Shift- and Transform-Invariant Representations Denoising Speech Signals

Class 18. 22 Oct 2009

Summary So Far

- PLCA:
- The basic mixture-multinomial model for audio (and other data)
- Sparse Decomposition:
- The notion of sparsity and how it can be imposed on learning
- Sparse Overcomplete Decomposition:
- The notion of overcomplete basis set
- Example-based representations
- Using the training data itself as our representation

Next up: Shift/Transform Invariance

- Sometimes the "typical" structures that compose a sound are wider than one spectral frame
- E.g. in the above example we note multiple examples of a pattern that spans several frames

Next up: Shift/Transform Invariance

- Sometimes the "typical" structures that compose a sound are wider than one spectral frame
- E.g. in the above example we note multiple examples of a pattern that spans several frames
- Multiframe patterns may also be local in frequency
- E.g. the two green patches are similar only in the region enclosed by the blue box

Patches are more representative than frames

- Four bars from a music example
- The spectral patterns are actually patches
- Not all frequencies fall off in time at the same rate
- The basic unit is a spectral patch, not a spectrum

Images: Patches often form the image

- A typical image component may be viewed as a patch
- The alien invaders
- Face like patches
- A car like patch
- overlaid on itself many times..

Shift-invariant modelling

- A shift-invariant model permits individual bases to be patches
- Each patch composes the entire image.
- The data is a sum of the compositions from individual patches

Shift Invariance in one Dimension

- Our bases are now "patches"
- Typical spectro-temporal structures
- The urns now represent patches
- Each draw results in a (t,f) pair, rather than only f
- Also associated with each urn: A shift probability distribution $P(T \mid z)$
- The overall drawing process is slightly more complex
- Repeat the following process:
- Select an urn Z with a probability $P(Z)$
- Draw a value T from $P(t \mid Z)$
- Draw (t,f) pair from the urn
- Add to the histogram at $(\mathrm{t}+\mathrm{T}, \mathrm{f})$

Shift Invariance in one Dimension

- The process is shift-invariant because the probability of drawing a shift $\mathrm{P}(\mathrm{T} \mid \mathrm{Z})$ does not affect the probability of selecting urn Z
- Every location in the spectrogram has contributions from every urn patch

Shift Invariance in one Dimension

- The process is shift-invariant because the probability of drawing a shift $\mathrm{P}(\mathrm{T} \mid \mathrm{Z})$ does not affect the probability of selecting urn Z
- Every location in the spectrogram has contributions from every urn patch

Shift Invariance in one Dimension

- The process is shift-invariant because the probability of drawing a shift $\mathrm{P}(\mathrm{T} \mid \mathrm{Z})$ does not affect the probability of selecting urn Z
- Every location in the spectrogram has contributions from every urn patch

Probability of drawing a particular (t, f) combination

$$
P(t, f)=\sum_{z} P(z) \sum_{\tau} P(\tau \mid z) P(t-\tau, f \mid z)
$$

- The parameters of the model:
- $P(t, f \mid z)$ - the urns
- $P(T \mid z)$ - the urn-specific shift distribution
- $P(z)$ - probability of selecting an urn
- The ways in which (t, f) can be drawn:
- Select any urn z
- Draw T from the urn-specific shift distribution
- Draw ($\mathrm{t}-\mathrm{T}, \mathrm{f}$) from the urn
- The actual probability sums this over all shifts and urns

Learning the Model

- The parameters of the model are learned analogously to the manner in which mixture multinomials are learned
- Given observation of (t,f), it we knew which urn it came from and the shift, we could compute all probabilities by counting!
- If shift is T and urn is Z
- $\operatorname{Count}(Z)=\operatorname{Count}(Z)+1$
- For shift probability: $\operatorname{Count}(T \mid Z)=\operatorname{Count}(T \mid Z)+1$
- For urn: Count(t-T,f|Z)=Count(t-T,f|Z) + 1
\square Since the value drawn from the urn was $t-T, f$
- After all observations are counted:
- Normalize Count(Z) to get $P(Z)$
- Normalize Count(T|Z) to get $P(T \mid Z)$
- Normalize Count(t,f|Z) to get $P(t, f \mid Z)$
- Problem: When learning the urns and shift distributions from a histogram, the urn (Z) and shift (T) for any draw of (t, f) is not known
- These are unseen variables

