Fundamentals of Linear Algebra

Class 2. 27 August 2009

Instructor: Bhiksha Raj

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Vector products
- Matrix products
- Various matrix types
- Matrix inversion
- Matrix interpretation
- Eigenanalysis
- Singular value decomposition

Book

- Fundamentals of Linear Algebra, Gilbert Strang
- Important to be very comfortable with linear algebra
- Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
- Appears through various properties of matrices that are used in machine learning, particularly when applied to images and sound
- Today's lecture: Definitions
- Very small subset of all that's used
- Important subset, intended to help you recollect

Incentive to use linear algebra

- Pretty notation!

$$
\mathbf{x}^{T} \cdot \mathbf{A} \cdot \mathbf{y} \longleftrightarrow \sum_{j} y_{j} \sum_{i} x_{i} a_{j}
$$

- Easier intuition
- Really convenient geometric interpretations
- Operations easy to describe verbally
- Easy code translation!

```
for i=1:n
    for j=1:m
    c(i)=c(i)+y(j)*x(i)*a(i,j)
    end
end
```

$\longleftrightarrow \quad \mathrm{C}=\mathrm{x} * \mathrm{~A} * \mathrm{y}$

11-755 MLSP: Bhiksha Raj

And other things you can do

Rotation + Projection + Scaling

- Manipulate Images
- Manipulate Sounds

Scalars, vectors, matrices, ...

- A scalar a is a number
a $a=2, a=3.14, a=-1000$, etc.
- A vector a is a linear arrangement of a collection of scalars

$$
\mathbf{a}=\left[\begin{array}{lll}
1 & 2 & \exists
\end{array}\right], \mathbf{a}=\left[\begin{array}{l}
3.14 \\
-32
\end{array}\right]
$$

- A matrix \mathbf{A} is a rectangular arrangement of a collection of vectors

$$
\mathbf{A}=\left[\begin{array}{cc}
3.12 & -10 \\
10.0 & 2
\end{array}\right]
$$

- MATLAB syntax: $a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], A=\left[\begin{array}{lll}1 & 2 ; 3 & 4\end{array}\right]$

Vector/Matrix types and shapes

- Vectors are either column or row vectors

$$
\mathbf{c}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{r}=\left[\begin{array}{lll}
a & b & \mathrm{~d}, \mathrm{~s}=[\text { HhMN/hm }]
\end{array}\right.
$$

- A sound can be a vector, a series of daily temperatures can be a vector, etc ...
- Matrices can be square or rectangular

$$
\mathbf{S}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \mathbf{M}=\left[\begin{array}{ll}
\\
p
\end{array}\right]
$$

- Images can be a matrix, collections of sounds can be a matrix, etc ...

Dimensions of a matrix

- The matrix size is specified by the number of rows and columns

$$
\mathbf{c}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{r}=\left[\begin{array}{lll}
a & b & d
\end{array}\right]
$$

- $\mathrm{c}=3 \times 1$ matrix: 3 rows and 1 column
- $r=1 \times 3$ matrix: 1 row and 3 columns

$$
\mathbf{S}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

- $S=2 \times 2$ matrix
- $R=2 \times 3$ matrix
- Pacman $=321 \times 399$ matrix

Representing an image as a matrix

| 1 | 1 | . | 1 | 1 | . | 0 | 0 | 0 | . | . | $1]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Values only; X and Y are implicit

- 3 pacmen
- A 321x399 matrix
- Row and Column = position
- A 3x128079 matrix
- Triples of x, y and value
- A 1×128079 vector
- "Unraveling" the matrix
- Note: All of these can be recast as the matrix that forms the image
- Representations 2 and 4 are equivalent
- The position is not represented

Example of a vector

- Vectors usually hold sets of numerical attributes
- X, Y, value
- [1, 2, 0]
- Earnings, losses, suicides
- [\$0 \$1.000.000 3]
- Etc...
- Consider a "relative Manhattan" vector
- Provides a relative position by giving a number of avenues and streets to cross, e.g. [3av 33st]

Vectors

- Ordered collection of numbers
- Examples: [3 4 5], [abcd], ..
- [345] != [435] \rightarrow Order is important
- Typically viewed as identifying (the path from origin to) a location in an N -dimensional space
$(3,4,5)$

11-755 MLSP: Bhiksha Raj

Vectors vs. Matrices

- A vector is a geometric notation for how to get from $(0,0)$ to some location in the space
- A matrix is simply a collection of destinations!
- Properties of matrices are average properties of the traveller's path to these destinations

11-755 MLSP: Bhiksha Raj

Basic arithmetic operations

- Addition and subtraction
- Element-wise operations

$$
\begin{aligned}
& \mathbf{a}+\mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
a_{3}+b_{3}
\end{array}\right] \quad \mathbf{a}-\mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]-\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
a_{3}-b_{3}
\end{array}\right] \\
& \mathbf{A}+\mathbf{B}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
\end{aligned}
$$

- MATLAB syntax: $\mathrm{a}+\mathrm{b}$ and $\mathrm{a}-\mathrm{b}$

Vector Operations

- Operations tell us how to get from ($\{0\}$) to the result of the vector operations
- $(3,4,5)+(3,-2,-3)=(6,2,2)$

