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String Matching 

  A simple problem: Given two strings of 
characters, how do we find the distance 
between them? 

  Solution: Align them as best as we can, then 
measure the “cost” of aligning them 

  Cost includes the costs of “insertion”, 
“Deletion”, “Substitution” and “Match” 
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  Match 1:  
  Insertions: B, B, C, C, D, D 
  Deletions: A, A, A, A 
  Matches: B, B, A, C, B, D, D, 

A 
  Total cost: 2I(C)+ 2I(B) + 2I(D) 

+ 4D(A) + 3M(B) + M(A) + 
M(C) + 2M(D) 

  Match 2: 
  Insertions: B, B, D, D 
  Deletions: A, A 
  Substitutions: (A,C), (A,C) 
  Matches: B, B, A, C, B, D, D, 

A 
  Total cost: 2I(B)+ 2I(D) + 

2D(A)  + 2S(A,C) + 3M(B) + 
2M(A) + M(C) + 2M(D) 
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Cost of match 



  The cost of matching a data string to a model string is 
the cost of the alignment that results in minimum cost 

  How does one compute the lowest cost? 
  Exponentially large number of possibilities for matching two 

strings 
  Exhaustive evaluation of the cost of all possibilities to identify 

the minimum cost match is infeasible and unnecessary 
  The minimum cost can be efficiently computed using a dynamic 

programming algorithm that incrementally compares substrings 
of increasing length 
  Dynamic Time Warping 

Computing the minimum cost 



Dynamic Time Warping 

  Incrementally build up the best “alignment” 
by matching substrings to entire strings 

  Standard procedure for edit distance: 
Computing the Levenshtein distance 
  Not possible to represent as a simple search 

through a static graph 
  Edge scores depend on symbols on the string..  

  Alternative procedure – building and 
searching a static graph.. 
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  Each match represents the cost of matching a 
data substring consisting of only the first symbol, 
to a model substring consisting of all symbols until 
the matched symbol 
  E.g. C11 is the cost of matching the data substring “B” 

to the model substring “A” 
  C12 is the cost of matching the data substring “B” to 

the model substring “A B” 
  C13 is the cost of matching “B” to “A B B” 

  The cost of matching the substrings is the lowest 
cost of matching these substrings in this manner 
  Since there  is only one way of obtaining these 

matches 
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  Match data substring “B B” to all model 
substrings 

  The cost of matching data substring “B B” to 
any model substring X is given as 
  Minimum over Y (match(“B” , Y) + match(“B”, X -Y)) 
  Y is any model substring that is shorter than or 

equal to model substring X 
  X – Y is the string of symbols that must be added to 

Y to make it equal to X 

C23 = minimumY [match(“B” , Y) + match(“B”, “ABB” -Y)] 
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  Match data substring “B B” to all model 
substrings 

  The cost of matching data substring “B B” to 
any model substring X is given as 
  Minimum over Y (match(“B” , Y) + match(“B”, X -Y)) 
  Y is any model substring that is shorter than or 

equal to model substring X 
  X – Y is the string of symbols that must be added to 

Y to make it equal to X 

C10  C20 = C10 + I(B) 

C23 = C12 + M(B) 
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Alignment graph 
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  We repeat this procedure for matches 
of the substring “B B B” 
  “B B B” is a combination of the substring  

“B B” and the symbol B 

  The cost of matching “B B B” to any string = sum of 
the cost of matching “B B” and that of matching “B” 

  The minimum cost of matching “B B B” to any 
substring W = minimum of 
 lowest cost of matching “B B” to some substring W1 of W +  
 Cost of matching the remaining B to the rest of W 

  The lowest cost of matching “B B” to the various 
substrings has already been computed 
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Alignment graph 



  The entire procedure can be recursively applied to 
increasingly longer data substrings, until we have a the 
minimum cost of matching the entire data string to the 
model string 
  In the process we also obtain the best manner of 

matching the two strings 
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  The alignment process can be viewed as 
graph search 

Aligning two strings 
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  This is just one way of creating the graph 
  The graph is asymmetric 

  Every symbol along the horizontal axis must be visited 
  Symbols on the vertical axis may be skipped 

  The resultant distance is not symmetric 
  Distance(string1, string2)  != Distance(string2, string1) 

  The graph may be constructed in other ways 
  Symmetric : symbols on horizontal axis may also be skipped 

  Additional constraints may be incorporated 
  E.g. We may never delete more than one symbol in a 

sequence 
  Useful for the classification problems 

String matching 



  The method is almost identical to what is done for 
string matching 

  The crucial additional information is the notion of 
a distance between vectors 

  The cost of substituting a vector A by a vector B 
is the distance between A and B 
  Distance could be computed using various metrics. E.g.  

