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Introduction to audio signals

= Audio signal: representation of sound

m Can exist in different forms
— Acoustic (that’s how we hear and often produce it)

— Electrical voltage (ouput of a microphone, input of a loudspeaker)
— Digital (mp3 files, compact disc, mobile phone)
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Representations of audio signals

= The amplitude as a function of time is a natural
representation of ausio signals
— Describes the variation of the sound pressure level around the DC
— Easy to record using a microphone and to reproduce by a
loudspeaker

= Digital signals: sampling frequency 44.1 kHz commonly
used
— Allows representing frequencies 0 — 22.05 kHz
— Humans can hear frequencies 20 Hz-20 kHz
— Lower / higher sampling frequencies also used
— Most of the information in low frequencies
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SpeCtrum Of a Sound Virtanen / NMF

= Obtained e.g. by calculating the DFT of the signal

= Perceptual properties of a sound are more clearly visible
In the spectrum

= Amplitude in dB — closer to the loudness perception
m Phases less meaningful — often magnitudes only are used
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Spectrogram representation

m Represents the intensity of a sound as a function of time and
frequency

m Obtained by calculating the spectrum in short frames (10-50 ms

typically in the case of audio)
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Linear superposition

= When multiple sound sources are present, the signals add
linearly
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Spectrogram of polyphonic music

= Mid-level representation suitable for audio analysis iis &
Rosenthal 1998)

m The rhythmic structure is still visible
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m In practical situations other sounds interfere the target
sound

= Automatic recognition / processing of sounds within
mixtures extremely difficult

= Applications:

Robust speech recognition
Speech enchacement

Music content analysis (transcription, instrument identification,
singer identification, lyrics transcription)

Audio manipulation
Object-based coding

= Very important in many other fields
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How to separate

Prior information about sources

General assumptions: statistical independence, etc.
Multiple microphones: direction of arrival

How does the human auditory system separate sources?
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Blind source separation

= No prior information about sources

= Only generic assumptions that are valid for all the possible
sources
— E.g. statistical independence

= Involves unsupervised learning

= In many practical situations we have less sensors than
sources:

— How to to estimate multiple signals from a smaller amount of
observations?
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Sparseness In broad sense

= Assumption: a source signal can be described using a
small number of parameters in some domain

m One possible approach: latent variable decompositions
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Example signal

= Notes C4 and G4 played by guitar, first separately and
then together
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Sparseness of the time-domain signal

m Five frames of the first note:

time/samples



15
Virtanen / NMF

Sparseness of magnitude spectrum

= Five magnitude spectra of the first note: phase-invariant
representatlon Ieads to much more compact models
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Mixture spectrogram
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Linear model for the mixture

m  Spectrum vector X, is decomposed into weighted sum of
frequency basis vectors a, and a,

Xy = a5 +a,5,,

® a, and a, represent the spectra of note 1 and 2, respectively
m s, and s, represent the gain of the notes over time
= Model in vector-matrix form:

Xyt dy; ap
X2t a21 a22 Slt

XFt
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ICA On SpeCtrogram Virtanen / NMF

m The model matches the ICA model: each frequency is an
sensor, mixture weights are sources

m Let ustry to use ICA to separate the notes

m ICA on spectrogram: Independent subspace analysis ISA,
(Casey & Westner 2000)
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Results with ICA
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Spectral basis vectors obtained with ICA

m |CA estimate
(upper panel)
VvS. original
(lower panel)
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What goes wrong?

= Negative weights: subtraction of spectral basis vectors
= Negative values in spectral basis vectors

m Subtraction of magnitude of power spectra physically
unrealistic

m Are the notes statistically independent?
= Are the modeling assumptions correct?

m Is the independence as defined in ICA a good assumption
In this case?
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Non-negativity restrictions

= Non-negativity restrictions difficult to place into ICA

= [t has been shown that with non-negativity restrictions,
PCA leads to independent components (Plumbley 2002,
Wilson & Raj 2010)
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Non-negativity restrictions alone
= What if we seek for a representation
X, = AS,

while restricting the basis vectors and weights to
non-negative values?



24
Virtanen / NMF

Model for multiple frames

X, =As, t=1...T
written for all the frames in matrix form:
[, X, - X;|=Ae[s s, - 5]

and using matrices only:

X =AS
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Non-negative matrix factorization

= NMF: minimize the error of the approximation X = AS,
while restricting A and S to non-negative values
(Lee & Seung, 1999 & 2001)
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Guitar example
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Spectral basis vectors obtained with NMF
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Weight obtained with NMF
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Why dOeS NMF Work') Virtanen / NMF

m By representing signals as a sum purely additive, non-
negative sources, we get a parts-based representation
(Lee & Seung, 1999)
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PCA on face data
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NMF of face data
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NMF on complex polyphonic music

= NMF represents parts of the signal that fit the model
(Virtanen, 2007)

