11-755 Machine Learning for Signal Processing

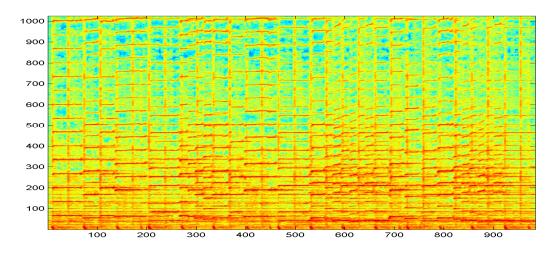
## Representing Images Detecting faces in images

Class 5. 15 Sep 2009

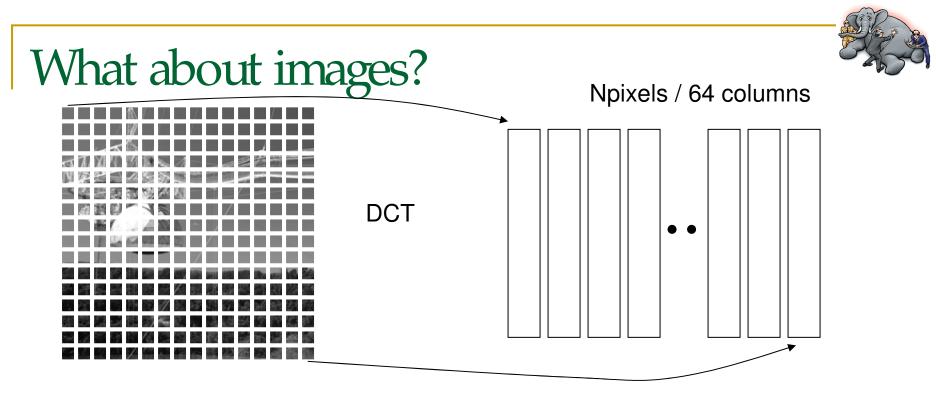
Instructor: Bhiksha Raj



#### Last Class: Representing Audio



- n Basic DFT
- n Computing a Spectrogram
- n Computing additional features from a spectrogram



- n DCT of small segments
  - 8x8 p
  - $_{\mbox{\tiny q}}$  Each image becomes a matrix of DCT vectors
- n DCT of the image
- n Haar transform (checkerboard)
- n Or data-driven representations..



#### Returning to Eigen Computation











- n A collection of faces
  - $_{\rm q}\,$  All normalized to 100x100 pixels
- n What is common among all of them?
  - $_{\rm q}\,$  Do we have a common descriptor?



#### A least squares typical face

















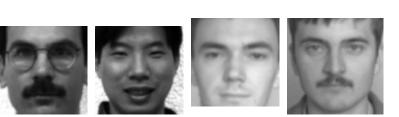




- <sup>n</sup> Can we do better than a blank screen to find the most common portion of faces?
  - The first checkerboard; the zeroth frequency component..
- Assumption: There is a "typical" face that captures most of what is common to all faces
  - g Every face can be represented by a scaled version of a typical face
    - What is this face?
- n Approximate **every** face f as  $f = w_f V$
- $\ensuremath{\,{\scriptscriptstyle n}}$  Estimate V to minimize the squared error
  - g How?
  - $_{\mbox{\tiny q}}$  What is V?