11-755 MLSP: Bhiksha Raj

Learning the Model

- Urn Z and shift T are unknown
- So (t,f) contributes partial counts to every value of T and Z
- Contributions are proportional to the a posteriori probability of Z and T, Z

$$
\begin{array}{|ll|}
P(t, f, Z)=P(Z) \sum_{T} P(T \mid Z) P(t-T, f \mid Z) & P(T, t, f \mid Z)=P(T \mid Z) P(t-T, f \mid Z) \\
P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z^{\prime}} P\left(t, f, Z^{\prime}\right)} & P(T \mid Z, t, f)=\frac{P(T, t-T, f \mid Z)}{\sum_{T^{\prime}} P\left(T^{\prime}, t-T^{\prime}, f \mid Z\right)}
\end{array}
$$

- Each observation of (t, f)
- $\quad P(z \mid t, f)$ to the count of the total number of draws from the urn

$$
\text { - } \quad \operatorname{Count}(Z)=\operatorname{Count}(Z)+P(z \mid t, f)
$$

- $P(z \mid t, f) P(T \mid z, t, f)$ to the count of the shift T for the shift distribution

$$
\text { - } \quad \operatorname{Count}(T \mid Z)=\operatorname{Count}(T \mid Z)+P(z \mid t, f) P(T \mid Z, t, f)
$$

- $P(z \mid t, f) P(T \mid z, t, f)$ to the count of $(t-T, f)$ for the urn
- Count(t-T,f|Z) = Count(t-T,f|Z)+P(z|t,f)P(T|z,t,f)

Shift invariant model: Update Rules

- Given data (spectrogram) $S(t, f)$
- Initialize $P(Z), P(T \mid Z), P(t, f \mid Z)$
- Iterate

$$
\begin{array}{ll}
P(t, f, Z)=P(Z) \sum_{T} P(T \mid Z) P(t-T, f \mid Z) & P(T, t, f \mid Z)=P(T \mid Z) P(t-T, f \mid Z) \\
P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z} P\left(t, f, Z^{\prime}\right)} & P(T \mid Z, t, f)=\frac{P(T, t-T, f \mid Z)}{\sum_{T} P\left(T^{\prime}, t-T^{\prime}, f \mid Z\right)} \\
P(Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)}{\sum_{Z} \sum_{t} \sum_{f} P\left(Z^{\prime} \mid t, f\right) S(t, f)} \quad P(T \mid Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) P(T \mid Z, t, f) S(t, f)}{\sum_{T} \sum_{t} \sum_{f} P(Z \mid t, f) P\left(T^{\prime} \mid Z, t, f\right) S(t, f)} \\
P(t, f \mid Z)=\frac{\sum_{T} P(Z \mid T, f) P(T-t \mid Z, T, f) S(T, f)}{\sum_{T} \sum_{T} P(Z \mid T, f) P\left(T-t^{\prime} \mid Z, T, f\right) S(T, f)}
\end{array}
$$

Shift-invariance in one time: example

- An Example: Two distinct sounds occuring with different repetition rates within a signal
- Modelled as being composed from two time-frequency bases
- NOTE: Width of patches must be specified

INPUT SPECTROGRAM

Discovered time-frequency "patch" bases (urns)

Contribution of individual bases to the recording

Shift Invariance in Two Dimensions

- We now have urn-specific shifts along both T and F
- The Drawing Process
- Select an urn Z with a probability $P(Z)$
- Draw SHIFT values (T,F) from $P_{s}(T, F \mid Z)$
- Draw (t, f) pair from the urn
- Add to the histogram at $(\mathrm{t}+\mathrm{T}, \mathrm{f}+\mathrm{F})$
- This is a two-dimensional shift-invariant model
- We have shifts in both time and frequency
- Or, more generically, along both axes

Learning the Model

- Learning is analogous to the 1-D case
- Given observation of (t, f), it we knew which urn it came from and the shift, we could compute all probabilities by counting!
- If shift is T, F and $u r n$ is Z
- $\operatorname{Count}(Z)=\operatorname{Count}(Z)+1$
- For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1
- For urn: Count(t-T,f-F | Z) $=\operatorname{Count}(t-T, f-F \mid Z)+1$
\square Since the value drawn from the urn was $t-T, f-F$
- After all observations are counted:
- Normalize Count(Z) to get P(Z)
- Normalize ShiftCount(T,F|Z) to get $\mathrm{P}_{\mathrm{s}}(\mathrm{T}, \mathrm{F} \mid \mathrm{Z})$
- Normalize Count $(t, f \mid Z)$ to get $P(t, f \mid Z)$
- Problem: Shift and Urn are unknown

