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Summary So Far 

  PLCA: 
  The basic mixture-multinomial model for audio (and other 

data) 

  Sparse Decomposition: 
  The notion of sparsity and how it can be imposed on 

learning 

  Sparse Overcomplete Decomposition: 
  The notion of overcomplete basis set 

  Example-based representations 
  Using the training data itself as our representation 
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Next up: Shift/Transform Invariance 

  Sometimes the “typical” structures that 
compose a sound are wider than one 
spectral frame 
  E.g. in the above example we note multiple 

examples of a pattern that spans several frames 
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Next up: Shift/Transform Invariance 

  Sometimes the “typical” structures that compose a 
sound are wider than one spectral frame 
  E.g. in the above example we note multiple examples of a 

pattern that spans several frames 
  Multiframe patterns may also be local in frequency 

  E.g. the two green patches are similar only in the region 
enclosed by the blue box 
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Patches are more representative than frames 

  Four bars from a music example 
  The spectral patterns are actually patches 

  Not all frequencies fall off in time at the same rate 
  The basic unit is a spectral patch, not a spectrum 
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Images: Patches often form the image 

  A typical image component may be viewed as a 
patch 
  The alien invaders 
  Face like patches 
  A car like patch  

  overlaid on itself many times.. 
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Shift-invariant modelling 
  A shift-invariant model permits individual 

bases to be patches 
  Each patch composes the entire image. 
  The data is a sum of the compositions from 

individual patches 
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Shift Invariance in one Dimension 

  Our bases are now “patches” 
  Typical spectro-temporal structures 

  The urns now represent patches 
  Each draw results in a (t,f) pair, rather than only f 
  Also associated with each urn:  A shift probability distribution P(T|z) 

  The overall drawing process is slightly more complex 
  Repeat the following process: 

  Select an urn Z with a probability P(Z) 
  Draw a value T from P(t|Z) 
  Draw (t,f) pair from the urn 
  Add to the histogram at (t+T, f) 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 
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Shift Invariance in one Dimension 

  The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z 

  Every location in the spectrogram has 
contributions from every urn patch 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 
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Shift Invariance in one Dimension 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 

  The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z 

  Every location in the spectrogram has 
contributions from every urn patch 
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Shift Invariance in one Dimension 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 

  The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z 

  Every location in the spectrogram has 
contributions from every urn patch 
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Probability of  drawing a particular (t,f) combination 

  The parameters of the model: 
  P(t,f|z) – the urns 
  P(T|z) – the urn-specific shift distribution 
  P(z) – probability of selecting an urn 

  The ways in which (t,f) can be drawn: 
  Select any urn z 
  Draw T from the urn-specific shift distribution 
  Draw (t-T,f) from the urn 

  The actual probability sums this over all shifts and urns 
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Learning the Model 
  The parameters of the model are learned analogously to the manner in 

which mixture multinomials are learned 

  Given observation of (t,f), it we knew which urn it came from and the shift, 
we could compute all probabilities by counting! 
  If shift is T and urn is Z 

  Count(Z) = Count(Z) + 1 
  For shift probability: Count(T|Z) = Count(T|Z)+1 
  For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1 

 Since the value drawn from the urn was t-T,f 

  After all observations are counted: 
  Normalize Count(Z) to get P(Z) 
  Normalize Count(T|Z) to get P(T|Z) 
  Normalize Count(t,f|Z) to get P(t,f|Z) 

  Problem: When learning the urns and shift distributions from a histogram, 
the urn (Z) and shift (T) for any draw of (t,f) is not known 
  These are unseen variables 
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Learning the Model 
  Urn Z and shift T are unknown 

  So (t,f) contributes partial counts to every value of T and Z 
  Contributions are proportional to the a posteriori probability of Z and T,Z 

  Each observation of (t,f)  
   P(z|t,f) to the count of the total number of draws from the urn 

  Count(Z) = Count(Z) + P(z | t,f) 

