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Audio signal: representation of sound
Can exist in different forms
– Acoustic (that’s how we hear and often produce it)
– Electrical voltage (ouput of a microphone, input of a loudspeaker)
– Digital (mp3 files, compact disc, mobile phone)
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The amplitude as a function of time is a natural 
representation of ausio signals
– Describes the variation of the sound pressure level around the DC
– Easy to record using a microphone and to reproduce by a 

loudspeaker

Digital signals: sampling frequency 44.1 kHz commonly 
used
– Allows representing frequencies 0 – 22.05 kHz
– Humans can hear frequencies 20 Hz-20 kHz
– Lower / higher sampling frequencies also used
– Most of the information in low frequencies
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Obtained e.g. by calculating the DFT of the signal
Perceptual properties of a sound are more clearly visible 
in the spectrum
Amplitude in dB – closer to the loudness perception
Phases less meaningful – often magnitudes only are used
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Represents the intensity of a sound as a function of time and 
frequency
Obtained by calculating the spectrum in short frames (10-50 ms 
typically in the case of audio)
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When multiple sound sources are present, the signals add 
linearly
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Mid-level representation suitable for audio analysis (Ellis & 
Rosenthal 1998)

The rhythmic structure is still visible
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In practical situations other sounds interfere the target 
sound
Automatic recognition / processing of sounds within 
mixtures extremely difficult
Applications:
– Robust speech recognition
– Speech enchacement
– Music content analysis (transcription, instrument identification, 

singer identification, lyrics transcription)
– Audio manipulation
– Object-based coding

Very important in many other fields
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Prior information about sources
General assumptions: statistical independence, etc.
Multiple microphones: direction of arrival
How does the human auditory system separate sources?
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No prior information about sources
Only generic assumptions that are valid for all the possible 
sources
– E.g. statistical independence

Involves unsupervised learning
In many practical situations we have less sensors than 
sources:
– How to to estimate multiple signals from a smaller amount of 

observations?
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Assumption: a source signal can be described using a 
small number of parameters in some domain
One possible approach: latent variable decompositions
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Notes C4 and G4 played by guitar, first separately and 
then together
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Five frames of the first note:
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Five magnitude spectra of the first note: phase-invariant 
representation leads to much more compact models
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Spectrum vector xt is decomposed into  weighted sum of 
frequency basis vectors a1 and a2

a1 and a2 represent the spectra of note 1 and 2, respectively
s1t and s2t represent the gain of the notes over time
Model in vector-matrix form:
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The model matches the ICA model: each frequency is an 
sensor, mixture weights are sources
Let us try to use ICA to separate the notes
ICA on spectrogram: Independent subspace analysis ISA, 
(Casey & Westner 2000)
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Weights 
over time
Negative 
weights(!)
Both 
weights 
seem to 
represent 
the first 
note
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ICA estimate 
(upper panel) 
vs. original 
(lower panel)
Both 
components 
represent note a 
combination
Negative values
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Negative weights: subtraction of spectral basis vectors
Negative values in spectral basis vectors
Subtraction of magnitude of power spectra physically 
unrealistic
Are the notes statistically independent?
Are the modeling assumptions correct?
Is the independence as defined in ICA a good assumption 
in this case?
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Non-negativity restrictions difficult to place into ICA
It has been shown that with non-negativity restrictions, 
PCA leads to independent components (Plumbley 2002, 
Wilson & Raj 2010)
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What if we seek for a representation

while restricting the basis vectors and weights to 
non-negative values?

t tx As
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,t tx As 1,t T

1 2 1 2T Tx x x A s s s

X AS

written for all the frames in matrix form:

and using matrices only:
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NMF: minimize the error of the approximation X = AS,
while restricting A and S to non-negative values
(Lee & Seung, 1999 & 2001)
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NMF estimate 
(upper panel) 
vs. original 
(lower panel)
Bases 
correspond to 
individual notes
Permutation 
ambiquity
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The green basis 
represents partly 
the onset of the 
second note
Good separation 
of notes
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By representing signals as a sum purely additive, non-
negative sources, we get a parts-based representation 
(Lee & Seung, 1999)
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Nature 1999)
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NMF represents parts of the signal that fit the model 
(Virtanen, 2007)

