Music Recognition (using computer vision!)

Rahul Sukthankar

Intel Labs Pittsburgh & Carnegie Mellon

Collaborators: Y. Ke, D. Hoeim, L. Yang

Carnegie Mellon

Recognition

- Let's agree on some terminology
 - object detection
 - recognition instance vs. category
 - localization
 - classification vs. retrieval
- Examples of such tasks in vision and audio
- Key research challenges for each task

Popular Vision Techniques

- Recent successes in computer vision
 - Windowed object detectors
 - Local features for object recognition (e.g., SIFT)
 - Boosted classifiers (e.g., Viola-Jones face detector)
 - Sub-image retrieval
 - RANSAC geometric verification
 - Structure from motion

Computer Vision for Audio?!

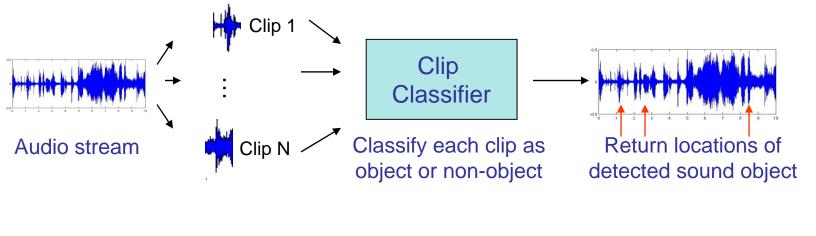
- Recent successes in computer vision in audio domain
 - Windowed object detectors
 Local feature object recognition
 Boosted classifiers
 Sub-image retrieval
 RANSAC geometric verification
 Structure from motion
 Structure from motion
- Claim: many vision ideas map naturally to audio domain

Outline

- Sound object detection (localizing a known sound in audio stream)
- Music identification (match audio snippet against large DB of songs)

Sound Object Detection in Movies

- Applications of sound object detection
 - "Tell me if you hear a gunshot." (monitoring)
 - "Fast forward to the swordfight" (search and retrieval)
- Computer vision analogy: object detection/localization in images
 - Learn classifier from instances of the object
 - Scan windowed classifier over all possible locations

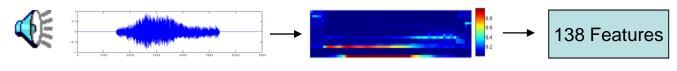


[Hoiem, Ke, Sukthankar, 2005]

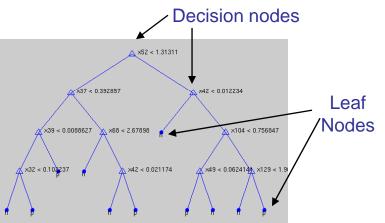
Carnegie Mellon

Sound Object Detection: Clip Classifier

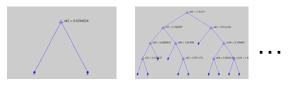
• Feature extraction



• Weak classifier – small decision trees on features



• Learn classifier cascade using Adaboost



[Hoiem, Ke, Sukthankar, 2005]

Carnegie Mellon

11-761 Guest Lecture

Sound Object Detection: Results

		sta	ge 1	stag	e 2	stag	e 3	Car Horn: TP Rate vs. FPs per Hour
		pos	neg	pos	neg	pos	neg	1 stage 1
Best Performance	meow	0.0%	1.4%	0.0%	1.2%	2.2%	0.8%	0.8
	phone	0.0%	0.4%	4.3%	0.1%	5.9%	0.0%	0.6
	car horn	0.0%	3.9%	0.6%	2.2%	3.6%	1.3%	0.4 - [
	door bell	1.4%	2.1%	2.1%	0.4%	6.3%	0.1%	
	swords	6.1%	1.3%	6.7%	0.1%	6.7%	0.0%	0.2 -
	scream	0.3%	5.5%	2.7%	1.4%	5.3%	1.1%	0 50 100 150 200 250
	dog bark	0.7%	1.0%	6.0%	0.3%	7.7%	0.2%	
	laser gun	0.0%	6.8%	4.4%	5.1%	6.7%	0.9%	Explosion: TP Rate vs. FPs per Hour
	explosion	4.1%	5.2%	7.5%	1.5%	12.0%	0.5%	stage 1
	light saber	4.8%	6.8%	9.7%	1.0%	13.9%	0.2%	
	gunshot	8.1%	6.1%	12.5%	2.3%	14.5%	1.1%	0.4 - r ⁻¹ -
	close door	7.9%	7.8%	14.5%	4.8%	17.6%	2.3%	0.2
	male laugh	4.3%	14.7%	9.5%	9.7%	13.3%	7.0%	0 50 100 150 200 250
	average	2.9%	4.4%	6.0%	2.2%	8.5%	1.1%	[Hoiem, Ke, Sukthankar, 2