  Euclidean distance is sqrt(Σi|Ai – Bi|2) 
  Manhattan metric or the L1 norm:  Σi|Ai – Bi| 
  Weighted Minkowski norms: (Σiwi|Ai – Bi|n)1/n 

Matching vector sequences 



DTW and speech recognition 

  Simple speech recognition (e.g. we want to 
recognize names for voice dialling) 

  Store one or more examples of the speaker 
uttering each of the words as templates 

  Given a new word, match the new recording 
against each of the templates 

  Select the template for which the final DTW 
matching cost is lowest 



Speech Recognition 
  An “utterance” is actually converted to a sequence of cepstral 

vector prior to recognition 
  Both templates and new utterances 

  Computing cepstra:  
  Window the signal into segments of 25ms, where adjacent segments 

overlap by 15ms 
  For each segment compute a magnitude spectrum 
  Compute the logarithm of the magnitude spectrum 
  Compute the Discrete Cosine Transform of the log magnitude spectrum 
  Retain only the first 13 components of the DCT 

  Each utterance is finally converted to a sequence of 13-
dimensional vectors 

  Optionally augmented by delta and double delta features 
  Potentially, with other processing such as mean and variance normalization 

  Returning to our discussion... 



DTW with two sequences of vectors 
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The template (model) is matched against the data string to be recognized 
Select the template with the lowest cost of match  



Using Multiple Templates 

  A person may utter a word (e.g. ZERO) in 
multiple ways 
  In fact, one never utters the word twice in exactly the 

same way 

  Store multiple templates for each word 
  Record 5 instances of “ZERO”, five of “ONE” etc. 

  Recognition: Cost of word = cost of closest 
template of word (to test utterance) 
  Select minimum cost word as recognition output 



DTW with multiple models 

DATA 

MODELS 

Evaluate all templates for a word against the data 



DTW with multiple models 

DATA 

MODELS 

Evaluate all templates for a word against the data 



DTW with multiple models 

DATA 

MODELS 

Evaluate all templates for a word against the data 
Select the best fitting template. The corresponding cost is the cost of the match 



The Problem with Multiple Templates 

  Finding the closest template to a test utterance 
requires evaluation of all test templates 
  This is expensive 

  Additionally, the set of templates may not cover 
all possible variants of the words 
  Must generalize from templates to represent other 

variants 

  We do this by averaging the templates 



DTW with multiple models 
MODELS 

T1 T2 T3 
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T3 

Align the templates 
themselves against 
one another 



DTW with multiple models 
MODELS 

T1 T2 T3 T4 

T4 
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T1 

Average Model 

Align the templates 
themselves against 
one another 

Average the aligned templates 



DTW with one model 
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A SIMPLER METHOD:  Segment the templates themselves 
and average within segments 
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DTW with one model 

A simple trick: segment the “model” into regions of equal  length 
Average each segment into a single point 



DTW with one model 

mj is the model vector for the jth segment 
Nj is the number of training vectors in the jth segment 
v(i) is the ith training vector  
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DTW with one model 

The averaged template is matched against the data string to be recognized 
Select the word whose averaed template has the lowest cost of match  



DTW with multiple models 
MODELS 

DATA 

Segment all templates 
Average each region into a single point 



DTW with multiple models 
MODELS 

DATA 

Segment all templates 
Average each region into a single point 



mj is the model vector for the jth segment 

Nk,j is the number of training vectors in the 
jth segment of the kth training sequence 

vk(i) is the ith vector of the kth training 
sequence 
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segmentk(j) is the jth segment of the 
kth training sequence 