Learning the Model

- Urn Z and shift T,F are unknown
- So (t, f) contributes partial counts to every value of T, F and Z
- Contributions are proportional to the a posteriori probability of Z and T,F|Z

$$
\begin{aligned}
& P(t, f, Z)=P(Z) \sum_{T, F} P(T, F \mid Z) P(t-T, f-F \mid Z) \quad P(T, F, t, f \mid Z)=P(T, F \mid Z) P(t-T, f-F \mid Z) \\
& P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z} P\left(t, f, Z^{\prime}\right)} \quad P(T, F \mid Z, t, f)=\frac{P(T, F, t-T, f-F \mid Z)}{\sum_{T^{\prime}, F^{\prime}} P\left(T^{\prime}, F^{\prime}, t-T^{\prime}, f-F^{\prime} \mid Z\right)}
\end{aligned}
$$

- Each observation of (t, f)
- $\quad P(z \mid t, f)$ to the count of the total number of draws from the urn

$$
\text { - } \quad \operatorname{Count}(Z)=\operatorname{Count}(Z)+P(z \mid t, f)
$$

- $P(z \mid t, f) P(T, F \mid z, t, f)$ to the count of the shift T, F for the shift distribution
- $\quad \operatorname{ShiftCount(T,F|Z)=\operatorname {ShiftCount(T,F~}|Z)+P(z|t,f)P(T|Z,t,f)~}$
- $P(T \mid z, t, f)$ to the count of $(t-T, f-F)$ for the urn
- Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f)

Shift invariant model: Update Rules

- Given data (spectrogram) S(t,f)
- Initialize $P(Z), P_{s}(T, F \mid Z), P(t, f \mid Z)$
- Iterate

$$
\begin{aligned}
& P(t, f, Z)=P(Z) \sum_{T, F} P(T, F \mid Z) P(t-T, f-F \mid Z) \quad P(T, F, t, f \mid Z)=P(T, F \mid Z) P(t-T, f-F \mid Z) \\
& P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z} P\left(t, f, Z^{\prime}\right)} \quad P(T, F \mid Z, t, f)=\frac{P(T, F, t-T, f-F \mid Z)}{\sum_{T^{\prime}, F^{\prime}} P\left(T^{\prime}, F^{\prime}, t-T^{\prime}, f-F^{\prime} \mid Z\right)} \\
& P(Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)}{\sum_{Z} \sum_{t} \sum_{f} P\left(Z^{\prime} \mid t, f\right) S(t, f)} \quad P(T, F \mid Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) P(T, F \mid Z, t, f) S(t, f)}{\sum_{T^{\prime}} \sum_{F^{\prime}} \sum_{t} \sum_{f} P(Z \mid T, F) P(T-t, F-f \mid Z, T, F) S(T, F)} \\
& P(t, f \mid Z)=\frac{\sum_{T, F}}{\sum_{t^{\prime}, f^{\prime}} \sum_{T, F} P(Z \mid T, F) P\left(T-t^{\prime}, F-f^{\prime} \mid Z, T, F\right) S(T, F)}
\end{aligned}
$$

2D Shift Invariance: The problem of

indeterminacy

- $P(t, f \mid Z)$ and $P_{s}(T, F \mid Z)$ are analogous
- Difficult to specify which will be the "urn" and which the "shift"
- Additional constraints required to ensure that one of them is clearly the shift and the other the urn
- Typical solution: Enforce sparsity on $\mathrm{P}_{\mathrm{s}}(\mathrm{T}, \mathrm{F} \mid \mathrm{Z})$
- The patch represented by the urn occurs only in a few locations in the data

Example: 2-D shift invariance

- Only one "patch" used to model the image (i.e. a single urn)
- The learnt urn is an "average", face, the learned shifts show the locations of faces

Example: 2-D shift invarince

- The original figure has multiple handwritten renderings of three characters
- In different colours
- The algorithm learns the three characters and identifies their locations in the figure