Intel Labs

Music Identification

Intel Labs

11-761 Guest Lecture

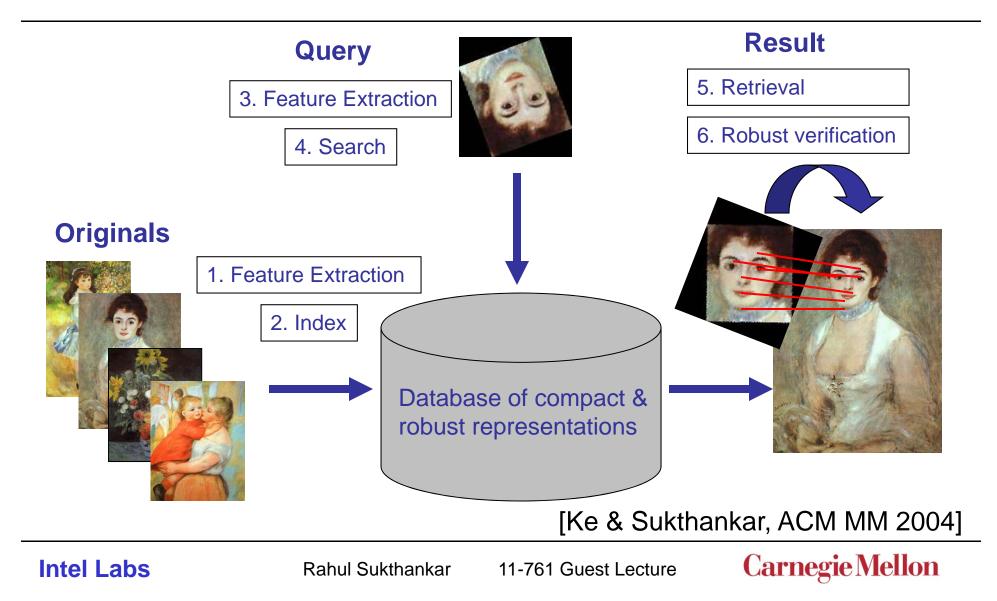
Music Identification: Challenges

- Query sample
 - is small (can't match complete song signatures)
 - can be taken from anywhere in the song
 - is typically noisy, distorted and occluded
- Database
 - contains large numbers of songs of varying genres
 - can be incrementally updated with new songs
- Performance:
 - demand high accuracy (in both precision and recall)
 - interactive query times
 - compact storage requirements

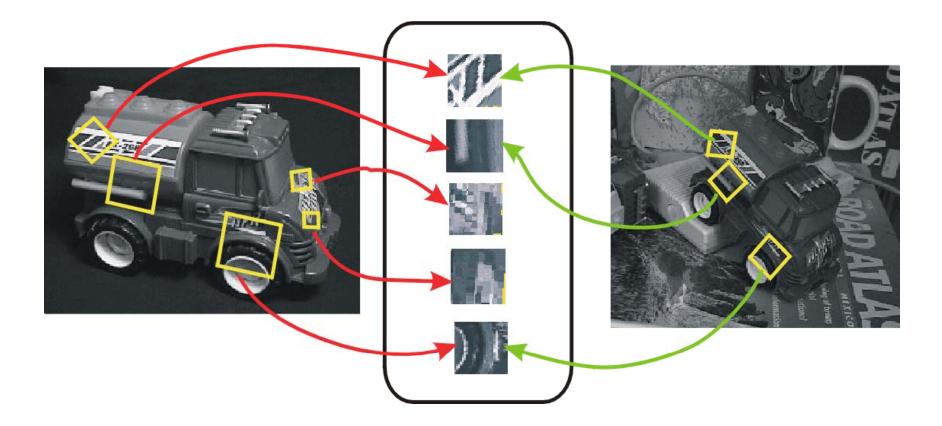
Live demo

🛓 Music Retrieval Demo v1.0	_ 🗆 🛛								
Ready									
5 Seconds Record Playback Load									
810A590B 08 R.E.M. Out of Time Half a World Away									
Signal Analysis	Opininal								
Recording	Original								
the second s									

Similar Vision Task – Sub-Image Retrieval



Keypoints for Image Matching



SIFT images from [Lowe 1999]

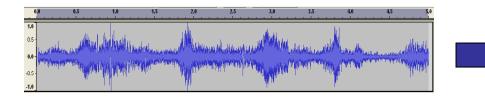
MusicID Algorithm

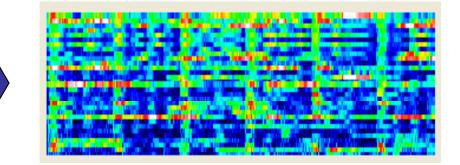
- Transform audio into spectrogram (2D image)
- Compute distinctive local descriptors (learned by pairwise boosting)
- Retrieve candidates using efficient index (near-neighbor in high-dim)
- Identify song using robust alignment (RANSAC + noise model)

[Ke, Hoiem, Sukthankar, CVPR 2005]

MusicID Algorithm

- Transform audio into spectrogram (2D image)
- Compute distinctive local descriptors (learned by pairwise boosting)
- Retrieve candidates using efficient index (near-neighbor in high-dim)
- Identify song using robust alignment (RANSAC + noise model)





[Ke, Hoiem, Sukthankar, CVPR 2005]

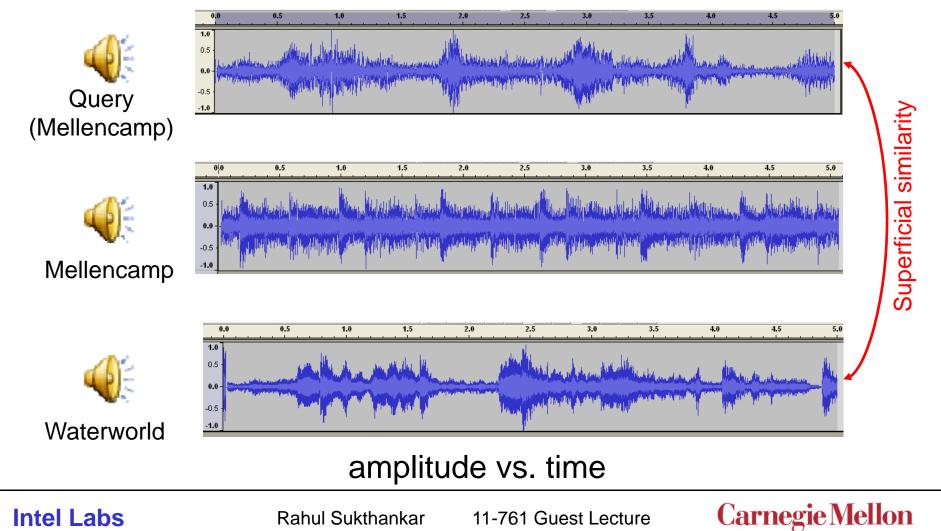
Name That Tune

Noisy recording

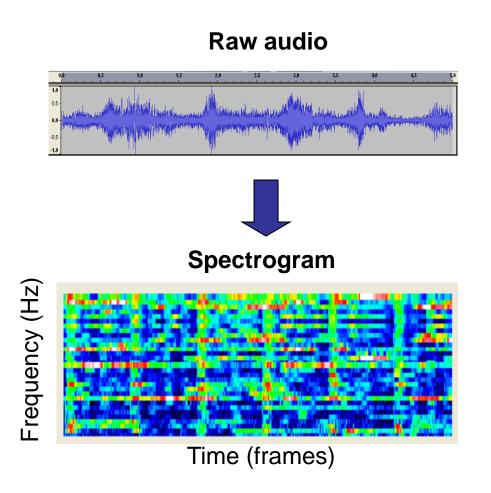
John Mellencamp – Suzanne and the Jewels

