
Music RecognitionMusic Recognition
(using computer vision!)

Rahul Sukthankar
Intel Labs Pittsburgh &

Carnegie Mellon

Intel Labs

Collaborators: Y. Ke, D. Hoeim, L. Yang



RecognitionRecognition

• Let’s agree on some terminologyLet s agree on some terminology
– object detection
– recognition – instance vs. categoryg g y
– localization
– classification vs. retrieval

• Examples of such tasks in vision and audio
• Key research challenges for each task
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Popular Vision TechniquesPopular Vision Techniques
• Recent successes in computer visionp

– Windowed object detectors
– Local features for object recognition (e.g., SIFT)

Boosted classifiers (e g Viola Jones face detector)– Boosted classifiers (e.g., Viola-Jones face detector)
– Sub-image retrieval
– RANSAC geometric verification
– Structure from motion
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Computer Vision for Audio?!Computer Vision for Audio?!
• Recent successes in computer vision in audio domainp

– Windowed object detectors sound obj det, music vs sound
– Local feature object recognition MusicID, sound object detect

Boosted classifiers MusicID sound object detect– Boosted classifiers MusicID, sound object detect
– Sub-image retrieval MusicID
– RANSAC geometric verification MusicID
– Structure from motion affine structure from sound

[Thrun, NIPS 2005]

• Claim: many vision ideas map naturally to audio domain
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OutlineOutline

• Sound object detectionSound object detection
(localizing a known sound in audio stream)

• Music identification
(match audio snippet against large DB of songs)(match audio snippet against large DB of songs)
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Sound Object Detection in MoviesSound Object Detection in Movies

• Applications of sound object detection
– “Tell me if you hear a gunshot.” (monitoring)
– “Fast forward to the swordfight” (search and retrieval)

• Computer vision analogy: object detection/localization in imagesp gy j g
– Learn classifier from instances of the object
– Scan windowed classifier over all possible locations 

…

Clip 1

Clip 
Classifier

Audio stream Clip N Classify each clip as 
object or non-object

Return locations of 
detected sound object
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Sound Object Detection: Clip ClassifierSound Object Detection: Clip Classifier

• Feature extraction

• Weak classifier – small decision trees on features

138 Features

Weak classifier small decision trees on features
Decision nodes

Leaf 
Nodes

• Learn classifier cascade using Adaboost                                       …
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Sound Object Detection: ResultsSound Object Detection: Results
stage 1 stage 2 stage 3

pos neg pos neg pos neg
Best 

Performance

pos neg pos neg pos neg

meow 0.0% 1.4% 0.0% 1.2% 2.2% 0.8%

phone 0.0% 0.4% 4.3% 0.1% 5.9% 0.0%

car horn 0.0% 3.9% 0.6% 2.2% 3.6% 1.3%

door bell 1 4% 2 1% 2 1% 0 4% 6 3% 0 1%door bell 1.4% 2.1% 2.1% 0.4% 6.3% 0.1%

swords 6.1% 1.3% 6.7% 0.1% 6.7% 0.0%

scream 0.3% 5.5% 2.7% 1.4% 5.3% 1.1%

dog bark 0.7% 1.0% 6.0% 0.3% 7.7% 0.2%

W t

laser gun 0.0% 6.8% 4.4% 5.1% 6.7% 0.9%

explosion 4.1% 5.2% 7.5% 1.5% 12.0% 0.5%

light 
saber 4.8% 6.8% 9.7% 1.0% 13.9% 0.2%

h t 8 1% 6 1% 12 5% 2 3% 14 5% 1 1%Worst
Performance

gunshot 8.1% 6.1% 12.5% 2.3% 14.5% 1.1%

close 
door 7.9% 7.8% 14.5% 4.8% 17.6% 2.3%

male 
laugh 4.3% 14.7% 9.5% 9.7% 13.3% 7.0%
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average 2.9% 4.4% 6.0% 2.2% 8.5% 1.1%
[Hoiem, Ke, Sukthankar, 2005]



Music IdentificationMusic Identification
Gloria EstefanGloria Estefan
Mi Tierra
Click to buy
You may also like
the following…
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Music Identification: ChallengesMusic Identification: Challenges
• Query sample y p

