mathbf{A}\mathbf{s}_t$$

ICA on spectrogram

- The model matches the ICA model: each frequency is an sensor, mixture weights are sources
- Let us try to use ICA to separate the notes
- ICA on spectrogram: Independent subspace analysis ISA, (Casey & Westner 2000)

Results with ICA

- Weights over time
- Negative weights(!)
- Both
 weights
 seem to
 represent
 the first
 note

Spectral basis vectors obtained with ICA Virtanen / NMF

- ICA estimate (upper panel) vs. original (lower panel)
- Both components represent note a combination
- Negative values

What goes wrong?

- Negative weights: subtraction of spectral basis vectors
- Negative values in spectral basis vectors
- Subtraction of magnitude of power spectra physically unrealistic
- Are the notes statistically independent?
- Are the modeling assumptions correct?
- Is the independence as defined in ICA a good assumption in this case?

Non-negativity restrictions

- Non-negativity restrictions difficult to place into ICA
- It has been shown that with non-negativity restrictions, PCA leads to independent components (Plumbley 2002, Wilson & Raj 2010)

Non-negativity restrictions alone

What if we seek for a representation

$$\mathbf{x}_{t} = \mathbf{A}\mathbf{s}_{t}$$

while restricting the basis vectors and weights to non-negative values?

Model for multiple frames

$$\mathbf{x}_{t} = \mathbf{A}\mathbf{s}_{t}, \ t = 1, \dots T$$

written for all the frames in matrix form:

$$\begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_T \end{bmatrix} = \mathbf{A} \bullet \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \cdots & \mathbf{s}_T \end{bmatrix}$$

and using matrices only:

$$X = AS$$

Non-negative matrix factorization

NMF: minimize the error of the approximation X = AS, while restricting A and S to non-negative values (Lee & Seung, 1999 & 2001)

Guitar example

Spectral basis vectors obtained with NMF

- NMF estimate (upper panel) vs. original (lower panel)
- Bases correspond to individual notes
- Permutation ambiguity

Weight obtained with NMF

- The green basis represents partly the onset of the second note
- Good separation of notes

Why does NMF work?

 By representing signals as a sum purely additive, nonnegative sources, we get a parts-based representation (Lee & Seung, 1999)

Virtanen / NMF

Vector quantization on face data (from Lee & Seung,

Nature 1999)

Virtanen / NMF

PCA on face data

NMF of face data

NMF on complex polyphonic music

- NMF represents parts of the signal that fit the model (Virtanen, 2007)
- Individual drum instruments
- Repeating chords
- Any repetitive structure in the signal

Polyphonic example

Original

20 separated components:

NMF algorithms

- NMF minimizes the error between X and AS while restricting A and S to be entry-wise non-negative
- Two commonly used distance measures (Lee & Seung 2001)
- Euclidean distance / L2 norm:

$$d_{euc} = ||\mathbf{X} - \mathbf{AS}||_F^2$$

Generalized Kullback-Leibler divergence:

$$d_{div}(X, AS) = \sum_{f,t} \mathbf{X}_{ft} \log(\mathbf{X}_{ft} / [\mathbf{AS}]_{ft}) - \mathbf{X}_{ft} + [\mathbf{AS}]_{ft}$$

Many other measures

Multiplicative update rules

- Update rules which are guaranteed to be nonincreasing
- Easy to implement and to extend
- Euclidean distance:

$$\mathbf{A} = \mathbf{A} \otimes \frac{\mathbf{X}\mathbf{S}^T}{(\mathbf{A}\mathbf{S})\mathbf{S}^T} \qquad \mathbf{S} = \mathbf{S} \otimes \frac{\mathbf{A}^T\mathbf{X}}{\mathbf{A}^T(\mathbf{A}\mathbf{S})}$$

KL divergence

$$\mathbf{A} = \mathbf{A} \otimes \frac{(\mathbf{X}/(\mathbf{AS}))\mathbf{S}^T}{\mathbf{1S}^T} \quad \mathbf{S} = \mathbf{S} \otimes \frac{\mathbf{A}^T(\mathbf{X}/\mathbf{AS})}{\mathbf{A}^T\mathbf{1}}$$

where 1 is all-one matrix of size X

Optimization procedure

- 1. Initialize the entries in **A** and **S** with random positive values
- 2. Update A
- 3. Update S
- 4. Iterate steps 2 and 3