Operations example

$\left.\left\lvert\, \begin{array}{|cccccccccccc|}\hline 1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1\end{array}\right.\right]$
$\left.\begin{array}{|ccccccccccc}1 & 1 & . & 2 & . & 2 & 2 & . & 2 & . & 10 \\ 1 & 2 & . & 1 & . & 5 & 6 & . & 10 & . & 10 \\ 1 & 1 & . & 1 & . & 0 & 0 & . & 1 & . & 1\end{array}\right]$

$+$
Random(3,columns(M))

- Adding random values to different representations of the image

Vector norm

- Measure of how big a vector is:
- Notated as $\|\mathbf{x}\|$

$$
\|\left[\begin{array}{lll}
a & b & \ldots . .
\end{array}\right]=\sqrt{a^{2}+b^{2}+\ldots{ }^{2}}
$$

- In Manhattan vectors a measure of distance

$$
\begin{aligned}
& \|\left[\begin{array}{ll}
-2 & 17
\end{array}\right]=17.11 \\
& \left\|\left[\begin{array}{ll}
-6 & 1
\end{array}\right]\right\|=11.66
\end{aligned}
$$

- MATLAB syntax: norm (x)

Vector Norm

- Geometrically the shortest distance to travel from the origin to the destination
- As the crow flies
- Assuming Euclidean Geometry

11-755 MLSP: Bhiksha Raj

Transposition

- A transposed row vector becomes a column (and vice versa)

$$
\mathbf{x}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{x}^{T}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{lll}
a & b &]
\end{array}\right], \mathbf{y}^{T}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- A transposed matrix gets all its row (or column) vectors transposed in order

$$
\mathbf{X}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \mathbf{X}^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]
$$

Vector multiplication

- Multiplication is not element-wise!
- Dot product, or inner product
- Vectors must have the same number of elements
- Row vector times column vector = scalar

$$
\left[\begin{array}{lll}
a & b & j
\end{array}\right] \cdot\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=a \cdot d+b \cdot e+c \cdot f
$$

- Cross product, outer product or vector direct product
- Column vector times row vector = matrix

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{lll}
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
a \cdot d & a \cdot e & a \cdot f \\
b \cdot d & b \cdot e & b \cdot f \\
c \cdot d & c \cdot e & c \cdot f
\end{array}\right]
$$

- MATLAB syntax: a*b

Vector dot product in Manhattan

- Multiplying the "yard" vectors
- Instead of avenue/street we'll use yards
- $\mathbf{a}=\left[200\right.$ 1600], $\mathbf{b}=\left[\begin{array}{ll}770 & 300\end{array}\right]$
- The dot product of the two vectors relates to the length of a projection
- How much of the first vector have we covered by following the second one?
- The answer comes back as a unit of the first vector so we divide by its length

$$
\frac{\mathbf{a} \cdot \mathbf{b}^{T}}{\|\mathbf{a}\|}=\frac{\left[\begin{array}{ll}
200 & 160 d
\end{array}\right]\left[\begin{array}{l}
770 \\
300
\end{array}\right]}{\left\|\left[\begin{array}{ll}
200 & 160
\end{array}\right]\right\|} \approx 393 \mathrm{yd}
$$

Vector dot product

- Vectors are spectra
- Energy at a discrete set of frequencies
- Actually 1×4096
- X axis is the index of the number in the vector
- Represents frequency
- Y axis is the value of the number in the vector
- Represents magnitude

Vector dot product

- How much of D is also in S
- How much can you fake a D by playing an S
- D.S $/|\mathrm{D}||\mathrm{S}|=0.1$
- Not very much
- How much of D is in D2?
- D.D2 / |D|/|D2| = 0.5
- Not bad, you can fake it
- To do this, D, S, and D2 must be the same size

11-755 MLSP: Bhiksha Raj

Vector cross product

- The column vector is the spectrum
- The row vector is an amplitude modulation
- The crossproduct is a spectrogram
- Shows how the energy in each frequency varies with time
- The pattern in each column is a scaled version of the spectrum
- Each row is a scaled version of the modulation

Matrix multiplication

- Generalization of vector multiplication
- Dot product of each vector pair

$$
\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{lll}
\leftarrow & \mathbf{a}_{1} & \rightarrow \\
\leftarrow & \mathbf{a}_{2} & \rightarrow
\end{array}\right] \cdot\left[\begin{array}{cc}
\uparrow & \uparrow \\
\mathbf{b}_{1} & \mathbf{b}_{2} \\
\downarrow & \downarrow
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{a}_{1} \cdot \mathbf{b}_{1} & \mathbf{a}_{1} \cdot \mathbf{b}_{2} \\
\mathbf{a}_{2} \cdot & \mathbf{b}_{1} & \mathbf{a}_{2}
\end{array} \mathbf{b}_{2}\right]
$$

- Dimensions must match!!
- Columns of first matrix = rows of second
- Result inherits the number of rows from the first matrix and the number of columns from the second matrix
- MATLAB syntax: a *b

Multiplying a Vector by a Matrix

$$
\begin{gathered}
Y(2,:)=\left[\begin{array}{ll}
0.1 & 0.9
\end{array}\right] \quad Y(1,:)=\left[\begin{array}{ll}
0.8 & 0.9
\end{array}\right] \\
\\
0.9
\end{gathered}
$$