– is small (can’t match complete song signatures)
– can be taken from anywhere in the song
– is typically noisy distorted and occluded– is typically noisy, distorted and occluded

• Database
– contains large numbers of songs of varying genres
– can be incrementally updated with new songs

• Performance:
– demand high accuracy (in both precision and recall)– demand high accuracy (in both precision and recall)
– interactive query times
– compact storage requirements
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Live demoLive demo
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Similar Vision Task – Sub-Image RetrievalSimilar Vision Task Sub Image Retrieval

5 R t i l
Query Result

3. Feature Extraction

4. Search

5. Retrieval

6. Robust verification

1. Feature Extraction

Originals

D t b f t &

2. Index

Database of compact & 
robust representations
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Keypoints for Image MatchingKeypoints for Image Matching

SIFT images from [Lowe 1999]
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SIFT images from [Lowe 1999]



MusicID AlgorithmMusicID Algorithm
• Transform audio into spectrogram (2D image)
• Compute distinctive local descriptors (learned by pairwise boosting)
• Retrieve candidates using efficient index (near-neighbor in high-dim)
• Identify song using robust alignment (RANSAC + noise model)Identify song using robust alignment (RANSAC + noise model)
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MusicID AlgorithmMusicID Algorithm
• Transform audio into spectrogram (2D image)
• Compute distinctive local descriptors (learned by pairwise boosting)
• Retrieve candidates using efficient index (near-neighbor in high-dim)
• Identify song using robust alignment (RANSAC + noise model)Identify song using robust alignment (RANSAC + noise model)
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Name That TuneName That Tune

Noisy recording

John Mellencamp – Suzanne and the Jewels

Waterworld soundtrack
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Name That Tune: Raw AudioName That Tune: Raw Audio

Query
(Mellencamp) ar

ity(Mellencamp)

ci
al

 s
im

ila

Mellencamp

S
up

er
fi

Waterworld
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Spectrogram RepresentationSpectrogram Representation

Raw audio • 2D time-frequency imageRaw audio
• Short-term Fourier Transform 

on overlapping windows of 
372ms at 11.6ms intervals

• Intensity shows power content 
in 33 logarithmically-spaced 
frequency bands

cy
 (H

z)

Spectrogram • Spectrograms are popular and 
have demonstrated good 
performance in several audio 

Time (frames)

Fr
eq

ue
nc processing applications
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Name That Tune: SpectrogramName That Tune: Spectrogram

Query
(Mellencamp)(Mellencamp)

Mellencamp

Waterworld
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Spectrograms (frequency vs. time)
Waterworld



MusicID AlgorithmMusicID Algorithm
• Transform audio into spectrogram (2D image)
• Compute distinctive local descriptors (learned by pairwise boosting)
• Retrieve candidates using efficient index (near-neighbor in high-dim)
• Identify song using robust alignment (RANSAC + noise model)Identify song using robust alignment (RANSAC + noise model)

Correct match
is close in

Hamming dist

100100010001...

Hamming dist

100100110001...

32-bit descriptor
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Motivation: [Haitsma & Kalker]Motivation: [Haitsma & Kalker]

dTdF
Ed 2

• At every frame & frequency band, compute:

• Threshold at 0 to get a 32-bit descriptor at every time frame
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[Haitsma & Kalker] Descriptor[Haitsma & Kalker] Descriptor

00000010100011000

dTdF
Ed 2

• At every frame & frequency band, compute:

00000010100011000…

• Threshold at 0 to get a 32-bit descriptor at every time frame

[Haitsma & Kalker]’s choice of corner filter was arbitrary
C ld b ild h b tt d i t i hi l i ?

-+
?
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Could we build much better descriptors using machine learning?+- ?



Boosting a Better DescriptorBoosting a Better Descriptor

Viola-Jones 
features!