Waterworld soundtrack

Name That Tune: Raw Audio

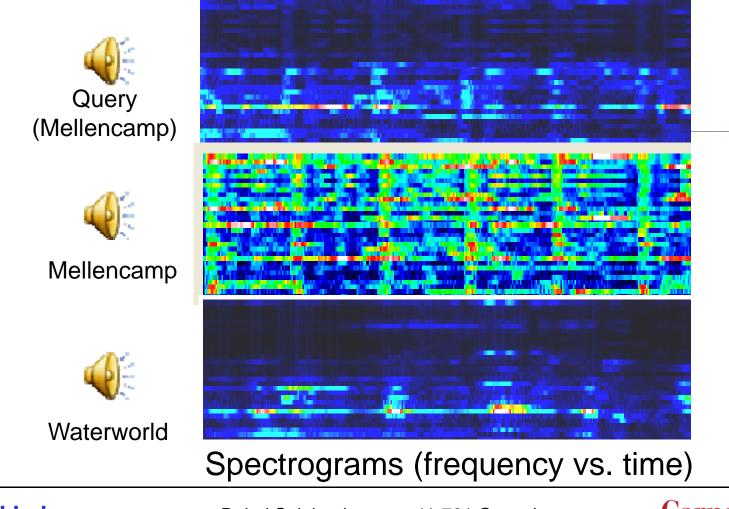


Spectrogram Representation



- 2D time-frequency image
- Short-term Fourier Transform on overlapping windows of 372ms at 11.6ms intervals
- Intensity shows power content in 33 logarithmically-spaced frequency bands
- Spectrograms are popular and have demonstrated good performance in several audio processing applications

Name That Tune: Spectrogram

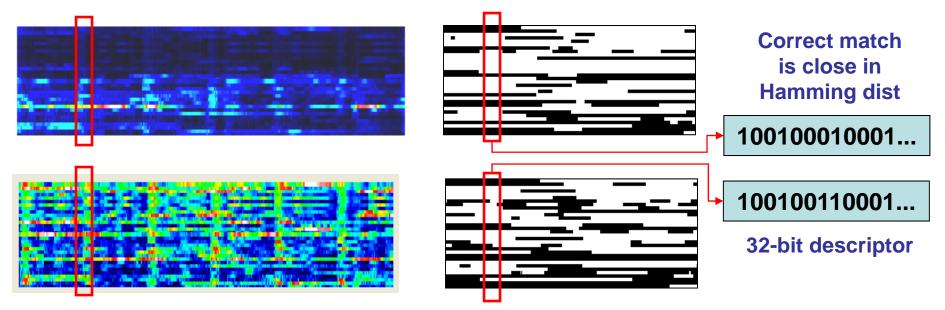


Intel Labs

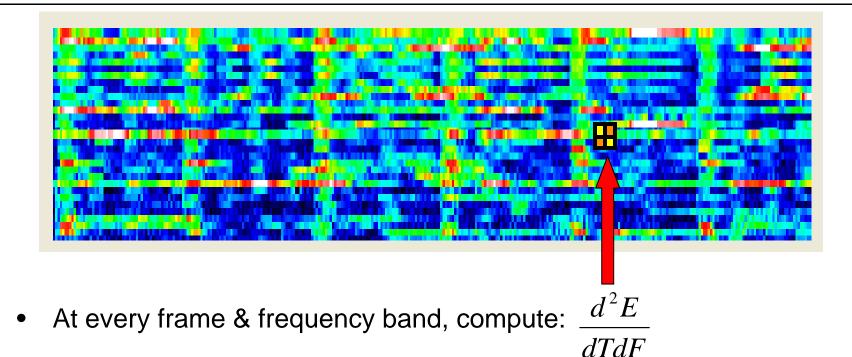
11-761 Guest Lecture

MusicID Algorithm

- Transform audio into spectrogram (2D image)
- Compute distinctive local descriptors (learned by pairwise boosting)
- Retrieve candidates using efficient index (near-neighbor in high-dim)
- Identify song using robust alignment (RANSAC + noise model)

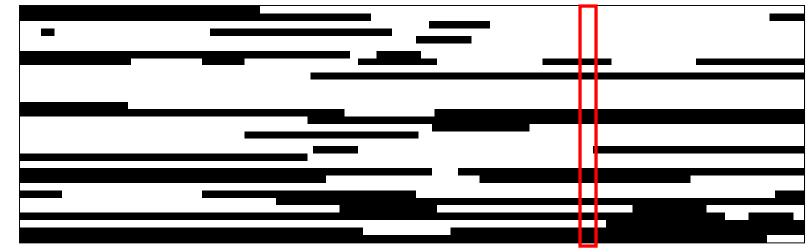


Motivation: [Haitsma & Kalker]



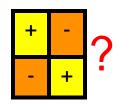
• Threshold at 0 to get a 32-bit descriptor at every time frame

[Haitsma & Kalker] Descriptor



0000010100011000...

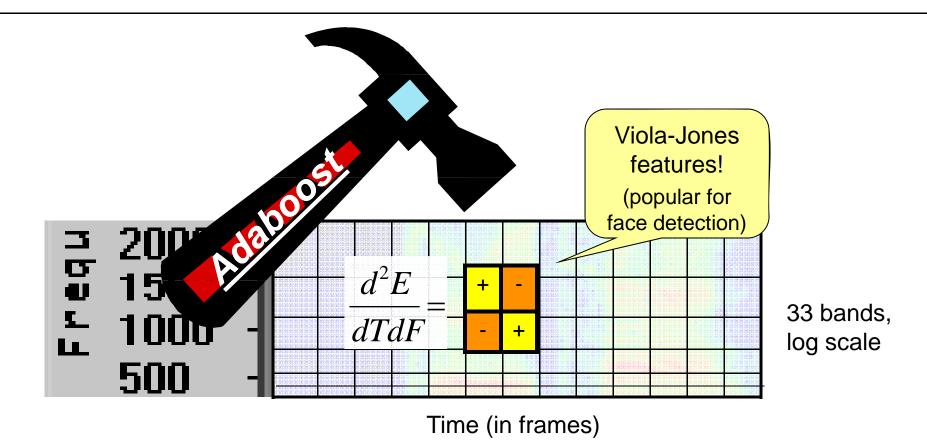
- At every frame & frequency band, compute: $\frac{d^2E}{dTdF}$
- Threshold at 0 to get a 32-bit descriptor at every time frame



[Haitsma & Kalker]'s choice of corner filter was arbitrary Could we build much better descriptors using machine learning?