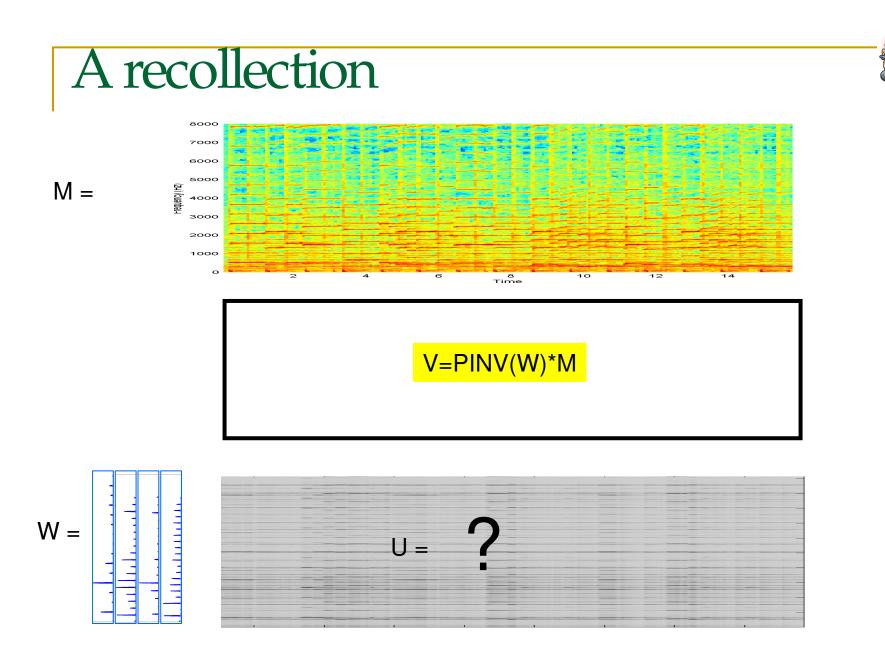
#### A collection of least squares typical faces



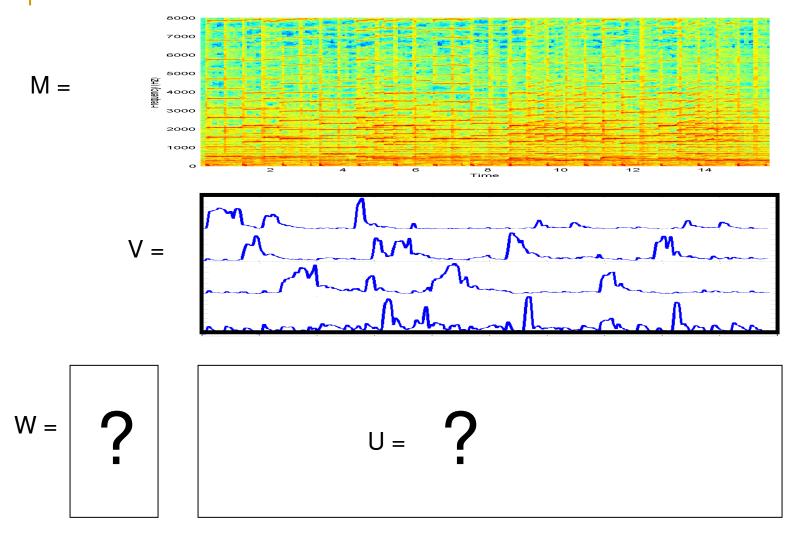




- n Assumption: There are a set of K "typical" faces that captures most of all faces
- Approximate **every** face f as  $f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + ... + w_{f,k} V_k$ 
  - $_{\mathbb{T}}$   $\,\,\, V_2^{}$  is used to "correct" errors resulting from using only  $V_1^{}$ 
    - So the total energy in  $W_{f,2}$  (S  $w_{f,2}^2$ ) must be lesser than the total energy in  $W_{f,1}$  (S  $w_{f,1}^2$ )
  - $_{\mbox{\tiny q}} \quad V_3$  corrects errors remaining after correction with  $V_2$ 
    - The total energy in  $W_{f,3}$  must be lesser than that even in  $W_{f,2}$
  - $_{\text{q}}$  And so on..
  - $\mathbf{q} \quad \mathbf{V} = \begin{bmatrix} \mathbf{V}_1 \ \mathbf{V}_2 \ \mathbf{V}_3 \end{bmatrix}$
- n Estimate V to minimize the squared error
  - g How?
  - g What is V?

