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Last Class: Representing Audio

n Basic DFT

n Computing a Spectrogram

n Computing additional features from a 

spectrogram
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What about images?

n DCT of small segments
q 8x8

q Each image becomes a matrix of DCT vectors

n DCT of the image
n Haar transform (checkerboard)
n Or data-driven representations..

DCT

Npixels / 64 columns
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Returning to Eigen Computation

n A collection of faces

q All normalized to 100x100 pixels

n What is common among all of them?

q Do we have a common descriptor?
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A least squares typical face

n Can we do better than a blank screen to find the most common portion of faces?

q The first checkerboard; the zeroth frequency component..

n Assumption: There is a “typical” face that captures most of what is common to 
all faces

q Every face can be represented by a scaled version of a typical face

n What is this face?

n Approximate every face f as f = wf V

n Estimate V to minimize the squared error

q How? 

q What is V?

The typical face
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A collection of least squares typical faces

n Assumption: There are a set of K “typical” faces that captures most of all faces

n Approximate every face f as f = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk

q V2 is used to “correct” errors resulting from using only V1

n So the total energy in wf,2 (S wf,2
2) must be lesser than the total energy in wf,1 (S wf,1

2) 

q V3 corrects errors remaining after correction with V2

n The total energy in wf,3 must be lesser than that even in wf,2

q And so on..

q V = [V1 V2 V3]

n Estimate V to minimize the squared error

q How? 

q What is V?



11-755 MLSP: Bhiksha Raj

A recollection

M = 

W = 

V=PINV(W)*M

?U = 
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How about the other way?

n W = M * Pinv(V)

M = 

W = ??

V = 

U = 
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How about the other way?

n W V \approx = M

M = 

W = ??

V = 

U = 

?
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Eigen Faces!

n Here W, V and U are ALL unknown and must be determined

q Such that the squared error between U and M is minimum

n Eigen analysis allows you to find W and V such that U = WV has the 
least squared error with respect to the original data M

n If the original data are a collection of faces, the columns of W are eigen

faces.

M = Data Matrix

U = Approximation

V

W
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Eigen faces

n Lay all faces side by side in vector form to form a 
matrix
q In my example: 300 faces. So the matrix is 10000 x 300

n Multiply the matrix by its transpose
q The correlation matrix is 10000x10000

M = Data Matrix

M
T
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Correlation=

10000x300

300x10000

10000x10000
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Eigen faces

n Compute the eigen vectors
q Only 300 of the 10000 eigen values are non-zero

n Why?

n Retain eigen vectors with high eigen values (>0)
q Could use a higher threshold

[U,S] = eig(correlation)
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Eigen Faces

n The eigen vector with the highest eigen value is the first typical 

face

n The vector with the second highest eigen value is the second 

typical face.

n Etc.
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Representing a face

n The weights with which the eigen faces must 

be combined to compose the face are used 

to represent the face!

= w1 +  w2 +  w3

Representation                               =     [w1 w2 w3 …. ]T
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SVD instead of Eigen

n Do we need to compute a 10000 x 10000 correlation matrix and then 
perform Eigen analysis?

q Will take a very long time on your laptop

n SVD

q Only need to perform “Thin” SVD. Very fast

n U = 10000 x 300

q The columns of U are the eigen faces!

q The Us corresponding to the “zero” eigen values are not computed

n S = 300 x 300

n V = 300 x 300

M = Data Matrix

10000x300

U=10000x300
S=300x300 V=300x300=
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NORMALIZING OUT 
VARIATIONS
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Images: Accounting for variations

n What are the obvious differences in the 

above images

n How can we capture these differences

q Hint – image histograms..
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Images -- Variations

n Pixel histograms: what are the differences
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Normalizing Image Characteristics

n Normalize the pictures

q Eliminate lighting/contrast variations

q All pictures must have “similar” lighting

n How?

n Lighting and contrast are represented in the image histograms:
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Histogram Equalization

n Normalize histograms of images

q Maximize the contrast

n Contrast is defined as the “flatness” of the histogram

n For maximal contrast, every greyscale must happen as frequently as every other 

greyscale

n Maximizing the contrast: Flattening the histogram

q Doing it for every image ensures that every image has the same constrast

n I.e. exactly the same histogram of pixel values

q Which should be flat

0 255
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Histogram Equalization

n Modify pixel values such that histogram becomes 
“flat”.