Individual drum instruments
Repeating chords
Any repetitive structure in the signal
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Original

20 separated components:
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NMF minimizes the error between X and AS while 
restricting A and S to be entry-wise non-negative
Two commonly used distance measures (Lee & 
Seung 2001)
Euclidean distance / L2 norm:

Generalized Kullback-Leibler divergence:

Many other measures
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Update rules which are guaranteed to be non-
increasing
Easy to implement and to extend
Euclidean distance:

KL divergence

where 1 is all-one matrix of size X
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1. Initialize the entries in A and S with random positive 
values

2. Update A
3. Update S
4. Iterate steps 2 and 3

Also other optimization algorithms (e.g. projected steepest 
descent, Hoyer 2004)
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Calculate the magnitude spectrogram
– Obtain each frame by multiplying the signal using a window 

function (for example 40 ms Hamming)
– 50% or smaller frame shift
– Calculate DFT in each frame t
– Assign absolute values of the DFT to Xft

– store the original phases

Apply NMF (see previous slide) to obtain A and S
Magnitude spectrogram of component k is obtained by
– A(:,k) * S(k,:), or as X.*(A(:,k) * S(k,:)) ./ (AS) – Matlab notation

Synthesis:
– Assign the phases of the original mixture phase spectrogram to 

the separated component
– Get time-domain frame by IDFT
– Combine frames using overlap-add
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The distance measure should be chosen according to 
the properties of the data
NMF can be viewed as maximum likelihood estimation
Euclidean distance assumes additive Gaussian noise

KL assumes Poisson observation model (variance 
scales linearly with the model)

Equivalent to the multinomial model of PLSA
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Bayes rule: p(A,S|X) = p(X|A,S) p(A,S) / p(X)
Allows us to place priors for A and S
-> maximum a posterior estimation
Typically sparse prior for the mixture weights
Exponential prior

-> the objective to be minimized becomes (for 
example with the Gaussian model)

-> non-negative sparse coding
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Any cost terms can be added to the reconstruction error 
measure
– Sparseness, temporal continuity (Virtanen 2007)
– Correlation of weights (Wilson et al. 2008), spectra (Virtanen & 

Cemgil 2009)
– Correlation of components (Wilson & Raj 2010)

Optimization may become more difficult
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Normalization not needed
Slightly different probabilistic model formulation
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Prior information easy to include by training the spectral 
basis vectors in advance
Source separation scenario:
– Isolated training material of source 1 and source 2
– Use NMF to train basis spectra for both sources separately
– Combine the basis vector sets
– Use NMF with the obtained basis vector set – keep the basis 

vectors fixed while updating the mixing weights
– Synthesize source 1 by using its basis vectors only
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In practice a source source can be represented with more 
than one component
– Cluster the components to sources
– Supervised classification of components (train a classifier)
– Example: separation of drums from polyphonic music by 

classification of NMF components by SVM (Helen & Virtanen 
2005)

Basis vectors are spectra
– Pitch estimation (Vincent et al. 2007)

Onset detection from mixture weights
– Suits well for automatic drum transcription (Paulus & Virtanen 

2005, Vincent et al. 2007)



45
Virtanen / NMFExtensions of NMF

Convolution in frequency
– Translation of a basis vector in frequency: weight for each 

translation (Virtanen 2006)
– With constant-Q spectral transformation allows modeling different 

pitches with a single basis vector

Convolution in time
– Basis vector extended to cover multiple adjacent frames -> time-

varying spectra (Smaragdis 2007, Virtanen 2004)
– Transpose of spectrogram -> equivalent to convolution in freq.

Excitation-filter model (Heittola et al. 2009)

– Each basis vector modeled as a sum of excitation and filter

Harmonic bases (Vincent et al. 2007)

– Each basis vector modeled as a weighted sum of harmonic combs 
with a limited frequency support
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Virtanen / NMFVoice separation demonstrations

binary 
mask

proposedsinusoidal
model

mixture

NMF-
enhanced

mixture
•Demonstrations also available at 
http://www.cs.tut.fi/~tuomasv/
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