Also other optimization algorithms (e.g. projected steepest descent, Hoyer 2004)

NMF for audio in practice

- Calculate the magnitude spectrogram
 - Obtain each frame by multiplying the signal using a window function (for example 40 ms Hamming)
 - 50% or smaller frame shift
 - Calculate DFT in each frame t
 - Assign absolute values of the DFT to \mathbf{X}_{ft}
 - store the original phases
- Apply NMF (see previous slide) to obtain A and S
- Magnitude spectrogram of component k is obtained by
 - A(:,k) * S(k,:), or as X.*(A(:,k) * S(k,:)) ./ (AS) Matlab notation
- Synthesis:
 - Assign the phases of the original mixture phase spectrogram to the separated component
 - Get time-domain frame by IDFT

NMF distance measures

- The distance measure should be chosen according to the properties of the data
- NMF can be viewed as maximum likelihood estimation.
- Euclidean distance assumes additive Gaussian noise

$$p(\mathbf{X} \mid \mathbf{A}, \mathbf{S}) = \prod_{f,t} N(\mathbf{X}_{f,t}; [\mathbf{A}\mathbf{S}]_{f,t}, \sigma^2)$$

 KL assumes Poisson observation model (variance scales linearly with the model)

$$p(\mathbf{X} \mid \mathbf{A}, \mathbf{S}) = \prod_{f,t} \mathbf{Po}(\mathbf{X}_{f,t}; [\mathbf{A}\mathbf{S}]_{f,t}) = \prod_{f,t} e^{-[\mathbf{A}\mathbf{S}]_{f,t}} [\mathbf{A}\mathbf{S}]_{f,t}^{\mathbf{X}_{ft}} / \mathbf{X}_{ft}!$$

Equivalent to the multinomial model of PLSA

Bayesian approach (Virtanen and Cemgil 2008)

- Bayes rule: $p(\mathbf{A},\mathbf{S}|\mathbf{X}) = p(\mathbf{X}|\mathbf{A},\mathbf{S}) p(\mathbf{A},\mathbf{S}) / p(\mathbf{X})$
- Allows us to place priors for A and S
 - -> maximum a posterior estimation
- Typically sparse prior for the mixture weights
- Exponential prior $p(\mathbf{S}) = \prod_{k,t} \lambda e^{-\lambda \mathbf{S}_{kt}}$
 - -> the objective to be minimized becomes (for example with the Gaussian model)

$$\|\mathbf{X} - \mathbf{A}\mathbf{S}\| + \lambda \sum_{k,t} |\mathbf{S}_{kt}|$$

-> non-negative sparse coding

Regularization in NMF

- Any cost terms can be added to the reconstruction error measure
 - Sparseness, temporal continuity (Virtanen 2007)
 - Correlation of weights (Wilson et al. 2008), spectra (Virtanen & Cemgil 2009)
 - Correlation of components (Wilson & Raj 2010)
- Optimization may become more difficult

Connection to PLSA

- Normalization not needed
- Slightly different probabilistic model formulation

Supervised NMF

- Prior information easy to include by training the spectral basis vectors in advance
- Source separation scenario:
 - Isolated training material of source 1 and source 2
 - Use NMF to train basis spectra for both sources separately
 - Combine the basis vector sets
 - Use NMF with the obtained basis vector set keep the basis vectors fixed while updating the mixing weights
 - Synthesize source 1 by using its basis vectors only

Further analysis

- In practice a source source can be represented with more than one component
 - Cluster the components to sources

- Supervised classification of components (train a classifier)
- Example: separation of drums from polyphonic music by classification of NMF components by SVM (Helen & Virtanen 2005)
- Basis vectors are spectra
 - Pitch estimation (Vincent et al. 2007)
- Onset detection from mixture weights
 - Suits well for automatic drum transcription (Paulus & Virtanen 2005, Vincent et al. 2007)

Extensions of NMF

Convolution in frequency

- Translation of a basis vector in frequency: weight for each translation (Virtanen 2006)
- With constant-Q spectral transformation allows modeling different pitches with a single basis vector