DTW with multiple models 
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DTW with multiple models 

Segment all templates 
Average each region into a single point 
To get a simple average model, which is used for recognition 



  The inherent variation between vectors 
is different for the different segments 
  E.g. the variation in the colors of the beads in 

the top segment is greater than that in the 
bottom segment 

  Ideally we should account for the 
differences in variation in the segments 
  E.g, a vector in a test sequence may actually 

be more matched to the central segment, 
which permits greater variation, although it is 
closer, in a Euclidean sense, to the mean of 
the lower segment, which permits lesser 
variation 

DTW with multiple models 

T1 T2 T3 T4 

MODELS 



mj is the model vector for the jth segment 

Cj is the covariance of the vectors in the jth  
segment T1 T2 T3 T4 

MODELS 

We can define the covariance for each 
segment using the standard formula 
for covariance 

DTW with multiple models 



  The distance function must be modified to account for 
the covariance 

  Mahalanobis distance: 
  Normalizes contribution of all dimensions of the data 

DTW with multiple models 

–  v is a data vector, mj is the mean of a segment, Cj is the 
covariance matrix for the segment 

•  Negative Gaussian log likelihood: 
–  Assumes a Gaussian distribution for the segment and computes 

the probability of the vector on this distribution 



  Simple uniform segmentation of training instances is 
not the most effective method of grouping vectors in 
the training sequences 

  A better segmentation strategy is to segment the 
training sequences such that the vectors within any 
segment are most alike 
  The total distance of vectors within each segment from the 

model vector for that segment  is minimum 

  This segmentation must be estimated 

  The segmental K-means procedure is an iterative 
procedure to estimate the optimal segmentation 

Segmental K-means 
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Alignment for training a model from multiple vector 
sequences 
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Initialize by uniform segmentation 



T4 T1 T2 T3 

Alignment for training a model from multiple vector 
sequences 

Initialize by uniform segmentation 



T4 T1 T2 T3 

Alignment for training a model from multiple vector 
sequences 

Initialize by uniform segmentation 
Align each template to the averaged model to get new segmentations 
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T4NEW 

Alignment for training a model from multiple vector 
sequences 



T1 T2 
T3NEW 

T4NEW 

Alignment for training a model from multiple vector 
sequences 
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Alignment for training a model from multiple vector 
sequences 

T4NEW 



T3NEW 

T2NEW 

T1NEW 

Alignment for training a model from multiple vector 
sequences 

T4NEW 



T4NEW T1NEW 

T2NEW 

T3NEW 

Alignment for training a model from multiple vector 
sequences 

Initialize by uniform segmentation 
Align each template to the averaged model to get new segmentations 
Recompute the average model from new segmentations 
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Alignment for training a model from multiple vector 
sequences 



T4NEW T1NEW 
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T3NEW 

Alignment for training a model from multiple vector 
sequences 

T1 T2 T3 T4 
The procedure can be continued until convergence 

Convergence is achieved when the total best-alignment error for 
all training sequences does not change significantly with further 
refinement of the model 



Shifted terminology 

STATE 

mj , Cj
 

SEGMENT 

TRAINING DATA 

TRAINING DATA VECTOR 

SEGMENT BOUNDARY 

MODEL PARAMETERS 
or 
PARAMETER VECTORS 

MODEL 



Transition structures in models 
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The converged models can be used to score / align data sequences 

Model structure is incomplete. 



  Some segments are naturally longer than 
others 
  E.g., in the example the initial (yellow) segments are 

usually longer than the second (pink) segments 

  This difference in segment lengths is different 
from the variation within a segment 
  Segments with small variance could still persist very 

long for a particular sound or word 

  The DTW algorithm must account for these 
natural differences in typical segment length 

  This can be done by having a state specific 
insertion penalty 
  States that have lower insertion penalties persist 

longer and result in longer segments 

DTW with multiple models 

T4NEW T1NEW 

T2NEW 

T3NEW 



Transition structures in models 

DATA 

State specific insertion penalties are represented as  
self transition arcs for model vectors. Horizontal edges within the 
trellis will incur a penalty associated with the corresponding arc. 
Every transition within the model can have its own penalty. 
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Transition structures in models 