- Multiplication of a vector X by a matrix Y expresses the vector X in terms of projections of X on the row vectors of the matrix Y
- It scales and rotates the vector
- Alternately viewed, it scales and rotates the space - the underlying plane

Matrix Multiplication

- The matrix rotates and scales the space
- Including its own vectors

Matrix Multiplication

- The normals to the row vectors in the matrix become the new axes
- X axis = normal to the second row vector
- Scaled by the inverse of the length of the first row vector

Matrix Multiplication is projection

- The k-th axis corresponds to the normal to the hyperplane represented by the $1 . . \mathrm{k}-1, \mathrm{k}+1$.. N -th row vectors in the matrix
- Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
- The distance along the new axis equals the length of the projection on the k-th row vector
- Expressed in inverse-lengths of the vector

Matrix Multiplication: Column space

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=x\left[\begin{array}{l}
a \\
d
\end{array}\right]+y\left[\begin{array}{l}
b \\
e
\end{array}\right]+z\left[\begin{array}{l}
c \\
f
\end{array}\right]
$$

- So much for spaces .. what does multiplying a matrix by a vector really do?
- It mixes the column vectors of the matrix using the numbers in the vector
- The column space of the Matrix is the complete set of all vectors that can be formed by mixing its columns

Matrix Multiplication: Row space

$$
\left[\begin{array}{ll}
x &]
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{llll}
a & a & b
\end{array}\right] c\left[\begin{array}{lll}
y & d & e
\end{array}\right] f
$$

- Left multiplication mixes the row vectors of the matrix.
- The row space of the Matrix is the complete set of all vectors that can be formed by mixing its rows

Matrix multiplication: Mixing vectors

- A physical example
- The three column vectors of the matrix X are the spectra of three notes
- The multiplying column vector Y is just a mixing vector
- The result is a sound that is the mixture of the three notes

Matrix multiplication: Mixing vectors

- Mixing two images
- The images are arranged as columns
- position value not included
- The result of the multiplication is rearranged as an image

Administrivia

- New classroom!!
- PH 125C
- Seats 70! Bring your friends.
- Registration: All students on waitlist are registered
- TA: Not yet :-/
- Homework: Against "class3" on mlsp.cs.cmu.edu
- Transcribing music
- Feel free to discuss amongst yourselves
- Use the discussion lists on blackboard.andrew.cmu.edu
- No class next week
- You will get email from me with updates
- Blackboard - if you are not registered on blackboard please register

Matrix multiplication: another view

$$
\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{ccc}
a_{11} & \cdot & a_{1 N} \\
a_{21} & \cdot & a_{2 N} \\
\cdot & \cdot & \cdot \\
a_{M 1} & \cdot & \cdot \\
a_{M N}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdot & b_{N K} \\
\cdot & \cdot & \cdot \\
b_{N 1} & \cdot & b_{N K}
\end{array}\right]=\left[\begin{array}{ccc}
\sum_{k} a_{1 k} b_{k 1} & \cdot & \sum_{k} a_{1 k} b_{k K} \\
\cdot & \cdot & \cdot \\
\sum_{k} a_{M k} b_{k 1} & \cdot \sum_{k} a_{M k} b_{k K}
\end{array}\right]
$$

- What does this mean?

$$
\left[\begin{array}{cccc}
a_{11} & \cdots & a_{1 N} \\
a_{21} & \cdot & a_{2 N} \\
\cdot & \cdot & \cdot \\
a_{M 1} & \cdot & a_{M N}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdot & b_{N K} \\
\cdot & \cdot & \cdot \\
b_{N 1} & \cdot & b_{N K}
\end{array}\right]=\left[\begin{array}{c}
a_{11} \\
\cdot \\
\cdot \\
a_{M 1}
\end{array}\right]\left[\begin{array}{lll}
b_{11} & \cdot & b_{1 K}
\end{array}\right]+\left[\begin{array}{c}
a_{12} \\
\cdot \\
\cdot \\
a_{M 2}
\end{array}\right]\left[\begin{array}{cc}
b_{21} & \cdot \\
a_{2}
\end{array}\right]_{K}+\ldots+\left[\begin{array}{c}
a_{1 N} \\
{[} \\
\cdot \\
a_{M N}
\end{array}\right] b_{N 1} \cdot b_{N K}
$$

- The outer product of the first column of A and the first row of $B+$ outer product of the second column of A and the second row of $B+\ldots$.

Why is that useful?

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra

$$
\frac{\left[\begin{array}{ccc}
1 & 3 & 0 \\
. & . & 0 \\
9 & 24 & . \\
. & . & 1
\end{array}\right]}{x}
$$

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

 spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

 spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

 spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Image transition

- Image1 fades out linearly
- Image 2 fades in linearly

Matrix multiplication: Image transition

- Each column is one image
- The columns represent a sequence of images of decreasing intensity
- Image1 fades out linearly

Matrix multiplication: Image transition

- Image 2 fades in linearly

Matrix multiplication: Image transition

- Image1 fades out linearly
- Image 2 fades in linearly

The Identity Matrix

- An identity matrix is a square matrix where
- All diagonal elements are 1.0
- All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

Diagonal Matrix

$$
Y=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
- May flip axes

Diagonal matrix to transform images

- How?