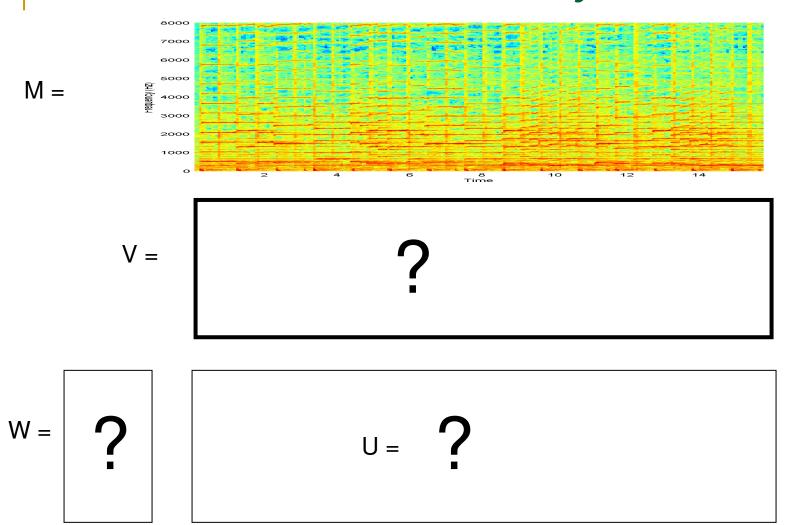


#### How about the other way?

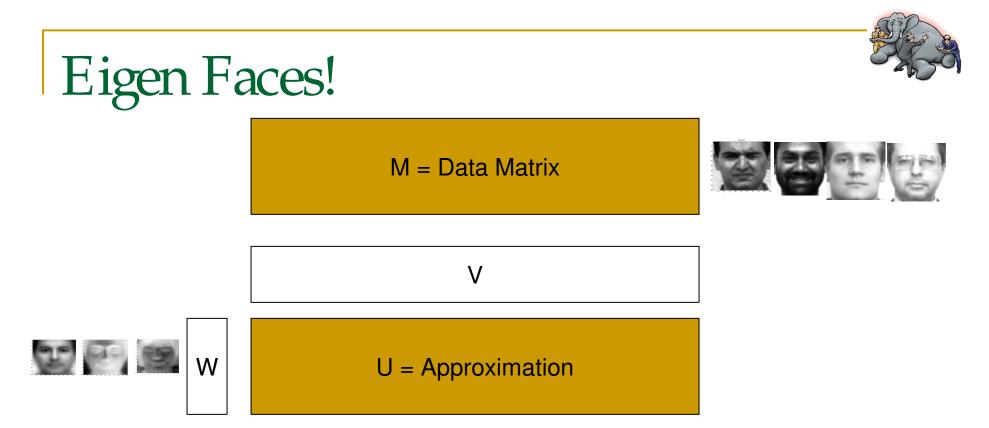


M = M \* Pinv(V)

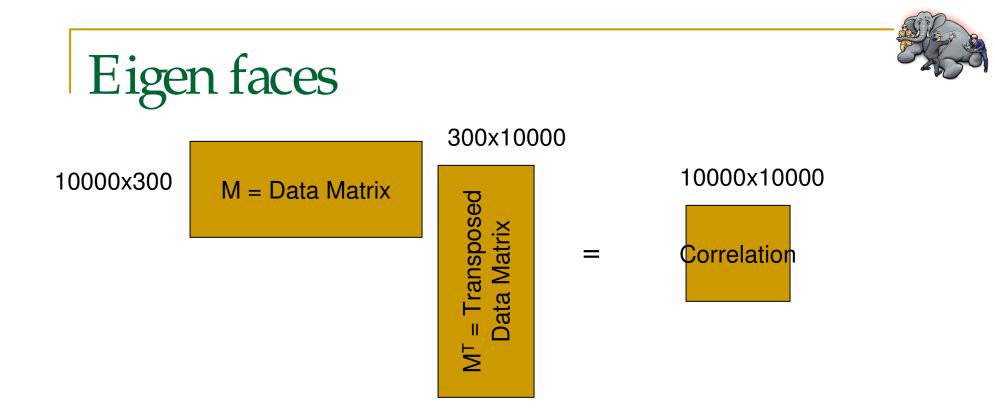
#### How about the other way?



 $M W V \land approx = M$ 



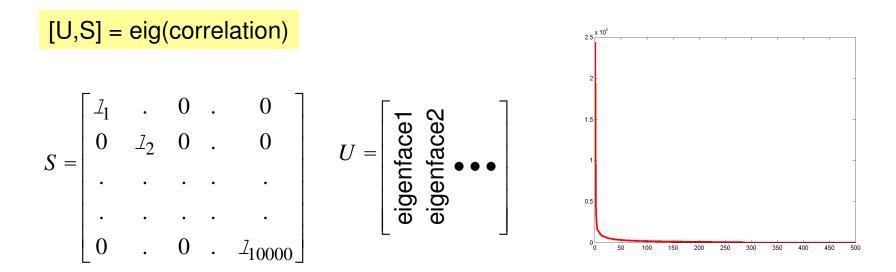
- <sup>n</sup> Here W, V and U are ALL unknown and must be determined
  - $_{\rm q}$  Such that the squared error between U and M is minimum
- n Eigen analysis allows you to find W and V such that U = WV has the least squared error with respect to the original data M
- n If the original data are a collection of faces, the columns of W are *eigen faces.*