DATA 

State specific insertion penalties are represented as  
self transition arcs for model vectors. Horizontal edges within the 
trellis will incur a penalty associated with the corresponding arc. 
Every transition within the model can have its own penalty or score 
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Transition structures in models 

DATA 

This structure also allows the inclusion of arcs that permit the 
central state to be skipped (deleted) 
Other transitions such as returning to the first state from the 
last state can be permitted by inclusion of appropriate arcs 
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T13 



  Transition behavior can be expressed with probabilities 
  For  segments that are typically long, if a data vector is within that 

segment, the probability that the next vector will also be within it is 
high 

  A good choice for transition scores are the negative 
logarithm of the probabilities of the appropriate transitions 

  Tij is the negative of the log probability that if the current data vector 
belongs to the ith state, the next data vector belongs to the jth state 

  More probable transitions are less penalized. Impossible 
transitions are infinitely penalized 

What should the transition scores be 



Modified segmental K-means AKA Viterbi training 

T4NEW T1NEW 

T2NEW 

T3NEW 

•  Nk,i is the number of vectors in the ith  segment (state) of 
the kth training sequence 

•  Nk,i,j is the number of vectors in the ith segment (state) of 
the kth training sequence that were followed by vectors 
from the jth segment (state) 
–  E.g., No. of vectors in the 1st (yellow) state = 20 

         No of vectors from the 1st state that were 
         followed by vectors from the 1st state = 16 
         P11 = 16/20 = 0.8;   T11 = -log(0.8) 

•  Transition scores can be computed by a simple extension 
of the segmental K-means algorithm 

•  Probabilities can be counted by simple counting 



Modified segmental K-means AKA Viterbi training 

T4NEW T1NEW 

T2NEW 

T3NEW 

•  A special score is the penalty associated with starting at 
a particular state 

•  In our examples we always begin at the first state 
•  Enforcing this is equivalent to setting T01 = 0, 

T0j = infinity for j != 1 
•  It is sometimes useful to permit entry directly into later 

states 
–  i.e. permit deletion of initial states 

•  The score for direct entry into any state can be 
computed as 

•  N is the total number of training sequences 
•  N0j is the number of training sequences for which the 

first data vector was in the jth state  

N = 4 
N01 = 4 
N02 = 0 
N03 = 0 



  Some structural information 
must be prespecified 

  The number of states must 
be prespecified 
  Manually 

  Allowable start states and 
transitions must be 
presecified 
  E.g. we may specify beforehand 

that the first vector may be in 
states 1 or 2, but not 3 

  We may specify possible 
transitions between states 

Modified segmental K-means AKA Viterbi training 

3 model vectors 
Permitted initial states: 1 
Permitted transitions: shown by arrows  

4 model vectors 
Permitted initial states: 1, 2 
Permitted transitions: shown by arrows  

Some example specifications 



  Initializing state parameters 
  Segment all training instances uniformly, learn means and variances 

  Initializing T0j scores 
  Count the number of permitted initial states 

 Let this number be M0 

  Set all permitted initial states to be equiprobable:  Pj = 1/M0 
  T0j = -log(Pj) = log(M0) 

  Initializing Tij scores 
  For every state i,  count the number of states that are permitted to follow 

 i.e. the number of arcs out of the state, in the specification 
 Let this number be Mi 

  Set all permitted transitions to be equiprobable:  Pij = 1/Mi 

  Initialize Tij = -log(Pij) = log(Mi) 

  This is only one technique for initialization 
  Other methods possible, e.g. random initialization 

Modified segmental K-means AKA Viterbi training 



  The entire segmental K-means algorithm: 
  Initialize all parameters 

  State means and covariances 
  Transition scores 
  Entry transition scores 

  Segment all training sequences 

  Reestimate parameters from segmented training 
sequences 

  If not converged, return to 2 

Modified segmental K-means AKA Viterbi training 



Alignment for training a model from multiple 
vector sequences 

T1 T2 T3 T4 

The procedure can be continued until convergence 

Convergence is achieved when the total best-alignment error for 
all training sequences coverges 