Intel Labs

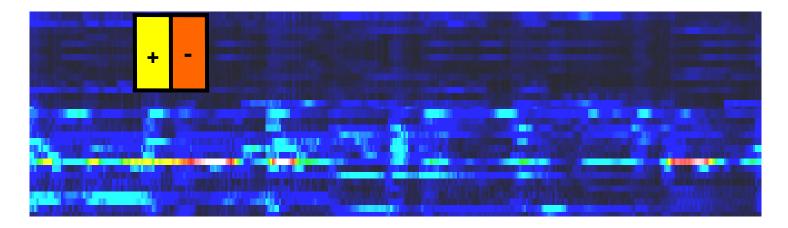
Boosting a Better Descriptor



A descriptor is composed from the outputs of the chosen set of binary filters. Our goal is to pick a good set of filters

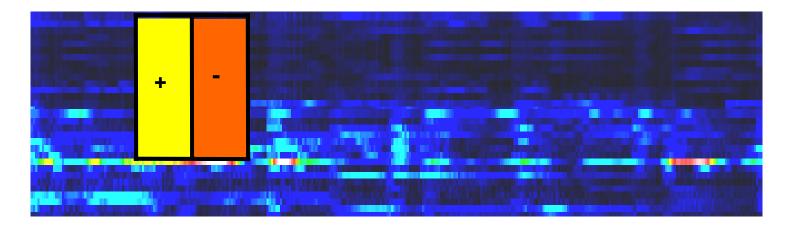
What is a Filter?

- Generates one bit from box sums/differences
- Intuition: filters should generate the same output for similar snippets
- Parameters: filter type, corner locations (in time & freq.), threshold
- If (sum >= threshold) then filter output = 1, else filter output = 0
- One filter is weak indicator, so we use several independent ones
- How to select good filters from a pool of 30,000? Boosting



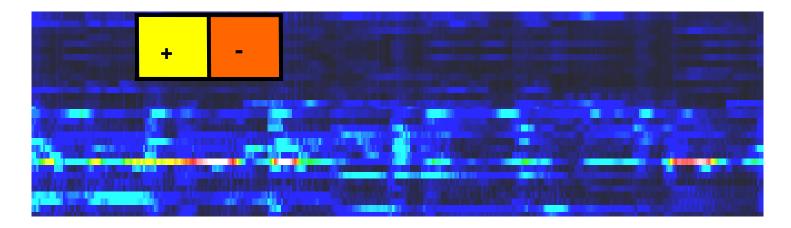
What is a Filter?

- Generates one bit from box sums/differences
- Intuition: filters should generate the same output for similar snippets
- Parameters: filter type, corner locations (in time & freq.), threshold
- If (sum >= threshold) then filter output = 1, else filter output = 0
- One filter is weak indicator, so we use several independent ones
- How to select good filters from a pool of 30,000? Boosting



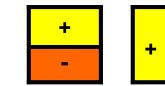
What is a Filter?

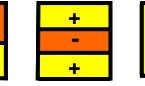
- Generates one bit from box sums/differences
- Intuition: filters should generate the same output for similar snippets
- Parameters: filter type, corner locations (in time & freq.), threshold
- If (sum >= threshold) then filter output = 1, else filter output = 0
- One filter is weak indicator, so we use several independent ones
- How to select good filters from a pool of 30,000? Boosting

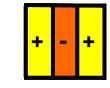


Candidate Filters

- Learning parameters: time width, band width, start band, filter type, threshold.
- Times: 1, 2, 4, 8,... frames, up to 1 second
- Filter types: +