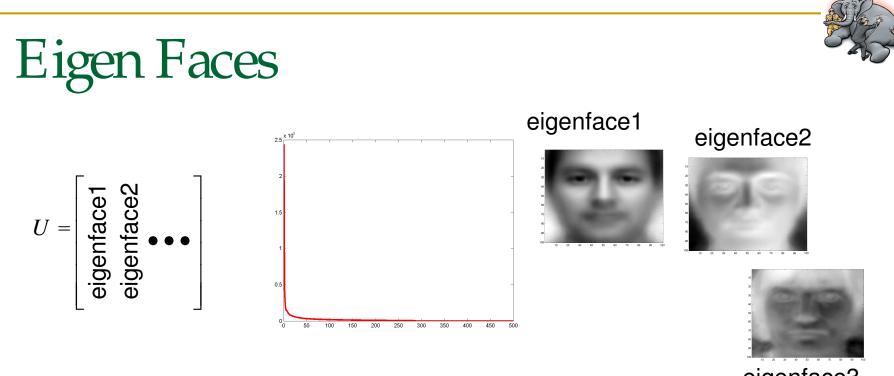
- Lay all faces side by side in vector form to form a matrix
  - In my example: 300 faces. So the matrix is 10000 x 300  $\times$
- n Multiply the matrix by its transpose
  - The correlation matrix is 10000x10000



Eigen faces



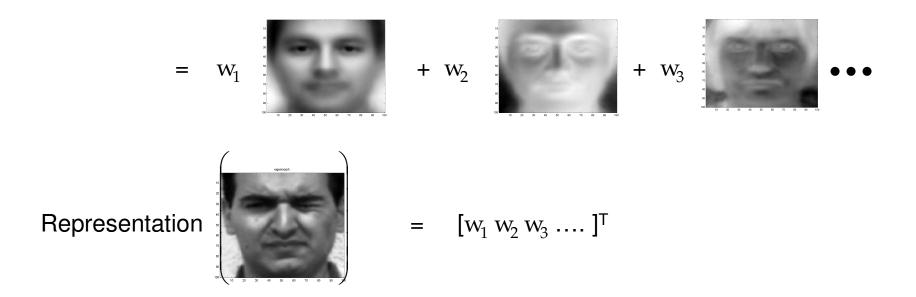
- n Compute the eigen vectors
  - Only 300 of the 10000 eigen values are non-zero
    Mhy?
- Retain eigen vectors with high eigen values (>0)
  - $_{\mbox{\tiny q}}$  Could use a higher threshold



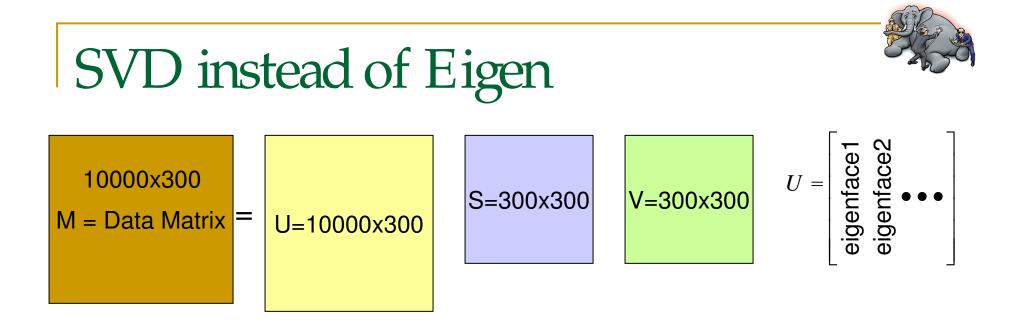
- eigenface3
- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- n Etc.



#### Representing a face



n The weights with which the eigen faces must be combined to compose the face are used to represent the face!