Shift-Invariant Decomposition - Uses

- Signal separation
- The arithmetic is the same as before
- Learn shift-invariant bases for each source
- Use these to separate signals
- Dereverberation
- The spectrogram of the reverberant signal is simply the sum several shifted copies of the spectrogram of the original signal
- 1-D shift invariance
- Image Deblurring
- The blurred image is the sum of several shifted copies of the clean image
- 2-D shift invariance

Beyond shift-invariance: transform

invariance

- The draws from the urns may not only be shifted, but also transformed
- The arithmetic remains very similar to the shiftinvariant model
- We must now impose one of an enumerated set of transforms to (t, f), after shifting them by (T, F)
- In the estimation, the precise transform applied is an unseen variable

Transform invariance: Generation

- The set of transforms is enumerable
- E.g. scaling by 0.9 , scaling by 1.1 , rotation right by 90 degrees, rotation left by 90 degrees, rotation by 180 degrees, reflection
- Transformations can be chosen by draws from a distribution over transforms
- E.g. P(rotation by 90 degrees) $=0.2$..
- Distributions are URN SPECIFIC
- The drawing process:
- Select an urn Z (patch)
- Select a shift (T,F) from $P_{s}(T, F \mid Z)$
- Select a transform from $P(t x f m \mid Z)$
- Select a (t, f) pair from $\mathrm{P}(\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$
- Transform (t, f) to $\mathrm{txfm}(\mathrm{t}, \mathrm{f})$
- Increment the histogram at txfm $(\mathrm{t}, \mathrm{f})+(\mathrm{T}, \mathrm{F})$

Transform invariance

- The learning algorithm must now estimate
${ }_{\square} \mathrm{P}(\mathrm{Z})$ - probability of selecting urn/patch in any draw
$\square \mathrm{P}(\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$ - the urns / patches
${ }_{\square} \mathrm{P}(\mathrm{txfm} \mid \mathrm{Z})$ - the urn specific distribution over transforms
${ }_{\square} P_{s}(T, F \mid Z)-$ the urn-specific shift distribution
- Essentially determines what the basic shapes are, where they occur in the data and how they are transformed
- The mathematics for learning are similar to the maths for shift invariance
${ }_{\square}$ With the addition that each instance of a draw must be fractured into urns, shifts AND transforms
- Details of learning are left as an exercise
\square Alternately, refer to Madhusudana Shashanka's PhD thesis at BU

Example: Transform Invariance

- Top left: Original figure
- Bottom left - the two bases discovered
- Bottom right -
- Left panel, positions of "a"
- Right panel, positions of "l"
- Top right: estimated distribution underlying original figure

Transform invariance: model limitations

and extensions

- The current model only allows one transform to be applied at any draw
- E.g. a basis may be rotated or scaled, but not scaled and rotated
- An obvious extension is to permit combinations of transformations
- Model must be extended to draw the combination from some distribution
- Data dimensionality: All examples so far assume only two dimensions (e.g. in spectrogram or image)
- The models are trivially extended to higherdimensional data

Transform Invariance: Uses and Limitations

- Not very useful to analyze audio
- May be used to analyze images and video
- Main restriction: Computational complexity
- Requires unreasonable amounts of memory and CPU
- Efficient implementation an open issue

Example: Higher dimensional data - Video example

Description of input

Kemel 1

Kemel 3

Summary

- Shift invariance
- Multinomial bases can be "patches"
- Representing time-frequency events in audio or other larger patterns in images
- Transform invariance
- The patches may further be transformed to compose an image
- Not useful for audio

De-noising Audio Signals

De-noising

- Multifaceted problem
- Removal of unwanted artifacts
- Clicks, hiss, warps, interfering sounds, ...
- For now
- Constant noise removal
- Wiener filters, spectral/power subtraction
- Click detection and restoration
- AR models for abnormality detection
- AR models for making up missing data

The problem with audio recordings

- Recordings are inherently messy!!
- Recordings capture room resonances, air conditioners, street ambience, etc ...
- Resulting in low frequency rumbling sounds (the signature quality of a lowbudget recording!)
- Magnetic recording media get demagnetized
- Results in high frequency hissing sounds (old tapes)
- Mechanical recording media are littered with debris
- Results in clicking and crackling sounds (ancient vinyl disks, optical film soundtracks)
- Digital media feature sample drop-outs
- Results in gaps in audio which when short are perceived as clicks, otherwise it is an audible gap (damaged CDs, poor internet streaming, bad bluetooth headsets)

Restoration of audio

- People don’t like noisy recordings!!
- There is a need for audio restoration work
- Early restoration work was an art form
- Experienced engineers would design filters to best cover defects, cut and splice tapes to remove unwanted parts, etc.
- Results were marginally acceptable
- Recent restoration work is a science
- Extensive use of signal processing and machine learning
- Results are quite impressive!