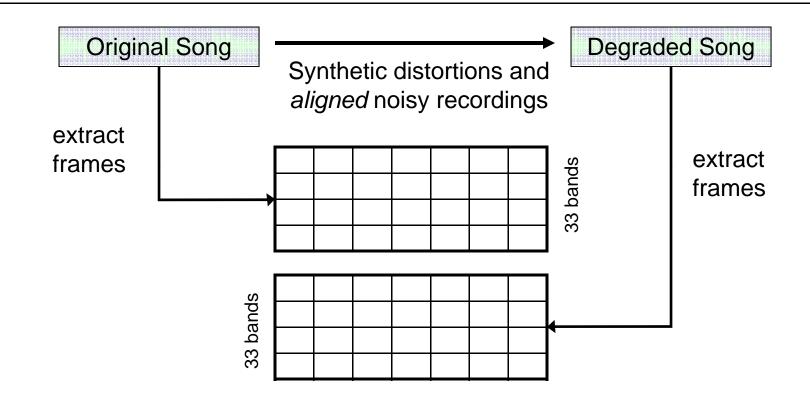


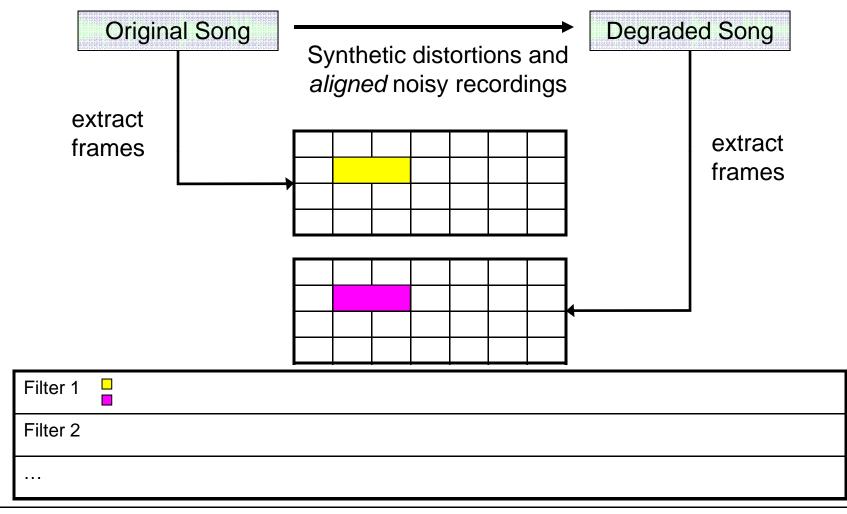


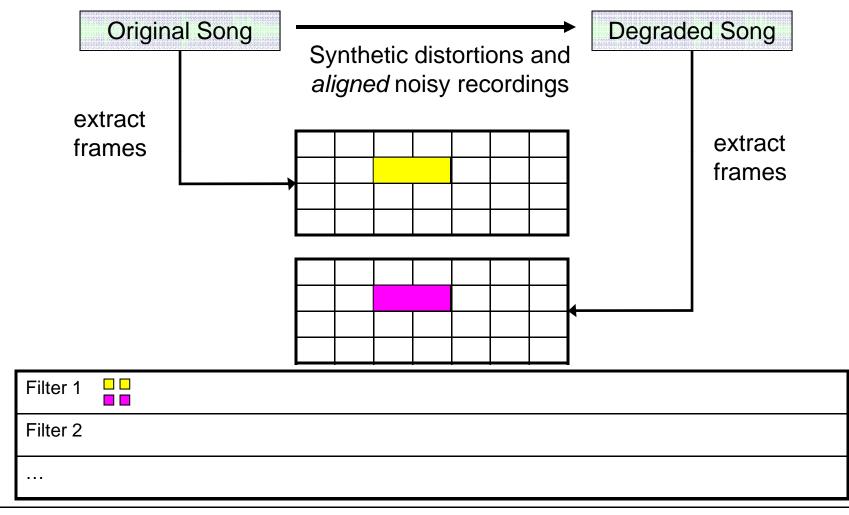


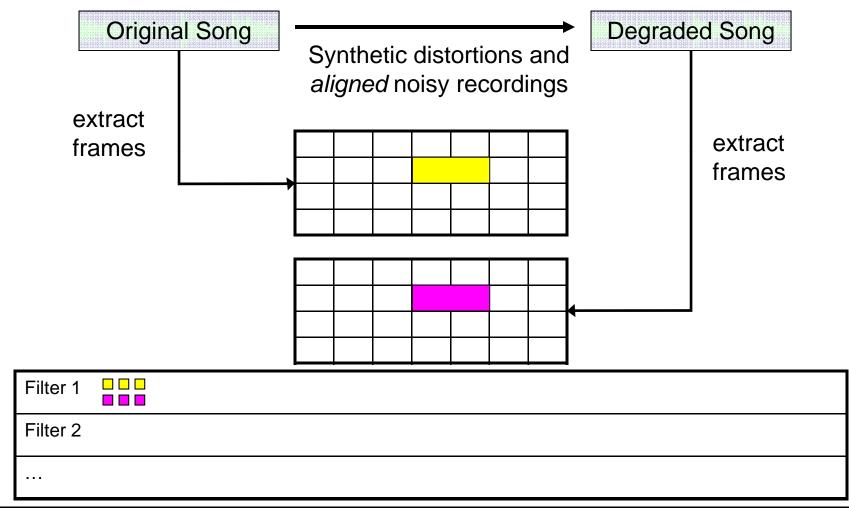
~ 30,000 filters total to choose from

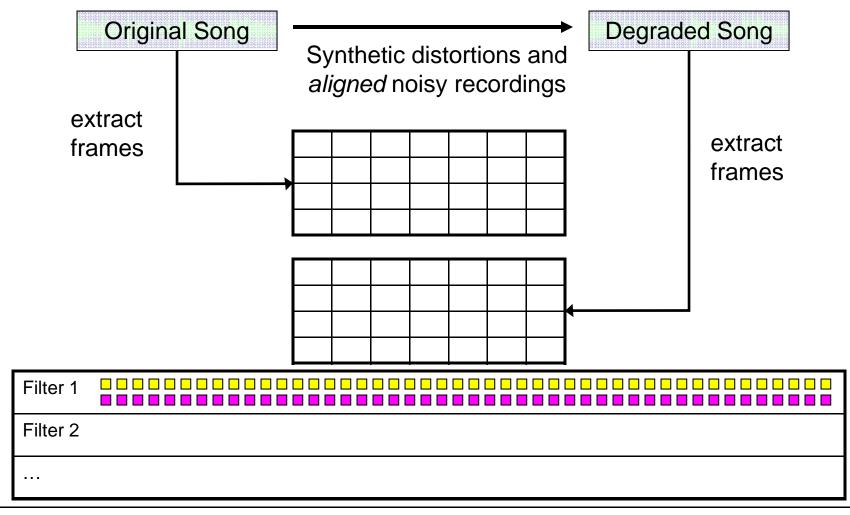
Goal: select best 32-element subset of filters