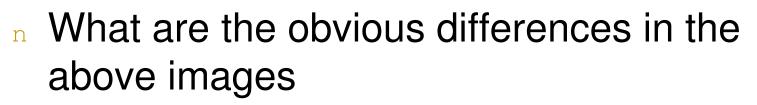


- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
  - Image: Will take a very long time on your laptop
- n SVD
  - <sup>q</sup> Only need to perform "Thin" SVD. Very fast
    - n  $U = 10000 \times 300$ 
      - <sup>q</sup> The columns of U are the eigen faces!
      - The Us corresponding to the "zero" eigen values are not computed
    - n S = 300 x 300
    - n V = 300 x 300

#### NORMALIZING OUT VARIATIONS

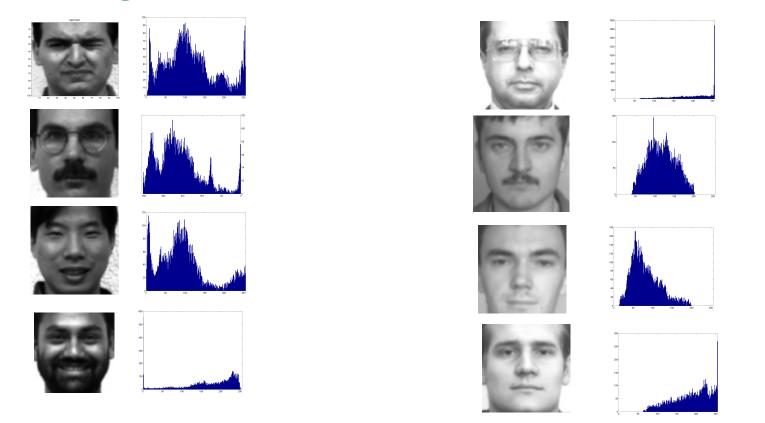
#### Images: Accounting for variations





How can we capture these differences
 <sup>q</sup> Hint – image histograms..

#### Images -- Variations



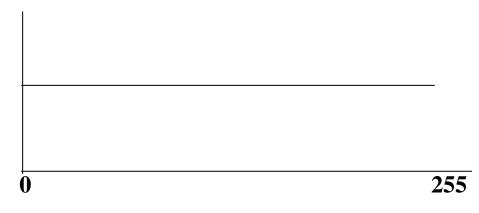
#### n Pixel histograms: what are the differences

#### Normalizing Image Characteristics

- n Normalize the pictures
  - g Eliminate lighting/contrast variations
  - qAll pictures must have "similar" lighting
    - n How?
- <sup>n</sup> Lighting and contrast are represented in the image histograms:

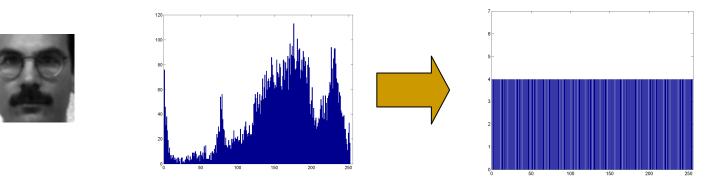
#### Histogram Equalization

- n Normalize histograms of images
  - g Maximize the contrast
    - n Contrast is defined as the "flatness" of the histogram
    - n For maximal contrast, every greyscale must happen as frequently as every other greyscale



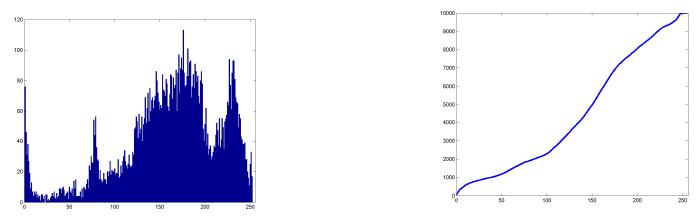
- n Maximizing the contrast: Flattening the histogram
  - $_{\rm q}$   $\,$  Doing it for every image ensures that every image has the same constrast
    - n I.e. exactly the same histogram of pixel values
      - $_{\mbox{\scriptsize q}}$  Which should be flat