Initialize Iterate 



  This structure is a generic representation of a statistical 
model for processes that generate time series 

  The “segments” in the time series are referred to as states 
  The process passes through these states to generate time 

series 
  The entire structure may be viewed as one generalization 

of the DTW models we have discussed thus far 
  Strict left-to-right Bakis topology 

DTW and Hidden Markov Models (HMMs) 

T11  T22  T33  

T12  T23  
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  A Hidden Markov Model consists of two components 
  A state/transition backbone that specifies how many states 

there are, and how they can follow one another 
  A set of probability distributions, one for each state, which 

specifies the distribution of all vectors in that state 

Hidden Markov Models 

•  This can be factored into two separate probabilistic entities 
–  A probabilistic Markov chain with states and transitions 
–  A set of data probability distributions, associated with the states 

Markov chain 

Data distributions 



HMMS and DTW 

•  HMMs are similar to DTW templates 
•  DTW: Minimize negative log probability (cost) 
•  HMM: Maximize probability 

•  In the models considered so far, the state output 
distribution have been assumed to be Gaussian 

•  In reality, the distribution of vectors within any state need 
not be Gaussian 
  In the most general case it can be arbitrarily complex 
  The Gaussian is only a coarse representation of this distribution 
  Typically they are Gaussian Mixtures 

•  Training algorithm: Baum Welch may replace segmental 
K-means 
•  Segmental K-means is also quite effective 



Gaussian Mixtures 

•  A Gaussian Mixture is literally a mixture of Gaussians. It is 
a weighted combination of several Gaussian distributions 

•  v is any data vector. P(v) is the probability given to that vector by the 
Gaussian mixture 

•  K is the number of Gaussians being mixed 
•  wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is 

its covariance 

•  Trained using all vectors in a segment 
•  Instead of computing a single mean and covariance only, computes 

means and covariances of all Gaussians in the mixture 



Gaussian Mixtures 

  A Gaussian mixture can represent 
data distributions far better than a 
simple Gaussian 

  The two panels show the histogram of 
an unknown random variable 

  The first panel shows how it is 
modeled by a simple Gaussian 

  The second panel models the 
histogram by a mixture of two 
Gaussians 

  Caveat: It is hard to know the optimal 
number of Gaussians in a mixture 
distribution for any random variable 



  The parameters of an HMM with Gaussian 
mixture state distributions are: 
   π the set of initial state probabilities for all states 
  T the matrix of transition probabilities 
  A Gaussian mixture distribution for every state in 

the HMM. The Gaussian mixture for the ith state is 
characterized by 
  Ki, the number of Gaussians in the mixture for the ith state 
  The set of mixture weights  wi,j 0<j<Ki 

  The set of Gaussian means mi,j  0 <j<Ki 

  The set of Covariance matrices Ci,j 0 < j <Ki 

HMMS 



  The procedure is identical to what is used 
when state distributions are Gaussians with 
one minor modification: 

  The distance of any vector from a state is 
now the negative log of the probability given 
to the vector by the state distribution 

  The “penalty” applied to any transition is the 
negative log of the corresponding transition 
probability  

Segmenting and scoring data sequences with 
HMMs with Gaussian mixture state distributions 



Define model structure 
  Specify number of 

states 
  Specify transition 

structure 
  Specify no. of 

Gaussians in the 
distribution of any state 

T11  T22  T33  

T12  T23  

T13  

Training word models 

T11  T22  T33  

T12  T23  

T13  

Record instances 

Compute features 

Train  
- HMMs using segmental K-means. 
- Mixture Gaussians for each state using K-means or EM 



  A special kind of state:  An NON-EMITTING state. No 
observations are generated from this state 

  Usually used to model the termination of a unit 

non-emitting absorbing 
state

A Non-Emitting State 



  Given data X, find which of a number of classes C1, C2,…CN it 
belongs to, based on known distributions of data from C1, C2, etc. 