= Individual drum instruments
m Repeating chords
= Any repetitive structure in the signal
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Polyphonic example

m Original @

= 20 separated components:
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NMF algorithms

= NMF minimizes the error between X and AS while
restricting A and S to be entry-wise non-negative

= Two commonly used distance measures (Lee &
Seung 2001)

m Euclidean distance / L2 norm:

do,e =l X—ASJ;

m Generalized Kullback-Leibler divergence:
Ay (X, AS) = 3" X log(X  [[AS] ) X +[AS],
ft

= Many other measures
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Multiplicative update rules

m Update rules which are guaranteed to be non-
Increasing

m Easy to implement and to extend
= Euclidean distance:
XST T
® - S=S® '.?‘X
(AS)S A’ (AS)
m KL divergence

(X/(AS))ST S=s® A’ (X/AS)

A=A® _
1S ATl

where 1 is all-one matrix of size X
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Optimization procedure

1. Initialize the entries in A and S with random positive
values

2. Update A
3. Update S
4. lterate steps 2 and 3

Also other optimization algorithms (e.g. projected steepest
descent, Hoyer 2004)
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NMF for audio In practice

m Calculate the magnitude spectrogram

— Obtain each frame by multiplying the signal using a window
function (for example 40 ms Hamming)

— 50% or smaller frame shift

— Calculate DFT in each frame t

— Assign absolute values of the DFT to X
— store the original phases

= Apply NMF (see previous slide) to obtain A and S

= Magnitude spectrogram of component k is obtained by
— A(,K) * S(k,:), or as X.*(A(:,k) * S(k,:)) ./ (AS) — Matlab notation
m Synthesis:

— Assign the phases of the original mixture phase spectrogram to
the separated component

— Get time-domain frame by IDFT

—
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NMF distance measures

m The distance measure should be chosen according to
the properties of the data

m NMF can be viewed as maximum likelihood estimation
m Euclidean distance assumes additive Gaussian noise

p(X|A,S) =] [ N(X; ;[AS];,.0%)

m KL assumes Poisson observation model (variance
scales linearly with the model)

p(X|A,S) =] ]Po(X, ;:[AS], ) =] e "[AS]7} /X!
f,t f,t

m Equivalent to the multinomial model of PLSA
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Bayesian approach (virtanen and cemgil 2008)

m Bayes rule: p(A,S|X) = p(X|A,S) p(A,S) / p(X)
m Allows us to place priors for A and S

-> maximum a posterior estimation
m Typically sparse prior for the mixture weights

= Exponential prior p(S) = H 2o~ *S
k.t

-> the objective to be minimized becomes (for
example with the Gaussian model)

IX-AS[[+1) |S,|
K,t

-> non-negative sparse coding
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Reqgularization in NMF

= Any cost terms can be added to the reconstruction error
measure
— Sparseness, temporal continuity (Virtanen 2007)

— Correlation of weights (Wilson et al. 2008), spectra (Virtanen &
Cemgil 2009)

— Correlation of components (Wilson & Raj 2010)
= Optimization may become more difficult
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Connection to PLSA

= Normalization not needed
m Slightly different probabilistic model formulation
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Supervised NMF

= Prior information easy to include by training the spectral
basis vectors in advance

m Source separation scenario:
— Isolated training material of source 1 and source 2
— Use NMF to train basis spectra for both sources separately
— Combine the basis vector sets

— Use NMF with the obtained basis vector set — keep the basis
vectors fixed while updating the mixing weights

— Synthesize source 1 by using its basis vectors only
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Further analysis

m In practice a source source can be represented with more
than one component <
— Cluster the components to sources ¢
— Supervised classification of components (train a classifier)

— Example: separation of drums from polyphonic music by
classification of NMF components by SVM (Helen & Virtanen
2005)

m Basis vectors are spectra
— Pitch estimation (Vincent et al. 2007)

= Onset detection from mixture weights

— Suits well for automatic drum transcription (Paulus & Virtanen
2005, Vincent et al. 2007)

L &



45

EXtenS i OnS Of N I\/I F Virtanen / NMF

= Convolution in frequency

— Translation of a basis vector in frequency: weight for each
translation (Virtanen 2006)

— With constant-Q spectral transformation allows modeling different
pitches with a single basis vector

m Convolution in time

— Basis vector extended to cover multiple adjacent frames -> time-
varying spectra (Smaragdis 2007, Virtanen 2004)

— Transpose of spectrogram -> equivalent to convolution in freq.

m Excitation-filter model (Heittola et al. 2009)
— Each basis vector modeled as a sum of excitation and filter

m Harmonic bases (vincent et al. 2007)

— Each basis vector modeled as a weighted sum of harmonic combs
with a limited frequency support



Voice separation demonstrations

Demonstrations also available at
http://www.cs.tut.fi/~tuomasv/
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