#### Histogram Equalization



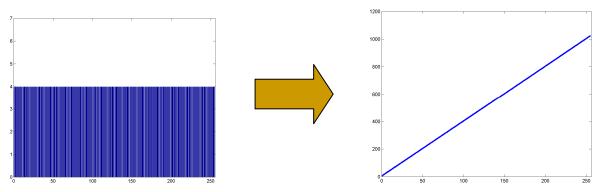
- Modify pixel values such that histogram becomes "flat".
- <sup>n</sup> For each pixel
  - new pixel value = f(old pixel value)
  - g What is f()?
- Easy way to compute this function: map cumulative counts

#### Cumulative Count Function

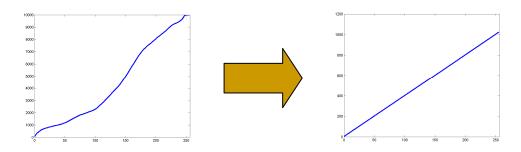


- The histogram (count) of a pixel value X is the number of pixels in the image that have value X
  - E.g. in the above image, the count of pixel value 180 is about 110
- The cumulative count at pixel value X is the total number of pixels that have values in the range 0 <= X <= X</p>
  - G CCF(X) = H(1) + H(2) + ... H(X)

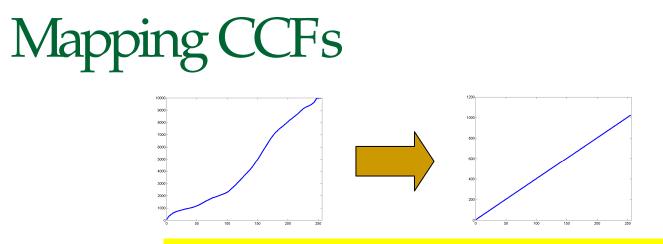
#### Cumulative Count Function



n The cumulative count function of a uniform histogram is a line



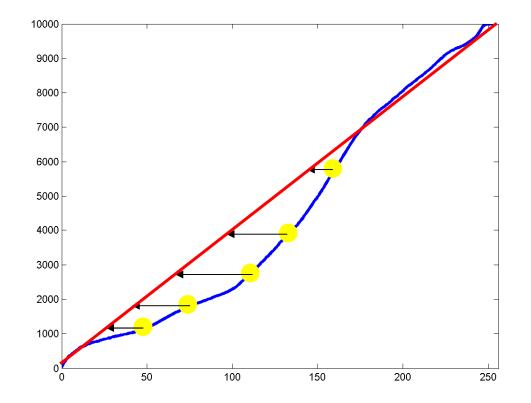
Note that we want the second secon



Move x axis levels around until the plot to the left looks like the plot to the right

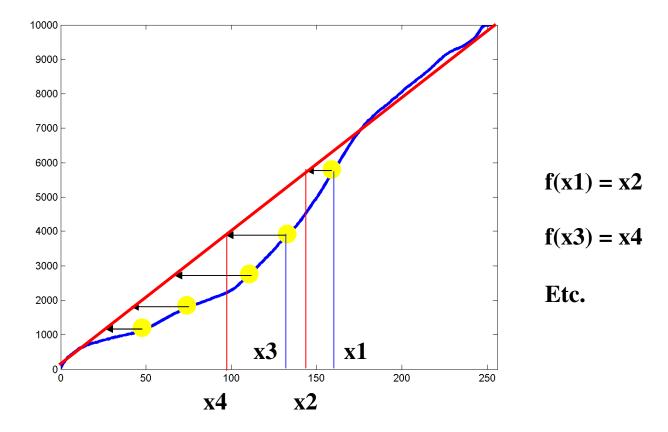
- n CCF(f(x)) -> a\*f(x) [of a\*(f(x)+1) if pixels can take value 0]
  - x = pixel value
  - f() is the function that converts the old pixel value to a new (normalized) pixel value
  - a = (total no. of pixels in image) / (total no. of pixel levels)
    - n The no. of pixel levels is 256 in our examples
    - n Total no. of pixels is 10000 in a 100x100 image