n For each pixel
q New pixel value = f(old pixel value)

q What is f()?

n Easy way to compute this function: map cumulative 
counts
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Cumulative Count Function

n The histogram (count) of a pixel value X is the 
number of pixels in the image that have value X
q E.g. in the above image, the count of pixel value 180 is 

about 110

n The cumulative count at pixel value X is the total 
number of pixels that have values in the range 0 <= 
x <= X
q CCF(X) =  H(1) + H(2) + .. H(X) 
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Cumulative Count Function

n The cumulative count function of a uniform 
histogram is a line

n We must modify the pixel values of the image 
so that its cumulative count is a line
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Mapping CCFs

n CCF(f(x)) -> a*f(x)   [of a*(f(x)+1) if pixels can take 
value 0]
q x = pixel value

q f() is the function that converts the old pixel value to a new 
(normalized) pixel value

q a = (total no. of pixels in image) / (total no. of pixel levels)

n The no. of pixel levels is 256 in our examples

n Total no. of pixels is 10000 in a 100x100 image

Move x axis levels around until the plot to the left

looks like the plot to the right
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Mapping CCFs

n For each pixel value x:
q Find the location on the red line that has the closet Y value 

to the observed CCF at x 
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Mapping CCFs

n For each pixel value x:
q Find the location on the red line that has the closet Y value 

to the observed CCF at x 

x1

x2

f(x1) = x2

x3

x4

f(x3) = x4

Etc.
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Mapping CCFs

n For each pixel in the image to the left

q The pixel has a value x

q Find the CCF at that pixel value CCF(x)

q Find x’ such that CCF(x’) in the function to the right equals 

CCF(x)

n x’ such that CCF_flat(x’) = CCF(x)

q Modify the pixel value to x’

Move x axis levels around until the plot to the left

looks like the plot to the right
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Doing it Formulaically

n CCFmin is the smallest non-zero value of CCF(x)

q The value of the CCF at the smallest observed pixel value

n Npixels is the total no. of pixels in the image

q 10000 for a 100x100 image

n Max.pixel.value is the highest pixel value

q 255 for 8-bit pixel representations
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Or even simpler

n Matlab:

q Newimage = histeq(oldimage)
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Histogram Equalization

n Left column: Original image

n Right column: Equalized image

n All images now have similar contrast levels
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Eigenfaces after Equalization

n Left panel : Without HEQ

n Right panel: With HEQ

q Eigen faces are more face like..

n Need not always be the case
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Detecting Faces in Images
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Detecting Faces in Images

n Finding face like patterns
q How do we find if a picture has faces in it

q Where are the faces?

n A simple solution:
q Define a “typical face”

q Find the “typical face” in the image
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Finding faces in an image

n Picture is larger than the “typical face”

q E.g. typical face is 100x100, picture is 600x800

n First convert to greyscale

q R + G + B

q Not very useful to work in color
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Finding faces in an image

n Goal .. To find out if and where images that 

look like the “typical” face occur in the picture
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Finding faces in an image

n Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

n Try to “match” the typical face to each 

location in the picture

n The “typical face” will explain some spots on 

the image much better than others

q These are the spots at which we probably have a 

face!
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How to “match”

n What exactly is the “match”

q What is the match “score”

n The DOT Product

q Express the typical face as a vector

q Express the region of the image being evaluated as a vector

n But first histogram equalize the region

q Just the section being evaluated, without considering the rest of the image

q Compute the dot product of the typical face vector and the 
“region” vector
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What do we get

n The right panel shows the dot product a 

various loctions

q Redder is higher

n The locations of peaks indicate locations of faces!
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What do we get

n The right panel shows the dot product a various 
loctions
q Redder is higher

n The locations of peaks indicate locations of faces!

n Correctly detects all three faces
q Likes George’s face most

n He looks most like the typical face

n Also finds a face where there is none!
q A false alarm
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Scaling and Rotation Problems

n Scaling
q Not all faces are the same size

q Some people have bigger faces

q The size of the face on the image 
changes with perspective

q Our “typical face” only represents 
one of these sizes

n Rotation
q The head need not always be 

upright!

n Our typical face image was 
upright
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Solution

n Create many “typical faces”
q One for each scaling factor

q One for each rotation
n How will we do this?

n Match them all

n Does this work
q Kind of .. Not well enough at all

q We need more sophisticated models
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Face Detection: A Quick Historical Perspective

n Many more complex methods
q Use edge detectors and search for face like patterns
q Find “feature” detectors (noses, ears..) and employ them in 

complex neural networks..