Audio Restoration I

Constant noise removal

- Noise is often inherent in a recording or slowly creeps in the recording media
- Hiss, rumbling, ambience, ...
- Approach
- Figure out noise characteristics
- Spectral processing to make up for noise

Describing additive noise

- Assume additive noise

$$
x(t)=s(t)+n(t)
$$

- In the frequency domain

$$
X(t, f)=S(t, f)+N(t, f)
$$

- Find the spots where we have only isolated noise
- Average them and get noise spectrum

$$
\mu(f)=\frac{1}{M} \sum_{\forall t, S(t, f) \approx 0}\|X(t, f)\|
$$

$M=$ number of noise frames

Spectral subtraction methods

- We can now (perhaps) estimate the clean sound
- We know the characteristics of the noise (as described from the spectrum $\mu(f)$)
- But, we will assume:
- The noise source is constant
- If the noise spectrum changes $\mu(f)$ is not a valid noise description anymore
- The noise is additive

Sections of isolated noise (or at least no useful signal)

Spectral subtraction

- Magnitude subtraction
- Subtract the noise magnitude spectrum from the recording's

$$
\begin{aligned}
& X(t, f)=S(t, f)+N(t, f) \Rightarrow \\
& \|\hat{S}(t, f)\|=\|X(t, f)\|-\mu(f)
\end{aligned}
$$

- We can then modulate the magnitude of the original input to reconstruct

$$
\hat{S}(t, f)=[\|X(t, f)\|-\mu(f) \rrbracket X(t, f)
$$

- Sounds pretty good ...

Estimating the noise spectrum

- Noise is usually not stationary
- Although the rate of change with time may be slow
- A running estimate of noise is required
- Update noise estimates at every frame of the audio
- The exact location of "noise-only" segments is never known
- For speech signals we use an important characteristic of speech to discover speech segments (and, consequently noise-only segments) in the audio
- The onset of speech is always indicated by a sudden increase in the energy level in the signal

A running estimate of noise

- The initial T frames in any recording are assumed to be free of the speech signal
- Typically T = 10
- The noise estimate $N(\mathrm{~T}, \mathrm{f})$ is estimated as

$$
N(\mathrm{~T}, \mathrm{f})=(1 / \mathrm{T}) \Sigma_{\mathrm{t}}|X(\mathrm{t}, \mathrm{f})|
$$

- Subsequent estimates are obtained as follows
- Assumption: The magnitude spectrum increases suddenly in value at the onset of speech

$$
|N(t, f)|^{p} \approx\left\{\begin{array}{cl}
(1-\lambda)|N(t-1, f)|^{p}+\lambda|X(t, f)|^{p} & \text { if }|X(t, f)|<\beta|N(t-1, f)| \\
|N(t-1, f)|^{p} & \text { otherwise }
\end{array}\right.
$$

A running estimate of noise

$$
|N(t, f)|^{p}=\left\{\begin{array}{cc}
(1-\lambda)|N(t-1, f)|^{p}+\lambda|X(t, f)|^{p} & \text { if }|X(t, f)|<\beta|N(t-1, f)| \\
|N(t-1, f)|^{p} & \text { otherwise }
\end{array}\right.
$$

- \quad is an exponent term that is typically set to either 2 or 1
- $p=2$: power spectrum; $p=1$: magnitude spectrum
- λ is a noise update factor
- Typically set in the range $0.1-0.5$
- Accounts for time-varying noise
- β is a thresholding term
- A typical value of β is 5.0
- If the signal energy jumps by a factor of β, speech onset has occurred
- Other more complex rules may be applied to detect speech offset

Cancelling the Noise

- Simple Magnitude Subtraction
- $|S(t, f)|=|X(t, f)|-|N(t, f)|$
- Power subtraction
- $|S(t, f)|^{2}=|X(t, f)|^{2}-|N(t, f)|^{2}$
- Filtering methods: $\mathrm{S}(\mathrm{t}, \mathrm{f})=\mathrm{H}(\mathrm{t}, \mathrm{f}) \mathrm{X}(\mathrm{t}, \mathrm{f})$
- Weiner Filtering: build an optimal filter to remove the estimated noise
- Maximum-likelihood estimation..