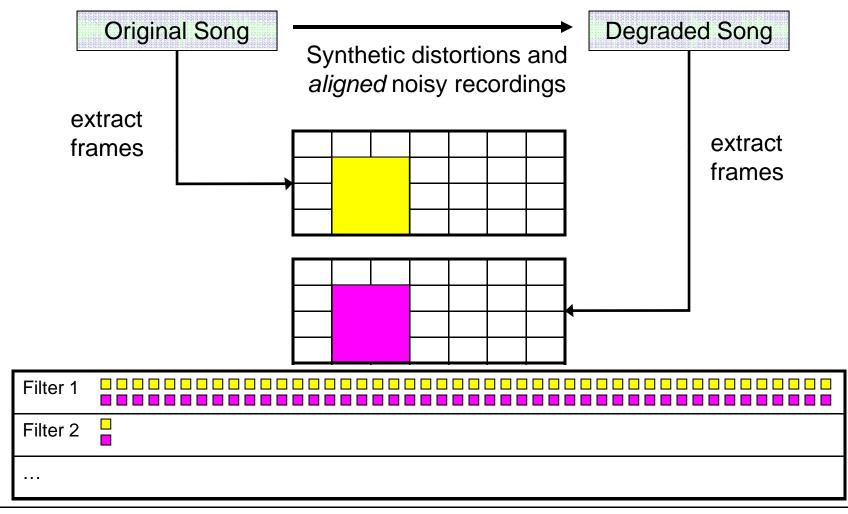


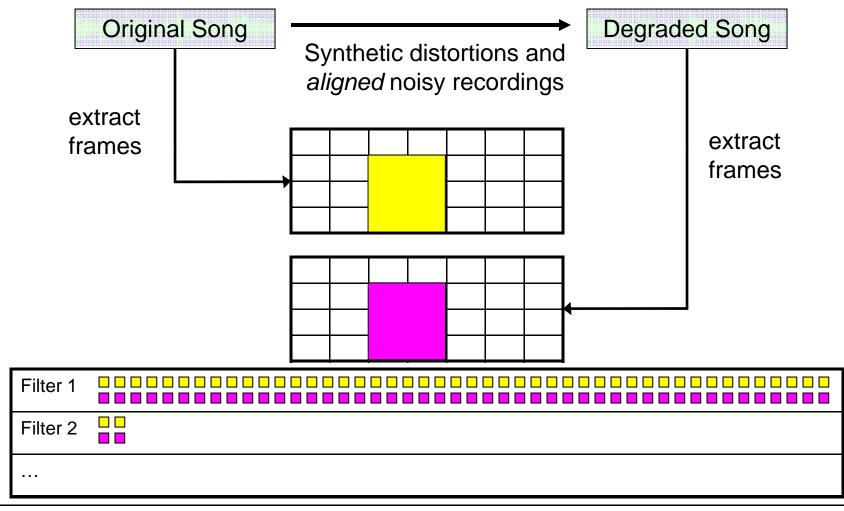


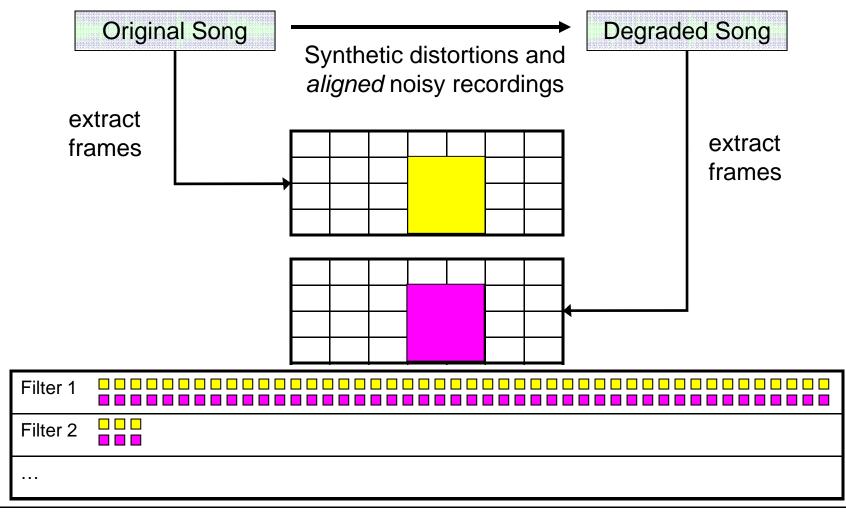




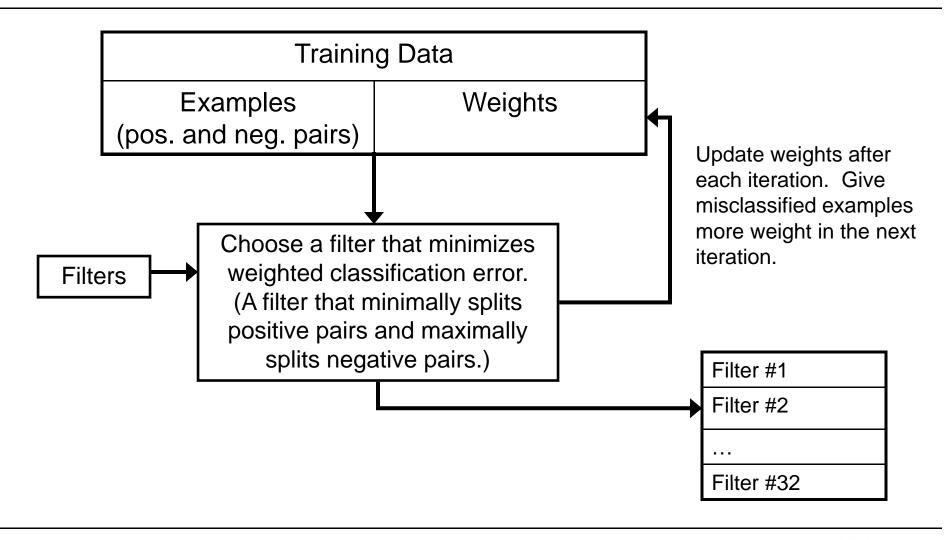








Choosing Filters with Adaboost



Intel Labs

Why Boosting?

- Benefits:
 - Chooses a set of filters that works well together
 - Successive filters minimize bound on error
 - Selected filters tend to be independent
- What's new (our contribution):
 - Trained on *pairs* of positive & negative exemplars.
 - Filter output used as *descriptor*, not as a classifier