Stretching

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccccccc}
1 & 1 & . & 2 & . & 2 & 2 & . & 2 & . & 10 \\
1 & 2 & . & 1 & . & 5 & 6 & . & 10 & . & 10 \\
1 & 1 & . & 1 & . & 0 & 0 & . & 1 & . & 1
\end{array}\right]
$$

- Location-based representation
- Scaling matrix - only scales the X axis
- The Y axis and pixel value are scaled by identity
- Not a good way of scaling.

Stretching

$$
D=\begin{array}{llllllllllll|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ccccc}
1 & .5 & 0 & 0 & . \\
0 & .5 & 1 & .5 & . \\
0 & 0 & 0 & .5 & . \\
0 & 0 & 0 & 0 & . \\
. & . & . & . & .
\end{array}\right](N \times 2 N) \\
& \text { Newpic }=E A
\end{aligned}
$$

- Better way

Modifying color

- Scale only Green

Permutation Matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
y \\
z \\
x
\end{array}\right]
$$

- A permutation matrix simply rearranges the axes
- The row entries are axis vectors in a different order
- The result is a combination of rotations and reflections
- The permutation matrix effectively permutes the arrangement of the elements in a vector

Permutation Matrix

- Reflections and 90 degree rotations of images and objects

Permutation Matrix

- Reflections and 90 degree rotations of images and objects
- Object represented as a matrix of 3-Dimensional "position" vectors
- Positions identify each point on the surface

Rotation Matrix

- A rotation matrix rotates the vector by some angle θ
- Alternately viewed, it rotates the axes
- The new axes are at an angle θ to the old one

Rotating a picture

- Note the representation: 3-row matrix
- Rotation only applies on the "coordinate" rows
- The value does not change
- Why is pacman grainy?

3-D Rotation

- 2 degrees of freedom
- 2 separate angles
- What will the rotation matrix be?

Projections

- What would we see if the cone to the left were transparent if we looked at it along the normal to the plane
- The plane goes through the origin
- Answer: the figure to the right
- How do we get this? Projection

- Consider any plane specified by a set of vectors $\mathrm{W}_{1}, \mathrm{~W}_{2}$.
- Or matrix $\left[\mathrm{W}_{1} \mathrm{~W}_{2}\right.$..]
- Any vector can be projected onto this plane
- The matrix A that rotates and scales the vector so that it becomes its projection is a projection matrix

- Given a set of vectors W1, W2, which form a matrix W = [W1 W2..]
- The projection matrix that transforms any vector X to its projection on the plane is
- $\quad P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- We will visit matrix inversion shortly
- Magic - any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix
- $\quad \mathrm{P}=\mathrm{V}\left(\mathrm{V}^{\top} \mathrm{V}\right)^{-1} \mathrm{~V}^{\top}$

Projections

- HOW?

11-755 MLSP: Bhiksha Raj

Projections

- Draw any two vectors W1 and W2 that lie on the plane - ANY two so long as they have different angles
- Compose a matrix $\mathrm{W}=[\mathrm{W} 1 \mathrm{~W} 2]$
- Compose the projection matrix $\mathrm{P}=\mathrm{W}\left(\mathrm{W}^{\top} \mathrm{W}\right)^{-1} \mathrm{~W}^{\top}$
- Multiply every point on the cone by P to get its projection
- View it ${ }^{-}$
- I'm missing a step here - what is it?

Projections

- The projection actually projects it onto the plane, but you're still seeing the plane in 3D
- The result of the projection is a 3-D vector
- $\mathrm{P}=\mathrm{W}\left(\mathrm{W}^{\top} \mathrm{W}\right)^{-1} \mathrm{~W}^{\top}=3 \times 3, \mathrm{P}^{*}$ Vector $=3 \times 1$
- The image must be rotated till the plane is in the plane of the paper
- The Z axis in this case will always be zero and can be ignored
- How will you rotate it? (remember you know W1 and W2)

Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
- $P x=x$ if x is on the plane
- If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
- $P(P x)=P x$
- That is because $P x$ is already on the plane
- Projection matrices are idempotent
- $P^{2}=P$
- Follows from the above

Projections: A more physical meaning

- Let $\mathrm{W}_{1}, \mathrm{~W}_{2} . . \mathrm{W}_{\mathrm{k}}$ be "bases"
- We want to explain our data in terms of these "bases"
- We often cannot do so
- But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors $W_{1}, W_{2}, . . W_{k}$, is the projection of the data on the $\mathrm{W}_{1} . . \mathrm{W}_{\mathrm{k}}$ (hyper) plane
- In our previous example, the "data" were all the points on a cone
- The interpretation for volumetric data is obvious

Projection : an example with sounds

- The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
- l.e. how much can it be explained by the notes

Projection: one note

- The spectrogram (matrix) of a piece of music

- $\mathrm{M}=$ spectrogram; $\mathrm{W}=$ note
- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Projected Spectrogram =P * M

11-755 MLSP: Bhiksha Raj

Projection: one note - cleaned up

- The spectrogram (matrix) of a piece of music

- Floored all matrix values below a threshold to zero

Projection: multiple notes

- The spectrogram (matrix) of a piece of music

- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Projected Spectrogram = $\mathrm{P}^{*} \mathrm{M}$

Projection: multiple notes, cleaned up

- The spectrogram (matrix) of a piece of music

- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Projected Spectrogram = P * M