  Bayesian Classification: 
           Class = Ci : i = argminj -log(P(Cj)) - log(P(X|Cj)) 

a priori probability of Cj Probability of X as given by 
the probability distribution of Cj 

Statistical pattern classification 

 The a priori probability accounts for the relative proportions of the 
classes 
–  If you never saw any data, you would guess the class based on 

these probabilities alone 
  P(X|Cj)  accounts for evidence obtained from observed data  X 

 -Log(P(X|C)) is approximated by the DTW score of the model  



Log(P(Odd))

HMM for Odd HMM for Even

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd)) Log(P(Even))+log(P(X|Even))

Classifying between two words: Odd and Even 



Classifying between two words: Odd and Even 

Log(P(Odd))

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd))

Log(P(Even)) 
+log(P(X|Even))



Score(X|Even)

Score(X|Odd)

  Compute the score of the best path 

Decoding to classify between Odd and Even 

Log(P(Odd))

Log(P(Even))



Score(X|Even)

Score(X|Odd)

  Compare scores (best state sequence probabilities) of all competing 
words 

  Select the word sequence corresponding to the path with the best 
score 

Decoding to classify between Odd and Even 

Log(P(Odd))

Log(P(Even))



Statistical classification of word sequences 

•  P(wd1,wd2,wd3..) is a priori probability of word sequence 
wd1,wd2,wd3.. 
–  Obtained from a model of the language 

•  P(X| wd1,wd2,wd3..) is the probability of X computed on the probability 
distribution function of the word sequence wd1,wd2,wd3.. 
–  HMMs now represent probability distributions of word sequences 



Decoding continuous speech  
First step: construct an HMM for each possible word sequence 

•  P(X| wd1,wd2,wd3..) is the probability of X computed on the probability 
distribution function of the word sequence wd1,wd2,wd3.. 
–  HMMs now represent probability distributions of word sequences 

HMM for word 1 HMM for word2

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for 
each possible word sequence 
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P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

P(Rock Star) P(Dog Star)

Bayesian Classification between word sequences 

  Classifying an utterance as either “Rock Star”  or “Dog Star” 
  Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog 

Star) 
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P(Rock) P(Dog)

P(Star|Rock) P(Star|Dog) P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

St
ar


Bayesian Classification between word sequences 

  Classifying an utterance as either “Rock Star”  or “Dog Star” 
  Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog 

Star) 
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P(Dog,Star)P(X|Dog Star)

P(Rock,Star)P(X|Rock Star)

Bayesian Classification between word sequences 
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Score(X|Rock Star)

Score(X|Dog Star)

Approximate total probability 
with best path score

Decoding to classify between word sequences 
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The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted
trellis, each with its own 
best path

Decoding to classify between word sequences 
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The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted
trellis, each with its own 
best path

SET 1 and its best path

dogstar1

Decoding to classify between word sequences 
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The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted
trellis, each with its own 
best path

SET 2 and its best path

dogstar2

Decoding to classify between word sequences 
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The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted
trellis, each with its own 
best path

SET 3 and its best path

dogstar3

Decoding to classify between word sequences 
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The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted
trellis, each with its own 
best path

SET 4 and its best path

dogstar4

Decoding to classify between word sequences 
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The best path through 
Dog Star  is the best of 
the four transition-specific 
best paths 
max(dogstar) = 
max ( dogstar1, dogstar2, 
           dogstar3, dogstar4 )

Decoding to classify between word sequences 
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Similarly, for Rock Star  
the best path through 
the trellis is the best of 
the four transition-specific 
best paths 
max(rockstar) = 
max ( rockstar1, rockstar2, 
           rockstar3, rockstar4 )

Decoding to classify between word sequences 
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Then weʼd compare 
the best paths 
through Dog Star 
and Rock Star

max(dogstar) = 
max ( dogstar1, dogstar2, 
           dogstar3, dogstar4 )

max(rockstar) =  
max ( rockstar1, rockstar2, 
           rockstar3,  rockstar4 )

Viterbi =
max(max(dogstar), 
        max(rockstar) )

Decoding to classify between word sequences 
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argmax is commutative:

max(max(dogstar), 
max(rockstar) )
= 
max ( 
  max(dogstar1, rockstar1),
  max (dogstar2, rockstar2), 
   max (dogstar3,rockstar3), 
   max(dogstar4,rockstar4 )
)