+

(popular for 
face detection)

Ed2

33 bands, 
log scale+-

-+
=

dTdF
Ed

Time (in frames)

A descriptor is composed from the outputs of the chosen set of binary filters.
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p p p y
Our goal is to pick a good set of filters



What is a Filter?What is a Filter?
• Generates one bit from box sums/differences
• Intuition: filters should generate the same output for similar snippets
• Parameters: filter type, corner locations (in time & freq.), threshold
• If (sum >= threshold) then filter output = 1, else filter output = 0
• One filter is weak indicator, so we use several independent ones
• How to select good filters from a pool of 30,000?  Boosting

-+ -+
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What is a Filter?What is a Filter?
• Generates one bit from box sums/differences
• Intuition: filters should generate the same output for similar snippets
• Parameters: filter type, corner locations (in time & freq.), threshold
• If (sum >= threshold) then filter output = 1, else filter output = 0
• One filter is weak indicator, so we use several independent ones
• How to select good filters from a pool of 30,000?  Boosting

-+ -+
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Candidate FiltersCandidate Filters

• Learning parameters: time width, bandLearning parameters: time width, band 
width, start band, filter type, threshold.

• Times: 1 2 4 8 frames up to 1 second• Times: 1, 2, 4, 8,… frames, up to 1 second
• Filter types:

+-
-+

+-
-+

-+ -+-
+

-
+

++

++ - ++ ++ -
+

+
-
+

+

+

+
-

• ~ 30,000 filters total to choose from
+++

Goal: select best 32-element subset of filters
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Generating Training DataGenerating Training Data
Original Song Degraded Song

S th ti di t ti dSynthetic distortions and 
aligned noisy recordings

extract 
frames extract dsframes e ac

frames

33
 b

an
d

33
 b

an
ds
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Generating Training DataGenerating Training Data
Original Song Degraded Song

S th ti di t ti d

extract 
frames extract 

Synthetic distortions and 
aligned noisy recordings

frames e ac
frames

Filter 1

Filter 2
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Generating Training DataGenerating Training Data
Original Song Degraded Song

S th ti di t ti d

extract 
frames extract 

Synthetic distortions and 
aligned noisy recordings

frames e ac
frames

Filter 1

Filter 2
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Choosing Filters with AdaboostChoosing Filters with Adaboost
Training Data

Examples
(pos. and neg. pairs)

Weights

Update weights after 
h it ti Gi

Choose a filter that minimizes 
weighted classification error

each iteration.  Give 
misclassified examples 
more weight in the next 
iteration.

Filters weighted classification error.
(A filter that minimally splits 
positive pairs and maximally 

splits negative pairs.) Filter #1

Filters

Filter #2

…
Filter #32

Rahul Sukthankar 11-761 Guest LectureIntel Labs

Filter #32



Why Boosting?Why Boosting?

• Benefits:Benefits:
– Chooses a set of filters that works well together

Successive filters minimize bound on error– Successive filters minimize bound on error

– Selected filters tend to be independent

• What’s new (our contribution):
– Trained on pairs of positive & negative exemplars.

– Filter output used as descriptor, not as a classifier
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Pairwise BoostingPairwise Boosting
Observations
• Standard Adaboost doesn’t work 

on this multi-class problem
• Two snippets match if they fall pp y

on same side of the threshold
• Asymmetry: No weak classifier 

can do better than chance on 
non-matching pairs – can only 
learn from the matching pairs

• Median response is optimal p p
threshold for non-matching pairs 
– greatly reduces training time

Rahul Sukthankar 11-761 Guest LectureIntel Labs



Name That Tune: Our DescriptorsName That Tune: Our Descriptors

100100010001
Query

(Mellencamp) 100100010001...

100100110001...

Correct match
is close in
Hamming dist

(Mellencamp)

001010101000...

D i t i b t

Mellencamp

Descriptor is robust vs.
• noise & distortion
• band equalization
• sporadic signal dropsWaterworld
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• sporadic signal dropsWaterworld



Descriptor-level Matching ResultsDescriptor level Matching Results

H-K = [Haitsma & Kalker 2002]
H-K Wide = our improvements on H-K
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de ou p o e e ts o
Boosted = our pairwise boosted features (32-bits)