Projection and Least Squares

- Projection actually computes a least squared error estimate
- For each vector V in the music spectrogram matrix
- Approximation: $V_{\text {approx }}=a^{*}$ note $1+b^{*}$ note $2+c^{*}$ note3..
- Error vector $\mathrm{E}=\mathrm{V}-\mathrm{V}_{\text {approx }}$
- Squared error energy for $\mathrm{V} \quad e(V)=$ norm $(E)^{2}$
- Total error = sum_over_all_V $\{\mathrm{e}(\mathrm{V})\}=\Sigma_{\mathrm{V}} \mathrm{e}(\mathrm{V})$
- Projection computes $\mathrm{V}_{\text {approx }}$ for all vectors such that Total error is minimized
- It does not give you "a", "b", "c".. Though
- That needs a different operation - the inverse / pseudo inverse

Orthogonal and Orthonormal matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{crc}
0.707 & -0.354 & 0.612 \\
0.707 & 0.354 & -0.612 \\
0 & 0.866 & 0.5
\end{array}\right]
$$

- Orthogonal Matrix : $\mathrm{AA}^{\top}=$ diagonal
- Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix
- Orthonormal Matrix: $A A^{\top}=A^{\top} A=1$
- In additional to be orthogonal, each vector has length exactly = 1.0
- Interesting observation: In a square matrix if the length of the row vectors is 1.0 , the length of the column vectors is also 1.0

Orthogonal and Orthonormal Matrices

- Orthonormal matrices will retain the relative angles between transformed vectors
- Essentially, they are combinations of rotations, reflections and permutations
- Rotation matrices and permutation matrices are all orthonormal matrices
- The vectors in an orthonormal matrix are at 90degrees to one another.
- Orthogonal matrices are like Orthonormal matrices with stretching
- The product of a diagonal matrix and an orthonormal matrix

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the trasnsformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

P =

- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms

- $\mathrm{P}=\mathrm{W}\left(\mathrm{W}^{\top} \mathrm{W}\right)^{-1} \mathrm{~W}^{\top}$; Projected Spectrogram = $\mathrm{P}^{*} \mathrm{M}$
- The original spectrogram can never be recovered
- P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
- There are only 4 independent bases
- Rank of P is 4

Non-square Matrices

$$
\begin{gathered}
{\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N}
\end{array}\right]} \\
\mathrm{X}=2 \mathrm{D} \text { data }
\end{gathered} \quad\left[\begin{array}{ll}
.8 & .9 \\
.1 & .9 \\
.6 & 0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N} \\
z_{1} & z_{2} & \cdot & \cdot & z_{N}
\end{array}\right]} \\
\text { PX=3D, rank } 2
\end{gathered}
$$

- Non-square matrices add or subtract axes
- More rows than columns \rightarrow add axes
- But does not increase the dimensionality of the data

Non-square Matrices

$$
\left[\begin{array}{ccccc}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N} \\
z_{1} & z_{2} & \cdot & \cdot & z_{N}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right]
$$

$\mathrm{P}=$ transform

- Non-square matrices add or subtract axes
- Fewer rows than columns \rightarrow reduce axes
- May reduce dimensionality of the data

The Rank of a Matrix

$$
\left[\begin{array}{ccc}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
.8 & .9 \\
.1 & .9 \\
.6 & 0
\end{array}\right]
$$

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never increase dimensions
- Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

11-755 MLSP: Bhiksha Raj

The Rank of Matrix

- Projected Spectrogram = P * M
- Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
- E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3 , it provides no additional information
- Eliminating note no. 4 would give us the same projection
- The rank of P would be 3 !

11-755 MLSP: Bhiksha Raj

Matrix rank is unchanged by transposition

- If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix

Matrix Determinant

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](\mathrm{r} 1)
$$

- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
- Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective

Volume $=$ V1

- The determinant is the ratio of N -volumes
- If V_{1} is the volume of an N -dimensional object " O " in N dimensional space
- O is the complete set of points or vertices that specify the object
- If V_{2} is the volume of the N -dimensional object specified by $\mathrm{A}^{*} \mathrm{O}$, where A is a matrix that transforms the space
- $|A|=V_{2} / V_{1}$

Matrix Determinants

- Matrix determinants are only defined for square matrices
- They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
- Since they compress full-volumed N-D objects into zero-volume N-D objects
- E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
- Since they compress full-volumed N-D objects into zero-volume objects

Multiplication properties

- Properties of vector/matrix products
- Associative

$$
\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})=(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}
$$

- Distributive

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}
$$

- NOT commutative!!!

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

- left multiplications \neq right multiplications
- Transposition

$$
(\mathbf{A} \cdot \mathbf{B})^{T}=\mathbf{B}^{T} \cdot \mathbf{A}^{T}
$$

Determinant properties

- Associative for square matrices $\quad|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}|=|\mathbf{A}| \cdot|\mathbf{B}| \cdot|\mathbf{C}|$
- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes $\quad|(\mathbf{B}+\mathbf{C})| \neq|\mathbf{B}|+|\mathbf{C}|$
- The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices
- Commutative for square matrices!!!

$$
|\mathbf{A} \cdot \mathbf{B}|=|\mathbf{B} \cdot \mathbf{A}|=|\mathbf{A}| \cdot|\mathbf{B}|
$$