Pairwise Boosting

Pairwise Boosting

input: sequence of *n* examples $\langle (x_{11}, x_{21}) \rangle .. \langle (x_{1n}, x_{2n}) \rangle$, each with label $y_i \in \{-1, 1\}$

initialize: $w_i = \frac{1}{n}, i = 1..n$

for m = 1..M

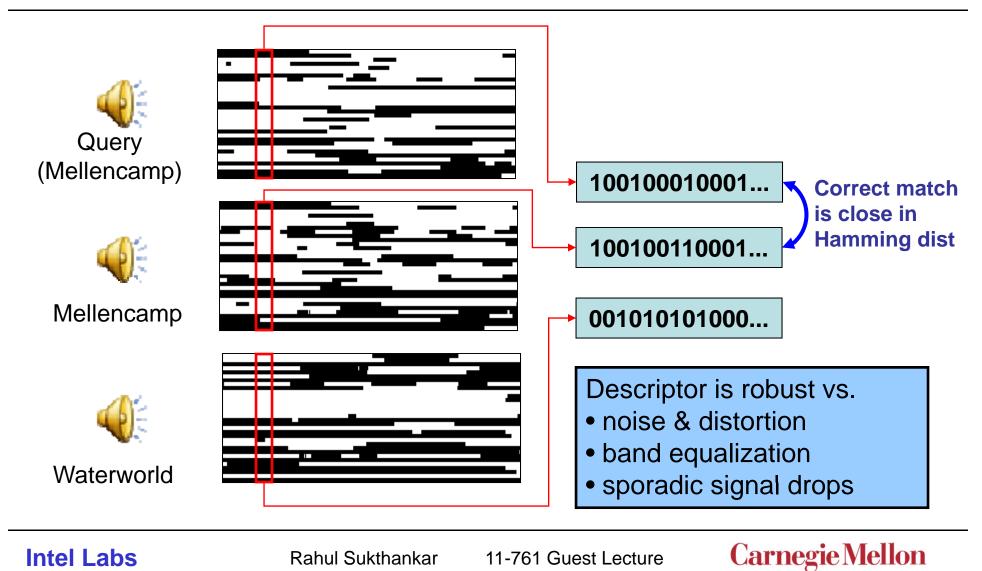
- 1. find the hypothesis $h_m(x_1, x_2)$ that minimizes weighted error over distribution w, where $h_m(x_1, x_2) = sgn[(f_m(x_1) - t_m)(f_m(x_2) - t_m)]$ for filter f_m and threshold t_m
- calculate weighted error: err_m = ∑ⁿ_{i=1} w_i ⋅ δ(h_m(x_{1i}, x_{2i}) ≠ y_i)
 3. assign confidence to h_m: c_m = log(^{1-err_m}/_{err_m})
- 4. update weights for matching pairs:
 if y_i = 1 and h_m(x_{1i}, x_{2i}) ≠ y_i, then w_i ← w_i · exp[c_m]
 5. permetize weights such that
- 5. normalize weights such that $\sum_{i:y_i=-1}^{n} w_i = \sum_{i:y_i=1}^{n} w_i = \frac{1}{2}.$

final hypothesis: $H(x_1, x_2) = sgn(\sum_{m=1}^{M} c_m h_m(x_1, x_2))$

Observations

- Standard Adaboost doesn't work on this multi-class problem
- Two snippets match if they fall on same side of the threshold
- Asymmetry: No weak classifier can do better than chance on *non-matching* pairs – can only learn from the *matching* pairs
- Median response is optimal threshold for non-matching pairs
 - greatly reduces training time

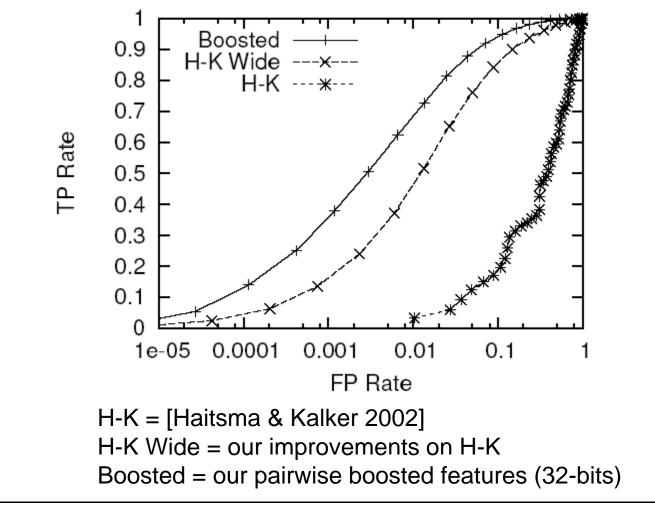
Name That Tune: Our Descriptors



Intel Labs

11-761 Guest Lecture

Descriptor-level Matching Results



Descriptors vs. Distance Metrics

- Alternate view: pose the descriptor learning problem as supervised distance metric learning
- Given pairs of similar/dissimilar snippets, can we directly *learn* a good Hamming space where similar songs are near while dissimilar songs are far?

MusicID Algorithm

- Transform audio into spectrogram (2D image)
- Compute distinctive local descriptors (learned by pairwise boosting)
- Retrieve candidates using efficient index (near-neighbor in high-dim)
- Identify song using robust alignment (RANSAC + noise model)
- Near-neighbor for similar descriptors in high-dimensions is painful
- Sub-image retrieval [MM2004] used locality-sensitive hashing
- MusicID employs direct hashing with extra probes
 - Threshold = 0 needs 1 hash probe
 - Threshold = 1 needs 1 + 32 hash probes
 - Threshold = 2 needs 1 + 32 + 32*31/2 = 529 probes
 - Threshold = 3 needs 1+32+32*31/2+32*31*30/6 = 5489 probes

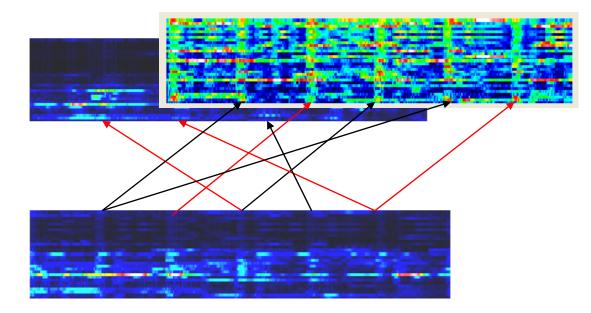
Direct Hashing: Recall vs. Computation Tradeoff

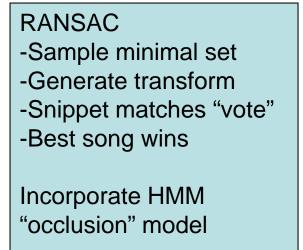
	Distance Threshold			
	0	1	2	3
Boosted	1.1%	5.4%	14.0%	25.2%
H-K Wide	< 0.01%	0.09%	0.64%	2.5%
H-K	< 0.01%			