The Filter Functions

- We have a source plus noise spectrum

$$
X(t, f)=S(t, f)+N(t, f)
$$

- The desired output is some function of the input and the noise spectrum

$$
\hat{S}(t, f)=g(X(t, f), N(t, f))
$$

- Let's make it a "gain function"

$$
\begin{aligned}
& H(t, f)=f(X(t, f), N(t, f)) \\
& \hat{S}(t, f)=H(t, f) X(t, f)
\end{aligned}
$$

- For spectral subtraction the gain function is:

$$
H(t, f)=1-\frac{\|N(t, f)\|}{\|X(t, f)\|}
$$

Filters for denoising

- Magnitude subtraction:
- Power subtraction:

$$
\begin{aligned}
& H(f)=1-\frac{N(f)}{\|X(f)\|} \\
& H(f)=\sqrt{1-\frac{N^{2}(f)}{\|X(f)\|^{2}}}
\end{aligned}
$$

- Wiener filter:
- Maximum likelihood:

$$
\begin{aligned}
& H(f)=1-\frac{N^{2}(f)}{\|X(f)\|^{2}} \\
& H(f)=\frac{1}{2}\left[1+\sqrt{1-\frac{N^{2}(f)}{\|X(f)\|^{2}}}\right]
\end{aligned}
$$

Filter function comparison

Examples of various filter functions

Original

Magnitude subtraction
 subtraction

Wiener
filter

Maximum
likelihood

"Musical noise"

- What was that weirdness with the Wiener filter???
- An artifact called musical noise
- The other approaches had it too
- Takes place when the signal to noise ratio is small
- Ends up on the steep part of the gain curve
- Small fluctuations are then magnified
- Results in complex or negative gain
- An awkward situation!
- The result is sinusoids popping in and out
- Hence the tonal overload

Noise after poor gain

Noise reduced noise!
(lots of musical noise)

Reducing musical noise

- Thresholding

$$
H^{\prime}(f)=\left\{\begin{array}{cc}
H(f) \text { if } & \|X(f)\|>N(f) \\
0 & \text { otherwise }
\end{array}\right.
$$

- The gain curve is steeper on the negative side this removes effects in that area
- Scale the noise spectrum
$\mathrm{N}(\mathrm{f})=\alpha \mathrm{N}(\mathrm{f}), \alpha>1$
- (Linearly) increases gain in the new location
- Smoothing
e.g. $H(\mathrm{t}, \mathrm{f})=.5 H(\mathrm{t}, \mathrm{f})+.5 H(\mathrm{t}-1, \mathrm{f})$
- Or some other time averaging
- Reduces sudden tone on/offs
- But adds a slight echo

Reducing musical noise

- Thresholding : Moves the operating point to a less sloped region of the curve
- Oversubtraction: Increases the slope in these regions for better differential gain
- Smoothing: $H(t, f)=0.5 H(t, f)+0.5 H(t-1, f)$
- Adds an echo

Audio restoration II

 Click/glitch/gap removal- Two step process
- Detection of abnormality
- Replacement of corrupted data
- Detection stuff
- Autoregressive modeling for abnormality detection
- Data replacement
- Interpolation of missing data using autoregressive interpolation

Starting signal

- Can you spot the glitches?