  P(z|t,f)P(T | z,t,f) to the count of the shift T for the shift distribution 
  Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f) 

  P(z|t,f)P(T | z,t,f) to the count of (t-T, f) for the urn 
  Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,f)P(T | z,t,f) 
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Shift invariant model: Update Rules 
  Given data (spectrogram) S(t,f) 
  Initialize P(Z), P(T|Z), P(t,f | Z) 
  Iterate 
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Shift-invariance in one time: example 
  An Example: Two distinct sounds occuring with different repetition rates 

within a signal 
  Modelled as being composed from two time-frequency bases 
  NOTE: Width of patches must be specified 

INPUT SPECTROGRAM

Discovered time-frequency  
“patch” bases (urns)

Contribution of individual bases to the recording
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Shift Invariance in Two Dimensions 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 

  We now have urn-specific shifts along both T and F 
  The Drawing Process 

  Select an urn Z with a probability P(Z) 
  Draw SHIFT values (T,F) from Ps(T,F|Z) 
  Draw (t,f) pair from the urn 
  Add to the histogram at (t+T, f+F) 

  This is a two-dimensional shift-invariant model 
  We have shifts in both time and frequency 

  Or, more generically, along both axes 
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Learning the Model 
  Learning is analogous to the 1-D case 

  Given observation of (t,f), it we knew which urn it came from and 
the shift, we could compute all probabilities by counting! 
  If shift is T,F and urn is Z 

  Count(Z) = Count(Z) + 1 
  For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1 
  For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1 

 Since the value drawn from the urn was t-T,f-F 

  After all observations are counted: 
  Normalize Count(Z) to get P(Z) 
  Normalize ShiftCount(T,F|Z) to get Ps(T,F|Z) 
  Normalize Count(t,f|Z) to get P(t,f|Z) 

  Problem: Shift and Urn are unknown 
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Learning the Model 
  Urn Z and shift T,F are unknown 

  So (t,f) contributes partial counts to every value of T,F and Z 
  Contributions are proportional to the a posteriori probability of Z and T,F|Z 

  Each observation of (t,f)  
   P(z|t,f) to the count of the total number of draws from the urn 

  Count(Z) = Count(Z) + P(z | t,f) 

  P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution 
  ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,f)P(T | Z, t, f) 

  P(T | z,t,f) to the count of (t-T, f-F) for the urn 
  Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f) 
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Shift invariant model: Update Rules 
  Given data (spectrogram) S(t,f) 
  Initialize P(Z), Ps(T,F|Z), P(t,f | Z) 
  Iterate 
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2D Shift Invariance: The problem of  
indeterminacy 
  P(t,f|Z) and Ps(T,F|Z) are analogous 

  Difficult to specify which will be the “urn” and which the 
“shift” 

  Additional constraints required to ensure that one of 
them is clearly the shift and the other the urn 

  Typical solution: Enforce sparsity on Ps(T,F|Z)  
  The patch represented by the urn occurs only in a few 

locations in the data 
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Example: 2-D shift invariance 

  Only one “patch” used to model the image (i.e. a single urn) 
  The learnt urn is an “average” face, the learned shifts show the locations 

of faces 
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Example: 2-D shift invarince 

  The original figure has multiple handwritten 
renderings of three characters 
  In different colours 

  The algorithm learns the three characters and 
identifies their locations in the figure 

Input data 
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Shift-Invariant Decomposition – Uses 
  Signal separation 

  The arithmetic is the same as before 
  Learn shift-invariant bases for each source 
  Use these to separate signals 

  Dereverberation 
  The spectrogram of the reverberant signal 

is simply the sum several shifted copies of 
the spectrogram of the original signal 
  1-D shift invariance 

  Image Deblurring 
  The blurred image is the sum of several 

shifted copies of the clean image 
  2-D shift invariance 
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Beyond shift-invariance: transform 
invariance 