n The Viola Jones method
q Boosted cascaded classifiers

n But first, what is boosting
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And even before that – what is classification?

n Given “features” describing an entity, determine the 
category it belongs to

q Walks on two legs, has no hair. Is this

n A Chimpanizee

n A Human

q Has long hair, is 5’4” tall, is this

n A man

n A woman

q Matches “eye” pattern with score 0.5, “mouth pattern” with 

score 0.25, “nose” pattern with score 0.1. Are we looking at

n A face

n Not a face?
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Classification

n Multi-class classification
q Many possible categories

n E.g. Sounds “AH, IY, UW, EY..”

n E.g. Images “Tree, dog, house, person..”

n Binary classification
q Only two categories

n Man vs. Woman

n Face vs. not a face..

n Face detection: Recast as binary face classification
q For each little square of the image, determine if the square 

represents a face or not
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Face Detection as Classification

n Faces can be many sizes

n They can happen anywhere in the image

n For each face size

q For each location

n Classify a rectangular region of the face size, at that location, as a 
face or not a face

n This is a series of binary classification problems

For each square, run a

classifier to find out if it

is a face or not
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Introduction to Boosting
n An ensemble method that sequentially combines many simple 

BINARY classifiers to construct a final complex classifier

q Simple classifiers are often called “weak” learners

q The complex classifiers are called “strong” learners

n Each weak learner focuses on instances where the previous 
classifier failed

q Give greater weight to instances that have been incorrectly 

classified by previous learners

n Restrictions for weak learners

q Better than 50% correct

n Final classifier is weighted sum of weak classifiers
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Boosting: A very simple idea
n One can come up with many rules to classify

q E.g. Chimpanzee vs. Human classifier:

q If arms == long, entity is chimpanzee

q If height > 5’6” entity is human

q If lives in house == entity is human

q If lives in zoo == entity is chimpanzee

n Each of them is a reasonable rule, but makes many mistakes

q Each rule has an intrinsic error rate

n Combine the predictions of these rules

q But not equally

q Rules that are less accurate should be given lesser weight
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Boosting and the Chimpanzee Problem

n The total confidence in all classifiers that classify the entity as a chimpanzee is

n The total confidence in all classifiers that classify it as a human is 

n If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is 
greater than the belief that we have a human

∑=

chimpanzeefavorsclassifier

chimpScore

   

classifiera

∑=

humanfavorsclassifier

humanScore

   

classifiera

Arm length?

aaaaarmlength

Height?

aaaaheight

Lives in house?

aaaahouse

Lives in zoo?

aaaazoo

human human chimp chimp
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Boosting as defined by Freund
n A gambler wants to write a program to predict winning horses. His 

program must encode the expertise of his brilliant winner friend

n The friend has no single, encodable algorithm. Instead he has many 
rules of thumb

q He uses a different rule of thumb for each set of races

n E.g. “in this set, go with races that have black horses with stars on 

their foreheads”

q But cannot really enumerate what rules of thumbs go with 

what sets of races: he simply “knows” when he encounters  
a set

n A common problem that faces us in many situations

n Problem:

q How best to combine all of the friend’s rules of thumb

q What is the best set of races to present to the friend, to 
extract the various rules of thumb
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Boosting

n The basic idea: Can a “weak” learning 
algorithm that performs just slightly better than 
random guessing be boosted into an arbitrarily 
accurate “strong” learner

q Each of the gambler’s rules may be just better 

than random guessing

n This is  a “meta” algorithm, that poses no 
constraints on the form of the weak learners 
themselves

q The gambler’s rules of thumb can be anything
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Boosting: A Voting Perspective

n Boosting can be considered a form of voting

q Let a number of different classifiers classify the data

q Go with the majority

q Intuition says that as the number of classifiers increases, 
the dependability of the majority vote increases

n The corresponding algorithms were called Boosting 
by majority

q A (weighted) majority vote taken over all the classifiers

q How do we compute weights for the classifiers?

q How do we actually train the classifiers
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ADA Boost: Adaptive algorithm for 
learning the weights

n ADA Boost: Not named of ADA Lovelace

n An adaptive algorithm that learns the weights 
of each classifier sequentially
q Learning adapts to the current accuracy

n Iteratively:
q Train a simple classifier from training data

n It will make errors even on training data

n Train a new classifier that focuses on the training data 
points that have been misclassified
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n Red dots represent training data from Red class

n Blue dots represent training data from Blue class

Boosting: An Example
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n Very simple weak learner
q A line that is parallel to one of the two axes