Descriptors vs Distance MetricsDescriptors vs. Distance Metrics
• Alternate view: pose the descriptor learning problem asp p g p

supervised distance metric learning
• Given pairs of similar/dissimilar snippets, can we directly 

l d H i h i illearn a good Hamming space where similar songs are 
near while dissimilar songs are far?
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MusicID AlgorithmMusicID Algorithm
• Transform audio into spectrogram (2D image)
• Compute distinctive local descriptors (learned by pairwise boosting)
• Retrieve candidates using efficient index (near-neighbor in high-dim)
• Identify song using robust alignment (RANSAC + noise model)Identify song using robust alignment (RANSAC + noise model)

• Near-neighbor for similar descriptors in high-dimensions is painful
S b i t i l [MM2004] d l lit iti h hi• Sub-image retrieval [MM2004] used locality-sensitive hashing

• MusicID employs direct hashing with extra probes
– Threshold = 0 needs 1 hash probe
– Threshold = 1 needs 1 + 32 hash probes
– Threshold = 2 needs 1 + 32 + 32*31/2 = 529 probes
– Threshold = 3 needs 1+32+32*31/2+32*31*30/6 = 5489 probes
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Direct Hashing:
R ll C t ti T d ffRecall vs. Computation Tradeoff

• Recall for a snippet with given Hamming threshold
• Threshold = 0 needs 1 hash probe

Threshold = 1 needs 1 + 32 hash probes• Threshold = 1 needs 1 + 32 hash probes
• Threshold = 2 needs 1 + 32 + 32*31/2 = 529 probes
• Threshold = 3 needs 1+32+32*31/2+32*31*30/6 = 5489
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MusicID AlgorithmMusicID Algorithm
• Transform audio into spectrogram (2D image)
• Compute distinctive local descriptors (learned by pairwise boosting)
• Retrieve candidates using efficient index (near-neighbor in high-dim)
• Identify song using robust alignment (RANSAC + noise model)Identify song using robust alignment (RANSAC + noise model)

RANSAC
-Sample minimal set-Sample minimal set
-Generate transform
-Snippet matches “vote”
-Best song wins

Incorporate HMM 
“occlusion” model
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Simple “Occlusion” ModelSimple Occlusion  Model
Music vs. Noise Label

Descriptor Distancep

Bit difference on descriptors
for one snippet

Transition
probabilitypp probability

Independent, non-identically
distributed Bernoulli random variables

66 parameters, trained
easily using EM
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distributed Bernoulli random variables



Music Identification ResultsMusic Identification Results

Test set: ~300 clips played at low volume with significant background noise
Drawn from database with 1862 songs (classical, vocal, rock, pop).
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Random guess accuracy is 1/1862 = 0.05%



MusicID SummaryMusicID Summary
• This system accurately and efficiently identifies music from a 

5-10 second sample taken in noisy conditions
• Our pairwise boosted descriptors outperform traditional ones

G t i ifi ti dd b t t “ l i ”• Geometric verification adds robustness to “occlusions”

Download demo, video,
CVPR d fCVPR paper, source code from
http://www.cs.cmu.edu/~rahuls/
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Application of Music Identification:
Google’s Ambient Audio IdentificationGoogle s Ambient Audio Identification

• Applies and extends audio fingerprinting from MusicID to detect 
current TV channel based on ambient audio in living room

• M. Fink, M. Covell, S. Baluja, “Social and Interactive TV 
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using Ambient-Audio Identification”, EuroITV 2006.



ConclusionConclusion
• Machine learning approaches developed for vision often g pp p

translate nicely to audio tasks (and vice versa).

• Interesting relationships between learning feature 
descriptors and distance metrics

• Download papers, code and video from:
http://www.cs.cmu.edu/~rahuls/
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Related work:
M i S h Cl ifi tiMusic vs. Speech Classification
• Problem: classify clip as either “music” or “speech”y p p
• Analogy: VJ binary classifier using Haar-like features

• N. Casagrande et al., “Frame-level speech/music
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N. Casagrande et al., Frame level speech/music 
discrimination using AdaBoost”, ISMIR 2005



Related work:
St t f S dStructure from Sound
• Problem: localize microphones from sound eventsp
• Analogy: structure from motion with affine camera model

• S. Thrun, “Affine structure from sound”, NIPS 2005
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S. Thrun, Affine structure from sound , NIPS 2005