Decoding to classify between word sequences 
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We can choose between 
Dog and Rock right here  
because the futures of these 
paths are identical

For a given entry point 
the best path through STAR 
is the same for both trellises

t1

Decoding to classify between word sequences 
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of the two incoming edges 
here  

This portion of the 
trellis is now deleted

t1

Decoding to classify between word sequences 
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Similar logic can be applied 
at other entry points to 
Star

• t1

Decoding to classify between word sequences 
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Similar logic can be applied 
at other entry points to 
Star

• t1

Decoding to classify between word sequences 
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Similar logic can be applied 
at other entry points to 
Star

• t1

Decoding to classify between word sequences 
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Similar logic can be applied 
at other entry points to 
Star

This copy of the trellis 
for STAR is completely 
removed

Decoding to classify between word sequences 
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  The two instances of Star can be collapsed into one to form a smaller 
trellis 

Decoding to classify between word sequences 
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We will represent the 
vertical axis of the  
trellis in this simplified 
manner 

Rock Dog Star

Rock

Dog

Star=

Language-HMMs for fixed length word sequences 



  The word graph represents all allowed word sequences in 
our example 
  The set of all allowed word sequences represents the allowed 

“language” 
   

  At a more detailed level, the figure represents an HMM 
composed of the HMMs for all words in the word graph 
  This is the “Language HMM” – the HMM for the entire allowed 

language 

  The language HMM represents the vertical axis of the 
trellis 
  It is the trellis, and NOT the language HMM, that is searched for 

the best path 

P(Rock)

P(Dog)

P(Star|Rock)

P(Star|Dog)
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Language-HMMs for fixed length word sequences 



  Recognizing one of four lines from “charge of the light brigade” 
            Cannon to right of them 
           Cannon to left of them 
           Cannon in front of them 
           Cannon behind them 

to 

of 

Cannon 

them 

right 

left 

front in 

behind 

P(cannon)

P(to|cannon)

P(right|cannon to)

P(in|cannon)

P(behind|cannon)

P(of|cannon to right)

P(of|cannon to left)

P(them|cannon in front of)

P(them|cannon behind)
them 

of 

of them 

them 

P(them|cannon to right of)

P(front|cannon in)P(of|cannon in front)
P(them|cannon to left of)

P(left|cannon to)
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Language-HMMs for fixed length word sequences 



  Recognizing one of four lines from “charge of the light brigade” 
  If the probability of a word only depends on the preceding word, the 

graph can be collapsed: 
  e.g. P(them | cannon to right of) = P(them | cannon to left of) = 

P(cannon | of) 

to 

of Cannon them 

right 

left 

front in 

behind 

P(cannon)

P(to | cannon)

P(right | to)

P(in | cannon)

P(behind | cannon)

P(of | right)

P(of | left)

P(them | of)

P(them|behind)

Simplification of the language HMM through lower context 
language models 
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freezy 

breeze 

made 

these 

trees 

freeze 

three trees 

trees’ cheese 

Language HMMs for fixed-length word sequences: based 
on a grammar for Dr. Seuss 
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delete 

file 

all 
files 

open 

edit 

close 
marked 

Language HMMs for fixed-length word sequences: 
command and control grammar 
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  Constrained set of word sequences with 
constrained vocabulary are realistic 
  Typically in command-and-control situations 

  Example: operating TV remote 

  Simple dialog systems 
  When the set of permitted responses to a query is restricted 

  Unconstrained word sequences : NATURAL 
LANGUAGE 
  State-of-art large vocabulary decoders 

Language HMMs for arbitrarily long word sequences 



Language HMMs for natural language: N-gram 
representations 

  Unigram Model: A bag of words model:  
  The probability of a word is independent of the words preceding or 

succeeding it. 