Autoregressive (AR) models

- Predicting the next sample of a series using a weighted sum of the past samples

$$
x(t)=\sum_{i=1}^{N} a(i) x(t-i)+e(t)
$$

The weights a can be estimated upon presentation of a training input

- Least squares solution of above equation
- Fancier/faster estimators, e.g. aryule in MATLAB

Matrix formulation

- Scalar version

$$
x(t)=\sum_{i=1}^{N} a(i) x(t-i)+e(t)
$$

- Matrix version

$$
\mathbf{x}=\left[\begin{array}{ccccc}
a_{N-1} & \cdots & a_{0} & 0 & 0 \\
0 & \ddots & \cdots & a_{0} & 0 \\
0 & 0 & \ddots & \cdots & a_{0} \\
0 & 0 & 0 & \ddots & \cdots \\
0 & 0 & 0 & 0 & a_{N-1}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{M}
\end{array}\right]
$$

Measuring prediction error

- As Convolution

$$
\mathbf{e}=\mathbf{x}-\mathbf{a}^{*} \mathbf{x}
$$

- As matrix operation

$$
\mathbf{e}=\left[\begin{array}{ccccccccc}
-a_{N} & \cdots & -a_{1} & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & -a_{N} & \cdots & -a_{1} & 1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \\
\cdots & 0 & 0 & -a_{N} & \cdots & -a_{1} & 1 & 0 & 0 \\
0 & \cdots & 0 & 0 & -a_{N} & \cdots & -a_{1} & 1 & 0 \\
0 & 0 & \cdots & 0 & 0 & -a_{N} & \cdots & -a_{1} & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
\vdots \\
x_{M}
\end{array}\right]
$$

Overall error variance: $\mathbf{e}^{T} \mathbf{e}$

Measuring prediction error

- Convolution

$$
\mathbf{e}=\mathbf{x}-\mathbf{a}^{*} \mathbf{x}
$$

- Solution for a must minimize error variance: $\mathbf{e}^{T} \mathbf{e}$
- While maintaining the Toeplitz structure of a!
- A variety of solution techniques are available
- The most popular one is the "Levinson Durbin" algorithm

Discovering abnormalities

- The AR models smooth and predictable things, e.g. music, speech, etc
- Clicks, gaps, glitches, noise are not very predictable (at least in the sense of a meaningful signal)
- Methodology
- Learn an AR model on your signal type
- Measure prediction error on the noisy data
- Abnormalities appear as spikes in error

Glitch detection example

- Glitches are clearly detected as spikes in the prediction error

- Why? Glitches are unpredictable!

Now what?

- Detecting the glitches is only one step!
- How to we remove them?
- Information is lost!
- We need to make up data!
- This is an interpolation problem
- Filling in missing data
- Hints provided from
 neighboring samples

Interpolation formulation

- Detection of spikes defines areas of missing samples
- $\pm N$ samples from glitch point
- Group samples to known and unknown sets according to spike detection positions
- $\mathbf{x}_{k}=\mathbf{K} \cdot \mathbf{x}, \mathbf{x}_{u}=\mathbf{U} \cdot \mathbf{x}$
- $\mathbf{x}=(\mathbf{U} \cdot \mathbf{x}+\mathbf{K} \cdot \mathbf{x})$
- Transforms \mathbf{U} and \mathbf{K} maintain only specific data (= unit matrices with appropriate missing rows)

Picking sets of samples

$$
\begin{aligned}
& \mathbf{x}=\mathbf{U} \mathbf{x}+\mathbf{K x}= \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
x_{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
x_{1} \\
0 \\
0 \\
x_{4}
\end{array}\right]}
\end{aligned}
$$

Making up the data

- AR model error is
$\square \mathbf{e}=\mathbf{A} \cdot \mathbf{x}=\mathbf{A} \cdot\left(\mathbf{U} \cdot \mathbf{x}_{u}+\right.$ $\mathbf{K} \cdot \mathbf{x}_{k}$)
- We can solve for \mathbf{x}_{u} - Ideally \mathbf{e} is 0
- Hence zero error estimate for missing data is:
- $\mathbf{A} \cdot \mathbf{U} \cdot \mathbf{x}_{u}=-\mathbf{A} \cdot \mathbf{K} \cdot \mathbf{x}_{k}$
- $\mathbf{x}_{u}=-(\mathbf{A} \cdot \mathbf{U})^{+} \cdot \mathbf{A} \cdot \mathbf{K} \cdot \mathbf{x}_{k}$

- $(\mathbf{A} \cdot \mathbf{U})^{+}$is pseudoinverse

Reconstruction zoom in

Recovered signal

Restoration recap

- Constant noise removal
- Spectral subtraction/Wiener filters
- Musical noise and tricks to avoid it
- Click/glitch/gap detection
- Music/speech is very predictable
- AR models to detect abnormalities
- Missing sample interpolation
- AR model for creating missing data