  The draws from the urns may not only be shifted, but 
also transformed 

  The arithmetic remains very similar to the shift-
invariant model 
  We must now impose one of an enumerated set of 

transforms to (t,f), after shifting them by (T,F) 
  In the estimation, the precise transform applied is an 

unseen variable 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 



Transform invariance: Generation 
  The set of transforms is enumerable 

  E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation 
left by 90 degrees, rotation by 180 degrees, reflection 

  Transformations can be chosen by draws from a distribution over 
transforms 
  E.g. P(rotation by 90 degrees) = 0.2.. 
  Distributions are URN SPECIFIC 

  The drawing process: 
  Select an urn Z (patch) 
  Select a shift (T,F) from Ps(T, F| Z) 
  Select a transform from P(txfm | Z) 
  Select a (t,f) pair from P(t,f | Z) 
  Transform (t,f) to txfm(t,f) 
  Increment the histogram at txfm(t,f) + (T,F) 
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Transform invariance 
  The learning algorithm must now estimate 

 P(Z) – probability of selecting urn/patch in any draw 
 P(t,f|Z) – the urns / patches 
 P(txfm | Z) – the urn specific distribution over transforms 
 Ps(T,F|Z) – the urn-specific shift distribution 

  Essentially determines what the basic shapes are, where they occur in 
the data and how they are transformed 

  The mathematics for learning are similar to the maths for shift 
invariance 
 With the addition that each instance of a draw must be fractured into urns, shifts 

AND transforms 

  Details of learning are left as an exercise 
 Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU 
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Example: Transform Invariance 

  Top left: Original figure 
  Bottom left – the two bases discovered 
  Bottom right –  

  Left panel, positions of “a” 
  Right panel, positions of “l” 

  Top right: estimated distribution underlying original figure 



Transform invariance: model limitations 
and extensions 
  The current model only allows one transform to be 

applied at any draw 
  E.g. a basis may be rotated or scaled, but not scaled and 

rotated 
  An obvious extension is to permit combinations of 

transformations 
  Model must be extended to draw the combination from 

some distribution 
  Data dimensionality: All examples so far assume 

only two dimensions (e.g. in spectrogram or image) 
  The models are trivially extended to higher-

dimensional data 
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Transform Invariance: Uses and 
Limitations 

  Not very useful to analyze audio 
  May be used to analyze images and video 

  Main restriction: Computational complexity 
  Requires unreasonable amounts of memory and 

CPU 
  Efficient implementation an open issue 



11-755 MLSP: Bhiksha Raj 

Example: Higher dimensional data 
  Video example 



11-755 MLSP: Bhiksha Raj 

Summary 
  Shift invariance 

  Multinomial bases can be “patches” 
  Representing time-frequency events in audio or other 

larger patterns in images 

  Transform invariance 
  The patches may further be transformed to 

compose an image 
  Not useful for audio 
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De-noising Audio Signals 



De-noising 

  Multifaceted problem 
  Removal of unwanted artifacts 
  Clicks, hiss, warps, interfering sounds, … 

  For now 
  Constant noise removal 

  Wiener filters, spectral/power subtraction 
  Click detection and restoration 

  AR models for abnormality detection 
  AR models for making up missing data 



The problem with audio recordings 
  Recordings are inherently messy!! 
  Recordings capture room resonances, air conditioners, street 

ambience, etc … 
  Resulting in low frequency rumbling sounds (the signature quality of a low-

budget recording!) 

  Magnetic recording media get demagnetized 
  Results in high frequency hissing sounds (old tapes) 

  Mechanical recording media are littered with debris 
  Results in clicking and crackling sounds (ancient vinyl disks, optical film 

soundtracks) 

  Digital media feature sample drop-outs 
  Results in gaps in audio which when short are perceived as clicks, otherwise 

it is an audible gap (damaged CDs, poor internet streaming, bad bluetooth 
headsets) 



Restoration of  audio 
  People don’t like noisy recordings!! 

  There is a need for audio restoration work 

  Early restoration work was an art form 
  Experienced engineers would design filters to best cover defects, cut 

and splice tapes to remove unwanted parts, etc. 
  Results were marginally acceptable 

  Recent restoration work is a science 
  Extensive use of signal processing and machine learning 
  Results are quite impressive! 