Blue classRed class

Boosting: An Example
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n First weak learner makes many mistakes
q Errors coloured black

Blue classRed class

Boosting: An Example
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n Second weak learner focuses on errors made by 

first learner

Blue classRed class

Blue class

Red class

Boosting: An Example
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§Second strong  learner: weighted combination of first and 

second weak learners

� Decision boundary shown by black lines

BLUE

RED

RED

RED

Boosting: An Example
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n The second strong learner also makes 

mistakes
q Errors colored black

BLUE

RED

RED

RED

Boosting: An Example
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n Third weak learner concentrates on errors 

made by second strong learner

Blue class

Red class

BLUE

RED

RED

RED

Boosting: An Example
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§Third weak learner concentrates on errors made by 
combination of previous weak learners

§Continue adding weak learners until….

Blue classRed class

Blue class

Red class

Blue class

Red class

Boosting: An Example
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Boosting: An Example

n Voila! Final strong learner: very few errors on the 
training data
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Boosting: An Example

n The final strong learner has learnt a complicated 

decision boundary
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Boosting: An Example

n The final strong learner has learnt a complicated 
decision boundary

n Decision boundaries in areas with low density of training 
points assumed inconsequential
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Overall Learning Pattern
§Strong learner increasingly accurate with increasing 

number of weak learners

§Residual errors increasingly difficult to correct

� Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

number of weak learners
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ADABoost

n Cannot just add new classifiers that work well only 
the the previously misclassified data

n Problem: The new classifier will make errors on the 
points that the earlier classifiers got right
q Not good

q On test data we have no way of knowing which points were 
correctly classified by the first classifier

n Solution: Weight the data when training the second 
classifier
q Use all the data but assign them weights

n Data that are already correctly classified have less weight

n Data that are currently incorrectly classified have more weight
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ADA Boost

n The red and blue points (correctly classified) will have a weight a < 1

n Black points (incorrectly classified) will have a weight b (= 1/a)> 1

n To compute the optimal second classifier, we minimize the total 
weighted error

q Each data point contributes a or b to the total count of correctly and 
incorrectly classified points

n E.g. if one of the red points is misclassified by the new classifier, the total 
error of the new classifier goes up by a
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ADA Boost

n Each new classifier modifies the weights of the data 

points based on the accuracy of the current 
classifier

n The final classifier too is a weighted 

combination of all component classifiers



11-755 MLSP: Bhiksha Raj

Formalizing the Boosting Concept
n Given a set of instances (x1, y1), (x2, y2),… (xN, yN)

q xi is the set of attributes of the ith instance

q y1 is the class for the ith instance

n y1 can be 1 or -1  (binary classification only)

n Given a set of classifiers h1, h2, … , hT

q hi classifies an instance with attributes x as hi(x)

q hi(x) is either -1 or +1 (for a binary classifier)

q y*h(x) is 1 for all correctly classified points and -1 for incorrectly 
classified points

n Devise a function f (h1(x), h2(x),…, hT(x)) such that classification 

based on f () is superior to classification by any hi(x)

q The function is succinctly represented as f (x)
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The Boosting Concept

n A simple combiner function: Voting

q f (x) = Si hi(x)

q Classifier H(x) = sign(f (x)) = sign(Si hi(x))

q Simple majority classifier

n A simple voting scheme

n A better combiner function: Boosting

q f (x) = Si ai hi(x)

n Can be any real number

q Classifier H(x) = sign(f (x)) = sign(Si ai hi(x))

q A weighted majority classifier

n The weight ai for any hi(x) is  a measure of our trust in hi(x)
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Adaptive Boosting
n As before:

q y is either -1 or +1

q H(x) is +1 or -1

q If the instance is correctly classified, both y and 
H(x) will have the same sign

n The product y.H(x) is 1

n For incorrectly classified instances the product is -1

n Define the error for x : ½(1 – yH(x))

q For a correctly classified instance, this is 0

q For an incorrectly classified instance, this is 1
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The ADABoost Algorithm
n Given: a set (x1, y1), … (xN, yN) of training 