- The order in which you scale the volume of an object is irrelevant

Matrix Inversion

$$
T=\left[\begin{array}{ccc}
0.8 & 0 & 0.7 \\
1.0 & 0.8 & 0.8 \\
0.7 & 0.9 & 0.7
\end{array}\right]
$$

- A matrix transforms an N D object to a different N D object
- What transforms the new object back to the original?
- The inverse transformation
- The inverse transformation is called the matrix inverse

Matrix Inversion

- The product of a matrix and its inverse is the identity matrix
- Transforming an object, and then inverse transforming it gives us back the original object

Inverting rank-deficient matrices

- Rank deficient matrices "flatten" objects
- In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
- Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Revisiting Projections and Least Squares

- Projection computes a least squared error estimate
- For each vector V in the music spectrogram matrix
- Approximation: $V_{\text {approx }}=a^{*}$ note1 $+b^{*}$ note2 $+c^{*}$ note 3. .

$$
V_{\text {approx }}=T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- Error vector $\mathrm{E}=\mathrm{V}-\mathrm{V}_{\text {approx }}$
- Squared error energy for $V \quad e(V)=\operatorname{norm}(E)^{2}$
- Total error $=$ Total error $+e(V)$
- Projection computes $\mathrm{V}_{\text {approx }}$ for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?

The Pseudo Inverse (PINV)

$$
V_{\text {approx }}=T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad \square V \approx T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \longmapsto\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\operatorname{PINV}(T) * V
$$

- We are approximating spectral vectors V as the transformation of the vector $[\mathrm{abc}]^{\top}$
- Note - we're viewing the collection of bases in T as a transformation
- The solution is obtained using the pseudo inverse
- This give us a LEAST SQUARES solution
- If T were square and invertible $\operatorname{Pinv}(\mathrm{T})=\mathrm{T}^{-1}$, and $\mathrm{V}=\mathrm{V}_{\text {approx }}$

Explaining music with one note

- Approximation: $\mathbf{M}=\mathbf{W}$ * X
- The amount of W in each vector $=X=\operatorname{PINV}(W)^{*} M$
- $\mathrm{W}^{*} \operatorname{Pinv}(\mathrm{~W})^{*} \mathrm{M}=$ Projected Spectrogram
- W^{*} Pinv $(\mathrm{W})=$ Projection matrix!!

$$
\operatorname{PINV}(W)=\left(W^{\top} W\right)^{-1} W^{\top}
$$

Explanation with multiple notes

- $X=\operatorname{Pinv}(W){ }^{*} M$; Projected matrix $=W^{*} X=W^{*} \operatorname{Pinv}(W)^{*} M$

How about the other way?

- WV lapprox M
$\mathrm{W}=\mathrm{M} * \operatorname{Pinv}(\mathrm{~V}) \quad \mathrm{U}=\mathrm{WV}$

11-755 MLSP: Bhiksha Raj

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- $\operatorname{Pinv}(\operatorname{Pinv}(A)))=A$
- $A^{*} \operatorname{Pinv}(A)=$ projection matrix!
- Projection onto the columns of A
- If $\mathrm{A}=\mathrm{K} \times \mathrm{N}$ matrix and $\mathrm{K}>\mathrm{N}, \mathrm{A}$ projects $\mathrm{N}-\mathrm{D}$ vectors into a higher-dimensional K - D space
- $\operatorname{Pinv}(\mathrm{A})^{*} \mathrm{~A}=1$ in this case

Matrix inversion (division)

- The inverse of matrix multiplication
- Not element-wise division!!
- Provides a way to "undo" a linear transformation
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist!
- But pseudoinverse exists
- Pay attention to multiplication side!

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{-1}, \quad \mathbf{B}=\mathbf{A}^{-1} \cdot \mathbf{C}
$$

- Matrix inverses defined for square matrices only
- If matrix not square use a matrix pseudoinverse:

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{+}, \quad \mathbf{B}=\mathbf{A}^{+} \cdot \mathbf{C}
$$

- MATLAB syntax: inv(a), pinv(a)

What is the Matrix ? MATRIX

- Duality in terms of the matrix identity
- Can be a container of data
- An image, a set of vectors, a table, etc ...
- Can be a linear transformation
- A process by which to transform data in another matrix
- We'll usually start with the first definition and then apply the second one on it
- Very frequent operation
- Room reverberations, mirror reflections, etc ...
- Most of signal processing and machine learning are a matrix multiplication!

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something
- Sound example:

- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
- Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
- Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

Black vectors are eigen vectors

- Vectors that do not change angle upon transformation
- They may change length

$$
M V=\lambda V
$$

- $\mathrm{V}=$ eigen vector
- $\lambda=$ eigen value
- Matlab: [V, L] = eig(M)
- L is a diagonal matrix whose entries are the eigen values
- V is a maxtrix whose columns are the eigen vectors

Eigen vector example

11-755 MLSP: Bhiksha Raj

Matrix multiplication revisited

- Matrix transformation "transforms" the space
- Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors d_{1} and d_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_{1} and λ_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

$$
\begin{aligned}
& V=\left[\begin{array}{cc}
V_{1} & V_{2}
\end{array}\right] \\
& L=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \\
& M=V L V^{-1}
\end{aligned}
$$

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
- E.g. consider a rotation matrix

$$
\begin{gathered}
\mathbf{R}_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
X_{\text {new }}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
\end{gathered}
$$

- This rotates every vector in the plane
- No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Some matrices are special however..