P(When you wish upon a star) =  
P(When) P(you) P(wish) P(upon) P(a) P(star) P(END)   

  “END” is a special symbol, that indicates the end of the 
word sequence 

  P(END) is necessary – without it the word sequence would never 
terminate 



  Bigram language model: the probability of a word 
depends on the previous word 
  P(When you wish upon a star) = P(When|START)  

P(you |when) P(wish |you) …. P(Star | a) P(END|Star) 

  Trigram representations 
  P(When you wish upon a star) = P(When|START)  

P(you |START when) P(wish |when you) …. P(Star |upon  a) 
P(END|a Star) 

  Ngram representations allow us to represent free-form 
language as finite graphs 

Language HMMs for Natural language: N-
Gramrepresentations 



  There will be one path for every possible word sequence 
  A priori probabilitiy for a word sequence can be applied anywhere 

along the path representing that word sequence. 
  It is the structure and size of this graph that determines the 

feasibility of the recognition task  

Recognizing Natural Language: Choose between all infinite 
sentences 

. . . . . . .

the term cepstrum was introduced by Bogert et al and has come to be 

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum 

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper 

with the unusual title 

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance 

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an 

echo has an additive 

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power 

spectrum should exhibit a peak at the echo delay 
they called this function the cepstrum

interchanging letters in the word spectrum because 

in general, we find ourselves operating on the frequency side in ways customary 

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new 

signal processing technique however only the term cepstrum has been widely used
the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic 

systems for processing signals that have been combined by convolution
<s> </s>

Begin sentence marker End sentence marker



  A priori probabilities for word sequences are spread through the 
graph 
  They are applied on every edge 

  This is a much more compact representation of the language than 
the full graph shown earlier 
  But is still inifinitely large in size 

The left to right model: A Graphical View 
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song 

sing 

song 
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sing 

song 
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song 
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song 

sing 

song 

</s> 

• Assuming a two-word 
vocabulary: “sing” and 
“song”
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</s> 
P(</s>|<s>) 



  The structure is recursive and can be collapsed 

The two-word example as a full tree with a unigram LM 
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•  The structure is recursive and can be collapsed 

The two-word example as a full tree with a bigram LM 
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•  The structure is recursive and can be collapsed 

The two-word example as a full tree with a trigram LM 
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  The logic can be extended: 
  A trigram decoding structure for a vocabulary 

of D words needs D word instances at the 
first level and D2 word instances at the 
second level 
  Total of D(D+1) word models must be instantiated 
  Other, more expensive structures are also possible 

  An N-gram decoding structure will need 
  D + D2 +D3… DN-1  word instances 
  Arcs must be incorporated such that the exit from a 

word instance in the (N-1)th level always represents 
a word sequence with the same trailing sequence 
of  N-1 words 

Generic N-gram representations 



  N-gram probabilities must be estimated from data 

  Probabilities can be estimated simply by counting words in training 
text 

  E.g. the training corpus has 1000 words in 50 sentences, of which 
400 are “sing” and 600 are “song” 
  count(sing)=400; count(song)=600; count(</s>)=50 
  There are a total of 1050 tokens, including the 50 “end-of-sentence” 

markers 

  UNIGRAM MODEL:  
  P(sing) = 400/1050;  P(song) = 600/1050;  P(</s>) = 50/1050 

  BIGRAM MODEL: finer counting is needed. For example: 
  30 sentences begin with sing, 20 with song 

 We have 50 counts of <s> 
 P(sing | <s>) = 30/50;   P(song|<s>) = 20/50 

  10 sentences end with sing, 40 with song 
 P(</s> | sing) = 10/400;  P(</s>|song) = 40/600 

  300 instances of sing are followed by sing, 90 are followed by song 
 P(sing | sing) = 300/400; P(song | sing) = 90/400; 

  500 instances of song are followed by song, 60 by sing 
 P(song | song) = 500/600;  P(sing|song) = 60/600 

Estimating N-gram probabilities  



To Build a Speech Recognizer 
  Train word HMMs from many training instances 

  Typically one trains HMMs for individual phonemes, then 
concatenates them to make HMMs for words 

  Recognition, however is almost always done with WORD HMMs 
(and not phonemes as is often misunderstood) 

  Train or decide a language model for the task 
  Either a simple grammar or an N-gram model 

  Represent the language model as a compact graph 
  Introduce the appropriate HMM for each word in the 

graph to build a giant HMM 

  Use the Viterbi algorithm to find the best state sequence 
(and thereby the best word sequence) through the 
graph! 