- Recall for a snippet with given Hamming threshold
- Threshold = 0 needs 1 hash probe
- Threshold = 1 needs 1 + 32 hash probes
- Threshold = 2 needs 1 + 32 + 32*31/2 = 529 probes
- Threshold = 3 needs 1+32+32*31/2+32*31*30/6 = 5489

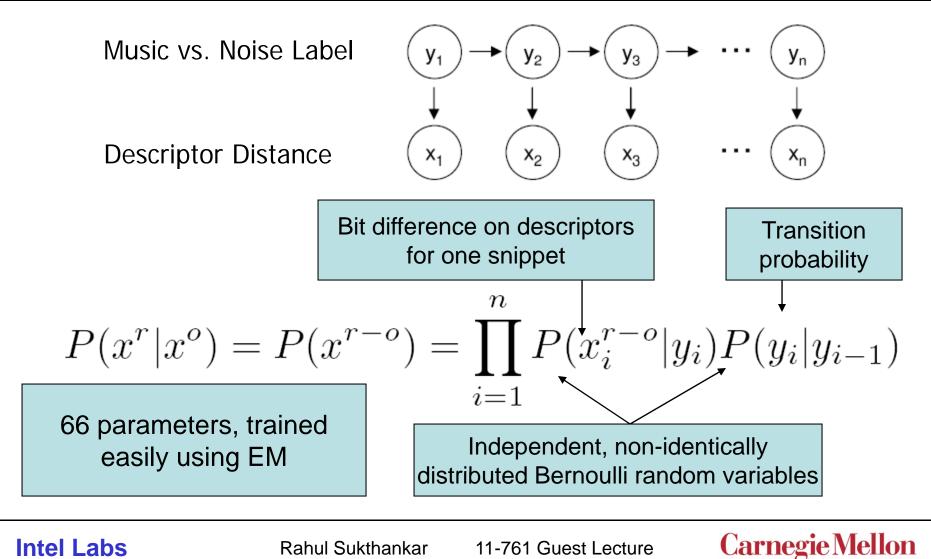
MusicID Algorithm

- Transform audio into spectrogram (2D image)
- Compute distinctive local descriptors (learned by pairwise boosting)
- Retrieve candidates using efficient index (near-neighbor in high-dim)
- Identify song using robust alignment (RANSAC + noise model)



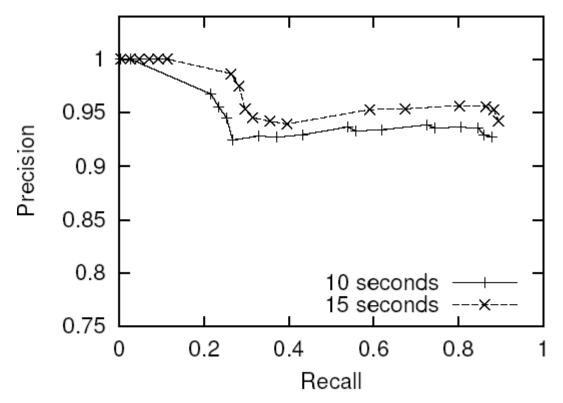


Simple "Occlusion" Model



Intel Labs

Music Identification Results



Test set: ~300 clips played at low volume with significant background noise Drawn from database with 1862 songs (classical, vocal, rock, pop). Random guess accuracy is 1/1862 = 0.05%

MusicID Summary

- This system accurately and efficiently identifies music from a 5-10 second sample taken in noisy conditions
- Our pairwise boosted descriptors outperform traditional ones
- Geometric verification adds robustness to "occlusions"

💩 Music Retrieval Demo v1.0				
Ready				
5 Seconds Record Playback Loa	ad Level			
810A590B 08 R.E.M. Out of Time Half a World Away				
1				
'				
Signal Analysis	Original			
Recording	Original			
man the second second	A			

Download demo, video, CVPR paper, source code from http://www.cs.cmu.edu/~rahuls/

Intel Labs

Application of Music Identification: Google's Ambient Audio Identification

• Applies and extends audio fingerprinting from MusicID to detect current TV channel based on ambient audio in living room

• M. Fink, M. Covell, S. Baluja, "Social and Interactive TV using Ambient-Audio Identification", EuroITV 2006.

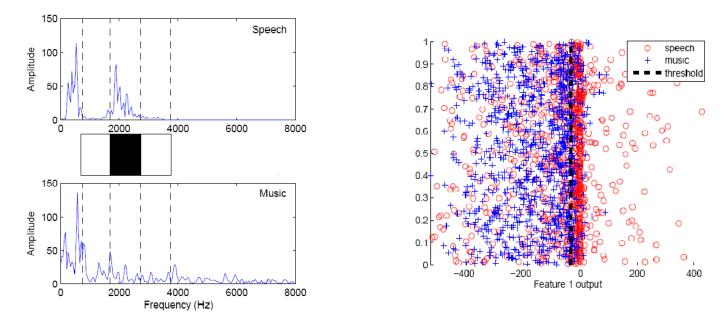
Intel Labs

Conclusion

- Machine learning approaches developed for vision often translate nicely to audio tasks (and vice versa).
- Interesting relationships between learning feature descriptors and distance metrics
- Download papers, code and video from: http://www.cs.cmu.edu/~rahuls/

Related work: Music vs. Speech Classification

- Problem: classify clip as either "music" or "speech"
- Analogy: VJ binary classifier using Haar-like features



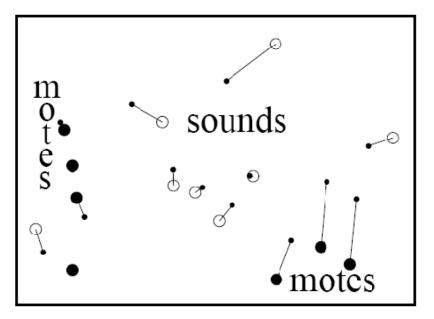
 N. Casagrande *et al.*, "Frame-level speech/music discrimination using AdaBoost", ISMIR 2005

Intel Labs

11-761 Guest Lecture

Related work: Structure from Sound

- Problem: localize microphones from sound events
- Analogy: structure from motion with affine camera model



• S. Thrun, "Affine structure from sound", NIPS 2005