Symmetric Matrices

$$
\left[\begin{array}{cc}
1.5 & -0.7 \\
-0.7 & 1
\end{array}\right]
$$

- Matrices that do not change on transposition
- Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
- At 90 degrees to one another

Symmetric Matrices

- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
- The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors V_{i} are orthonormal
- $V_{i}^{\top} V_{i}=1$
- $\mathrm{V}_{\mathrm{i}}^{\top} \mathrm{V}_{j}=0, \mathrm{i}!=j$
- Listing all eigen vectors in matrix form V
- $\mathrm{V}^{\top}=\mathrm{V}^{-1}$
- $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$
- $\mathrm{VV}^{\top}=\mathrm{l}$
- $C V_{i}=\lambda V_{i}$
- In matrix form : C V = V L
- L is a diagonal matrix with all eigen values
- $\mathrm{C}=\mathrm{V} L \mathrm{~V}^{\top}$

The Correlation and Covariance Matrices

- Consider a set of column vectors represented as a DxN matrix M
- The correlation matrix is
- $C=(1 / \mathbb{N}) \mathrm{MM}^{\top}$
- If the average value (mean) of the vectors in M is $0, \mathrm{C}$ is called the covariance matrix
- covariance $=$ correlation + mean * mean ${ }^{\top}$
- Diagonal elements represent average value of the squared value of each dimension
- Off diagonal elements represent how two components are related
- How much knowing one lets us guess the value of the other

Correlation / Covariance Matrix

$$
\begin{gathered}
C=V L V^{T} \\
\operatorname{Sqrt}(C)=V \cdot \operatorname{Sqrt}(L) \cdot V^{T} \\
\operatorname{Sqrt}(C) \cdot \operatorname{Sqrt}(C)=V \cdot \operatorname{Sqrt}(L) \cdot V^{T} V \cdot \operatorname{Sqrt}(L) \cdot V^{T} \\
=V \cdot \operatorname{Sqrt}(L) \cdot \operatorname{Sqrt}(L) V^{T}=V L V^{T}=C
\end{gathered}
$$

- The correlation / covariance matrix is symmetric
- Has orthonormal eigen vectors and real, non-negative eigen values
- The square root of a correlation or covariance matrix is easily derived from the eigen vectors and eigen values
- The eigen values of the square root of the covariance matrix are the square roots of the eigen values of the covariance matrix
- These are also the "singular values" of the data set

Square root of the Covariance Matrix

- The square root of the covariance matrix represents the elliptical scatter of the data
- The eigenvectors of the matrix represent the major and minor axes

The Covariance Matrix

Any vector $\mathrm{V}=\mathrm{a}_{\mathrm{V}, 1}{ }^{*}$ eigenvec $1+\mathrm{a}_{\mathrm{V}, 2}$ *eigenvec2 + ..

$$
\Sigma_{\mathrm{V}} \mathrm{a}_{\mathrm{v}, \mathrm{i}}=\text { eigenvalue(i) }
$$

- Projections along the N eigen vectors with the largest eigen values represent the N greatest "energy-carrying" components of the matrix
- Conversely, N "bases" that result in the least square error are the N best eigen vectors

An audio example

- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025×1025 There are 1025 eigenvectors

Eigen Reduction

$$
M=\text { spectrogram } \quad 1025 \times 1000
$$

$$
C=M \cdot M^{T} \quad 1025 \times 1025
$$

$$
V=1025 \times 1025
$$

$$
[V, L]=\operatorname{eig}(C)
$$

$$
\left.\begin{array}{cl}
V_{\text {reduced }}=\left[\begin{array}{lll}
V_{1} & \cdot & V_{25}
\end{array}\right] & 1025 \times 25 \\
M_{\text {lowdim }} & =\operatorname{Pinv}\left(V_{\text {reduced }}\right) M
\end{array}\right) 25 \times 1000
$$

- Compute the Covariance/Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram - compute the projection on the 25 eigen vectors

Eigenvalues and Eigenvectors

- Left panel: Matrix with 1025 eigen vectors
$M=$ spectrogram
- Right panel: Corresponding eigen values
- Most eigen values are close to zero
- The corresponding eigenvectors are "unimportant"

$$
\begin{gathered}
C=M \cdot M^{T} \\
{[V, L]=\operatorname{eig}(C)}
\end{gathered}
$$

Eigenvalues and Eigenvectors

$$
\text { Vec = a1 *eigenvec } 1+\mathrm{a} 2 \text { * eigenvec2 }+\mathrm{a} 3 \text { * eigenvec3 } \ldots
$$

- The vectors in the spectrogram are linear combinations of all 1025 eigen vectors
- The eigen vectors with low eigen values contribute very little
- The average value of a_{i} is proportional to the square root of the eigenvalue
- Ignoring these will not affect the composition of the spectrogram

An audio example

$$
\begin{aligned}
V_{\text {reduced }} & =\left[\begin{array}{lll}
V_{1} & . & V_{25}
\end{array}\right] \\
M_{\text {lowdim }} & =\operatorname{Pinv}\left(V_{\text {reduced }}\right) M
\end{aligned}
$$

- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
- Only the 25-dimensional weights are shown
- The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