instances
q xi is the set of attributes for the ith instance

q yi is the class for the ith instance and can be either 
+1 or -1
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The ADABoost Algorithm

n Initialize D1(xi) = 1/N

n For t = 1, …, T
q Train a weak classifier ht using distribution Dt

q Compute total error on training data
n et = Sum {½ (1 – yi ht(xi))}

q Set at = ½ ln ((1 – et) / et)

q For i = 1… N 
n set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

q Normalize Dt+1 to make it a distribution

n The final classifier is
q H(x) = sign(St at ht(x))
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ADA Boost

n Initialize D1(xi) = 1/N

n Just a normalization:  total weight of all 

instances is 1

q Makes the algorithm invariant to training data set 

size
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n Initialize D1(xi) = 1/N

n For t = 1, …, T
q Train a weak classifier ht using distribution Dt

q Compute total error on training data
n et = Sum {½ (1 – yi ht(xi))}

q Set at = ½ ln ((1 – et) / et)

q For i = 1… N 
n set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

q Normalize Dt+1 to make it a distribution

n The final classifier is
q H(x) = sign(St at ht(x))

The ADABoost Algorithm

32
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ADA Boost

n Train a weak classifier ht using distribution Dt

n Simply train the simple classifier that that classifies data with error  
50%

q Where each data x point contributes D(x) towards the count 
of errors or correct classification

q Initially D(x) = 1/N for all data

n Better to actually train a good classifier
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n Initialize D1(xi) = 1/N

n For t = 1, …, T
q Train a weak classifier ht using distribution Dt

q Compute total error on training data
n et = Sum {½ (1 – yi ht(xi))}

q Set at = ½ ln ((1 – et) / et)

q For i = 1… N 
n set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

q Normalize Dt+1 to make it a distribution

n The final classifier is
q H(x) = sign(St at ht(x))

The ADABoost Algorithm

32
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ADA Boost

n Compute total error on training data

q et = Sum {½ (1 – yi ht(xi))}

n For each data point x, ½(1-y.h(x)) = 0 for correct 

classification, 1 for error

n et is simply the sum of the weights D(x) for all points 
that are misclassified by the latest classifier ht(x)

q Will lie between 0 and 1
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n Initialize D1(xi) = 1/N

n For t = 1, …, T
q Train a weak classifier ht using distribution Dt

q Compute total error on training data
n et = Sum {½ (1 – yi ht(xi))}

q Set at = ½ ln ((1 – et) / et)

q For i = 1… N 
n set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

q Normalize Dt+1 to make it a distribution

n The final classifier is
q H(x) = sign(St at ht(x))

The ADABoost Algorithm
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Classifier Weight
n Set at = ½ ln ((1-et )/et)

n The at for any classifier is always positive

n The weight for the tth classifier is a function of its error

q The poorer the classifier is, the closer at is to 0

q If the error of the classifier is exactly 0.5, at is 0.

n We don’t trust such classifiers at all J

q If the error  approaches 0, at becomes high

n We trust these classifiers
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n Initialize D1(xi) = 1/N

n For t = 1, …, T
q Train a weak classifier ht using distribution Dt

q Compute total error on training data
n et = Average {½ (1 – yi ht(xi))}

q Set at = ½ ln ((1 – et) / et)

q For i = 1… N 
n set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

q Normalize Dt+1 to make it a distribution

n The final classifier is
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ADA Boost

n For i = 1… N 

q set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

n Normalize Dt+1 to make it a distribution

n Readjusting the weights of all training instances

q If the instance is correctly classified, multiply its weight by 

b (= exp(- at)) < 1

q If it is misclassified, multiply its weight by 

b (= exp(at)) > 1

n Renormalize, so they all sum to 1

q ∑=
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n Initialize D1(xi) = 1/N

n For t = 1, …, T
q Train a weak classifier ht using distribution Dt

q Compute total error on training data
n et = Average {½ (1 – yi ht(xi))}

q Set at = ½ ln ((1 – et) / et)

q For i = 1… N 
n set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))

q Normalize Dt+1 to make it a distribution

n The final classifier is
q H(x) = sign(St at ht(x))
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ADA Boost

n The final classifier is

q H(x) = sign(St at ht(x))

n The output is 1 if the total weight of all weak 

learners that classify x as 1 is greater than 

the total weight of all weak learners that 

classify it as -1
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Next Class

n Fernando De La Torre

n We will continue with Viola Jones after a few 

classes