Audio Restoration I 
Constant noise removal 
  Noise is often inherent in a recording or 

slowly creeps in the recording media 

  Hiss, rumbling, ambience, … 
  Approach 

  Figure out noise characteristics 
  Spectral processing to make up for noise 



Describing additive noise 

  Assume additive noise 
 x(t) = s(t) + n(t)  

  In the frequency domain 

  Find the spots where we have 
only isolated noise 
  Average them and get noise 

spectrum 

Sections of isolated noise 
(or at least no useful signal) 



Spectral subtraction methods 
  We can now (perhaps) 

estimate the clean sound 
  We know the characteristics of 

the noise (as described from the 
spectrum µ(f)) 

  But, we will assume: 
  The noise source is constant 

  If the noise spectrum 
changes µ(f) is not a valid 
noise description anymore 

  The noise is additive 
Sections of isolated noise 
(or at least no useful signal) 



Spectral subtraction 
  Magnitude subtraction 

  Subtract the noise 
magnitude spectrum from 
the recording’s 

  We can then modulate the 
magnitude of the original 
input to reconstruct 

  Sounds pretty good … 
Original input 

After spectral subtraction 
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Estimating the noise spectrum 

  Noise is usually not stationary 
  Although the rate of change with time may be slow 

  A running estimate of noise is required 
  Update noise estimates at every frame of the audio 

  The exact location of “noise-only” segments is never 
known 
  For speech signals we use an important characteristic of speech to 

discover speech segments (and, consequently noise-only 
segments) in the audio 

  The onset of speech is always indicated by a sudden increase in 
the energy level in the signal 



A running estimate of  noise 
  The initial T frames in any recording are assumed to be 

free of the speech signal 
  Typically T = 10 

  The noise estimate N(T,f) is estimated as 
      N(T,f) = (1/T) Σt |X(t,f)| 

  Subsequent estimates are obtained as follows 
  Assumption: The magnitude spectrum increases suddenly in 

value at the onset of speech 
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A running estimate of  noise 

•  p is an exponent term that is typically set to either 2 or 1 
o  p = 2 : power spectrum; p = 1 : magnitude spectrum 

•  λ is a noise update factor 
o  Typically set in the range 0.1 – 0.5 
o  Accounts for time-varying noise 

•  β is a thresholding term 
o  A typical value of β is 5.0 
o  If the signal energy jumps by a factor of β, speech onset has 

occurred 

o  Other more complex rules may be applied to detect speech offset 



Cancelling the Noise 

  Simple Magnitude Subtraction 
  |S(t,f)| = |X(t,f)| - |N(t,f)| 

  Power subtraction 
  |S(t,f)| 2 = |X(t,f)| 2 - |N(t,f)|2 

  Filtering methods: S(t,f) = H(t,f)X(t,f)  
  Weiner Filtering: build an optimal filter to remove the 

estimated noise 
  Maximum-likelihood estimation.. 
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The Filter Functions 
  We have a source plus noise spectrum 

  The desired output is some function of the input 
and the noise spectrum 

  Let’s make it a “gain function” 

  For spectral subtraction the gain function is: 



Filters for denoising 

  Magnitude subtraction: 

  Power subtraction: 

  Wiener filter: 

  Maximum likelihood: 



Filter function comparison 



Examples of  various filter functions 

Original 

Magnitude 

subtraction 

Power 

subtraction 

Wiener 

filter 

Maximum 

likelihood 



“Musical noise” 
  What was that weirdness with 

the Wiener filter??? 
  An artifact called musical noise 
  The other approaches had it too 

  Takes place when the signal to 
noise ratio is small 
  Ends up on the steep part of the 

gain curve 
 Small fluctuations are then 

magnified 
  Results in complex or negative 

gain 
 An awkward situation! 

  The result is sinusoids popping 
in and out 
  Hence the tonal overload Noise reduced noise! 