Convolution in time

- Basis vector extended to cover multiple adjacent frames -> timevarying spectra (Smaragdis 2007, Virtanen 2004)
- Transpose of spectrogram -> equivalent to convolution in freq.
- **Excitation-filter model** (Heittola et al. 2009)
 - Each basis vector modeled as a sum of excitation and filter
- Harmonic bases (Vincent et al. 2007)
 - Each basis vector modeled as a weighted sum of harmonic combs with a limited frequency support

NMF-

enhanced

Voice separation demonstrations

•Demonstrations also available at http://www.cs.tut.fi/~tuomasv/

Tittp://www.cs.tut.ii/~tuomasv/					
mixture	sinusoidal model	binary mask	propose	d	
		()			
4		4	()		
		4	()		
4		4	4		
Q		4	()		

References

- Casey, M. and Westner, A., "Separation of Mixed Audio Sources by Independent Subspace Analysis", in *Proceedings of the International Computer Music Conference*, ICMA, Berlin, 2000.
- M. Plumbley, "Conditions for non-negative independent component analysis," IEEE Signal Processing Letters, vol. 9, no. 6, pp. 177–180, 2002.
- K. W. Wilson and B. Raj, "Spectrogram dimensionality reduction with independence constraints," Int. Conf. on Audio, Speech, and Signal Processing, Dallas, USA, 2010, submitted for publication.
- D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Adv. Neural Info. Proc. Syst. 13, 556-562 (2001).
- D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. *Nature* 401, 788-791 (1999).
- T. Virtanen, Monaural Sound Source Separation by Non-Negative Matrix Factorization with Temporal Continuity and Sparseness Criteria, IEEE Transactions on Audio, Speech, and Language Processing, vol 15, no. 3, March 2007.
- P. O. Hoyer. "Non-negative Matrix Factorization with sparseness constraints" Journal of Machine Learning Research 5: 1457-1469, 2004.
- Helén, M., Virtanen, T., Separation of Drums From Polyphonic Music Using Non-Negative Matrix Factorization and Support Vector Machine, in proc. 13th European Signal Processing Conference Antalaya, Turkey, 2005.
- Paulus, J., Virtanen, T., Drum Transcription with Non-negative Spectrogram
 Factorisation, in proc. 13th European Signal Processing Conference Antalaya, Turkey,
 2005

References (2)

- E. Vincent, N. Bertin, R. Badeau "Two Nonnegative matrix factorization methods for polyphonic pitch transcription". *Proc. of the International Conf. on Music Information Retrieval (ISMIR)*, Vienne, 2007.
- T. Virtanen, A. T. Cemgil, and S. J. Godsill. *Bayesian Extensions to Non-negative Matrix Factorisation for Audio Signal Modelling*, ICASSP 2008.
- Wilson, K.W., B. Raj, and P. Smaragdis, 2008. Regularized Non-Negative Matrix Factorization with Temporal Dependencies for Speech Denoising. In proceedings of Interspeech 2008, Brisbane, Australia, September 2008.
- T. Virtanen and A. T. Cemgil. *Mixtures of Gamma Priors for Non-Negative Matrix Factorization Based Speech Separation*, in Proc. ICA 2009, Paraty, Brazil,2009.
- T. Virtanen. "Sound Source Separation in Monaural Music Signals", PhD Thesis, Tampere University of Technology, 2006.
- T. Virtanen, Separation of Sound Sources by Convolutive Sparse Coding, ISCA Tutorial and Research Workshop on Statistical and Perceptual Audio Processing, SAPA 2004.
- T. Heittola, A. Klapuri, and T. Virtanen. *Musical Instrument Recognition in Polyphonic Audio Using Source-Filter Model for Sound Separation*, to be presented in Proc. 10th Int. Society for Music Information Retrieval Conf. (ISMIR 2009), Kobe, Japan, 2009.
- Smaragdis, P. 2007. Convolutive Speech Bases and their Application to Speech Separation. In IEEE Transactions of Speech and Audio Processing. January 2007
- D. Ellis and D.F Rosenthal (1998) Mid-level representations for Computational Auditory Scene Analysis, Chapter 17 in Computational auditory scene analysis, D. F. Rosenthal and H. Okuno, eds., Lawrence Erlbaum, pp. 257-272, 1998.