An audio example

- The same spectrogram constructed from only the 25 eigen vectors with the highest eigen values
- Looks similar
- With 100 eigenvectors, it would be indistinguishable from the original
- Sounds pretty close
- But now sufficient to store 25 numbers per vector (instead of 1024)

With only 5 eigenvectors

The same spectrogram constructed from only the 5 eigen vectors with the highest eigen values

- Highly recognizable

Eigenvectors, Eigenvalues and

Covariances

- The eigenvectors and eigenvalues (singular values) derived from the correlation matrix are important
- Do we need to actually compute the correlation matrix?
\square No
- Direct computation using Singular Value Decomposition

Singular Value Decomposition

- A matrix decomposition method

$$
\begin{aligned}
& \mathbf{A}=\mathbf{U} \cdot \Sigma \cdot \mathbf{V}^{T} \\
& \mathbf{U} \cdot \mathbf{U}^{T}=\mathbf{I}, \quad \mathbf{V} \cdot \mathbf{V}^{T}=\mathbf{I}, \quad \Sigma \text { is diagonal }
\end{aligned}
$$

- Breaks up the input into a product of three matrices, two orthogonal and one diagonal
- The right matrix will point towards two perpendicular directions on which the greater vector lengths are
- The diagonal will represent how much spread is in each direction and contains the singular values
- The left matrix will tell us how the two major directions can be combined to generate the input

MATLAB syntax:

SVD vs. Eigen decomposition

- Singluar value decomposition is analogous to the eigen decomposition of the correlation matrix of the data
- The "right" singluar vectors are the eigen vectors of the correlation matrix
- Show the directions of greatest importance
- The corresponding singular values are the square roots of the eigen values of the correlation matrix
- Show the importance of the eigen vector

Thin SVD, compact SVD, reduced SVD

- Thin SVD: Only compute the first N columns of U
- All that is required if $\mathrm{N}<\mathrm{M}$
- Compact SVD: Only the left and right eigen vectors corresponding to non-zero singular values are computed
- Reduced SVD: Only compute the columns of U corresponding to the K highest singular values

Why bother with eigens/SVD

- Can provide a unique insight into data
- Strong statistical grounding
- Can display complex interactions between the data
- Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
- A set of elements to compactly describe our data
- Indispensable for performing compression and classification
- Used over and over and still perform amazingly well

Eigenfaces
Using a linear transform of the above "eigenvectors" we can compose various faces

Making vectors and matrices in MATLAB

- Make a row vector:

$$
a=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

- Make a column vector:

$$
a=[1 ; 2 ; 3]
$$

- Make a matrix:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 ; 4 & 5 & 6
\end{array}\right]
$$

- Combine vectors

$$
A=[b c] \text { or } A=[b ; c]
$$

- Make a random vector/matrix:

$$
r=\operatorname{rand}(m, n)
$$

- Make an identity matrix:

$$
I=\text { eye (n) }
$$

- Make a sequence of numbers

```
c = 1:10 or c = 1:0.5:10 or c = 100:-2:50
```

- Make a ramp

```
c = linspace( 0, 1, 1100) (1-755 MISP: Bhiksha Raj
```


Indexing

- To get the i-th element of a vector a(i)
- To get the i-th j-th element of a matrix A(i,j)
- To get from the i-th to the j-th element a(i:j)
- To get a sub-matrix

$$
A(i: j, k: l)
$$

- To get segments

$$
a([i: j \text { k:l m]) }
$$

Arithmetic operations

- Addition/subtraction
$C=A+B$ or $C=A-B$
- Vector/Matrix multiplication
$C=A$ * B
- Operant sizes must match!
- Element-wise operations
- Multiplication/division
$\mathrm{C}=\mathrm{A} . * \mathrm{~B}$ or $\mathrm{C}=\mathrm{A} . / \mathrm{B}$
- Exponentiation
$\mathrm{C}=\mathrm{A} \cdot{ }^{\wedge} \mathrm{B}$
- Elementary functions

```
C = sin(A) or C = sqrt(A), ...
```


Linear algebra operations

- Transposition
$\mathrm{C}=\mathrm{A}^{\prime}$
- If A is complex also conjugates use $C=A . '$ to avoid that
- Vector norm
norm (x) (also works on matrices)
- Matrix inversion
$C=\operatorname{inv}(A)$ if A is square
$C=\operatorname{pinv}(A)$ if A is not square
- A might not be invertible, you'll get a warning if so
- Eigenanalysis
[u,d] = eig(A)
- u is a matrix containing the eigenvectors
- d is a diagonal matrix containing the eigenvalues
- Singular Value Decomposition
$[u, s, v]=\operatorname{svd}(A) \operatorname{or}[u, s, v]=\operatorname{svd}(A, 0)$
- "thin" versus regular SVD
$\square \quad s$ is diagonal and contains the singular values

Plotting functions

- 1-d plots plot(x)
- if x is a vector will plot all its elements
- If x is a matrix will plot all its column vectors
bar (x)
- Ditto but makes a bar plot
- 2-d plots
imagesc (x)
- plots a matrix as an image
surf(x)
- makes a surface plot

Getting help with functions

- The help function
- Type help followed by a function name
- Things to try

```
help help
help +
help eig
help svd
help plot
help bar
help imagesc
help surf
help ops
help matfun
```

- Also check out the tutorials and the mathworks site