(lots of musical noise) 



Reducing musical noise 
  Thresholding 

  The gain curve is steeper on the negative side this 
removes effects in that area 

  Scale the noise spectrum 
  N( f ) = α  N(f), α > 1 
  (Linearly) increases gain in the new location 

  Smoothing 
 e.g. H(t,f) = .5H(t,f) + .5H (t-1,f) 
  Or some other time averaging 
  Reduces sudden tone on/offs 
  But adds a slight echo 

Wiener filter 

With thresholding 

With thresholding & smoothing 
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Reducing musical noise 

  Thresholding : Moves the operating point to a less sloped region 
of the curve 

  Oversubtraction: Increases the slope in these regions for better 
differential gain 

  Smoothing: H(t,f) = 0.5H(t,f) + 0.5H(t-1,f) 
  Adds an echo 

Wiener filter 

With thresholding and oversub 

With thresholding, oversub, 
         and smoothing 



Audio restoration II 
Click/glitch/gap removal 

  Two step process 
  Detection of abnormality 
  Replacement of corrupted data 

  Detection stuff 
  Autoregressive modeling for 

abnormality detection 
  Data replacement 

  Interpolation of missing data using 
autoregressive interpolation 



Starting signal 

  Can you spot the glitches? 



Autoregressive (AR) models 

  Predicting the next sample of a series using a 
weighted sum of the past samples 

  The weights a can be estimated upon 
presentation of a training input 
  Least squares solution of above equation 
  Fancier/faster estimators, e.g. aryule in MATLAB 



Matrix formulation 

  Scalar version 

  Matrix version 



Measuring prediction error 

  As Convolution 
 e = x - a * x 

  As matrix operation 

  Overall error variance: eTe 



Measuring prediction error 

  Convolution 
 e = x - a * x 

  Solution for a must minimize error variance: 
eTe
  While maintaining the Toeplitz structure of a! 

  A variety of solution techniques are available 
  The most popular one is the “Levinson Durbin” 

algorithm 



Discovering abnormalities 

  The AR models smooth and predictable 
things, e.g. music, speech, etc 

  Clicks, gaps, glitches, noise are not very 
predictable (at least in the sense of a 
meaningful signal) 

  Methodology 
  Learn an AR model on your signal type 
  Measure prediction error on the noisy data 
  Abnormalities appear as spikes in error 



Glitch detection example 

  Glitches are clearly detected as spikes in 
the prediction error 

  Why?  Glitches are unpredictable! 



Now what? 

  Detecting the glitches is 
only one step! 

  How to we remove 
them? 

  Information is lost! 
  We need to make up data! 

  This is an interpolation 
problem 
  Filling in missing data 
  Hints provided from 

neighboring samples 



Interpolation formulation 

xk

xu

  Detection of spikes defines 
areas of missing samples 
  ± N samples from glitch point 

  Group samples to known and 
unknown sets according to 
spike detection positions 
  xk = K·x, xu = U·x
  x = (U·x + K·x) 
  Transforms U and K maintain only 

specific data ( = unit matrices with 
appropriate missing rows) 



Picking sets of  samples 



Making up the data 

  AR model error is 
  e = A·x = A·(U·xu + 
K·xk)

  We can solve for xu 
  Ideally e is 0 

  Hence zero error 
estimate for missing 
data is:
  A·U·xu = -A·K·xk
  xu = -(A·U)+ ·A·K·xk 
  (A·U)+  is pseudo-

inverse 

xk

xu



Reconstruction zoom in 

Next  
glitch 

Interpolation 
result 

Reconstruction area 

Actual 
data 

Distorted 
signal 

Recovered 
signal 



Restoration recap 

  Constant noise removal 
  Spectral subtraction/Wiener filters 
  Musical noise and tricks to avoid it 

  Click/glitch/gap detection 
  Music/speech is very predictable 
  AR models to detect abnormalities 

  Missing sample interpolation 
  AR model for creating missing data 