### Mapping CCFs

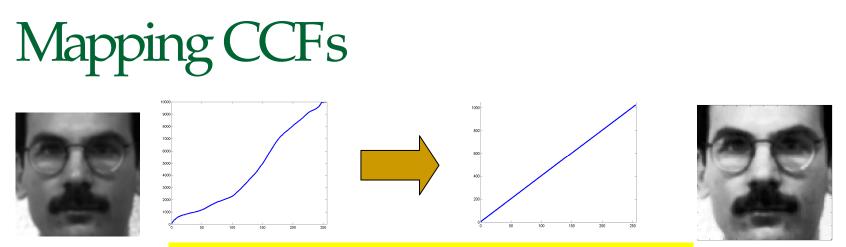


- <sup>n</sup> For each pixel value x:
  - $_{\mbox{\tiny q}}$  Find the location on the red line that has the closet Y value to the observed CCF at x

### Mapping CCFs



- <sup>n</sup> For each pixel value x:
  - $_{\rm q}\,$  Find the location on the red line that has the closet Y value to the observed CCF at x



Move x axis levels around until the plot to the left looks like the plot to the right

- <sup>n</sup> For each pixel in the image to the left
  - $_{\rm q}$  The pixel has a value x
  - $_{\text{q}}$  Find the CCF at that pixel value CCF(x)
  - $\space{1.5}$  Find x' such that CCF(x') in the function to the right equals CCF(x)
    - n x' such that  $CCF_flat(x') = CCF(x)$
  - $_{\rm q}$  Modify the pixel value to x'

# Doing it Formulaically

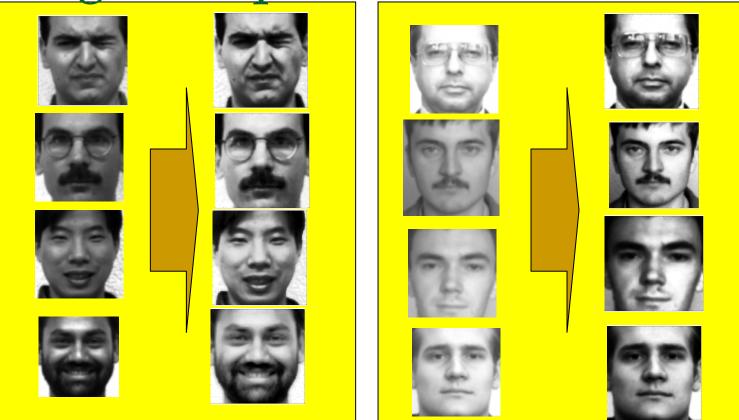
$$f(x) = round\left(\frac{CCF(x) - CCF_{\min}}{Npixels - CCF_{\min}}Max.pixel.value\right)$$

- <sup>n</sup>  $CCF_{min}$  is the smallest non-zero value of CCF(x)
  - The value of the CCF at the smallest observed pixel value
- n Npixels is the total no. of pixels in the image
  - 10000 for a 100x100 image
- Max.pixel.value is the highest pixel value
  - Page255 for 8-bit pixel representations

Or even simpler

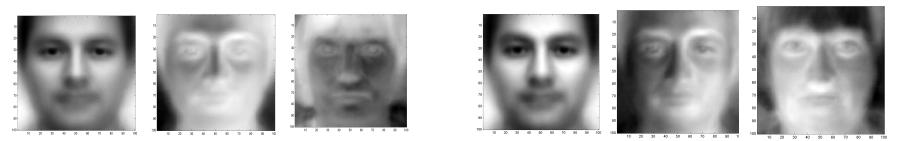
- n Matlab:
  - g Newimage = histeq(oldimage)

#### Histogram Equalization



- n Left column: Original image
- n Right column: Equalized image
- n All images now have similar contrast levels

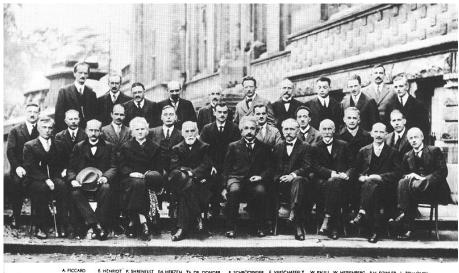
#### Eigenfaces after Equalization



- n Left panel : Without HEQ
- n Right panel: With HEQ
  - $_{\rm q}\,$  Eigen faces are more face like..
    - n Need not always be the case

#### Detecting Faces in Images

#### Detecting Faces in Images



A PICCARD E-HENROF'R EHRINEST EA HERZEN TA DE DONDER E SCHROONGER E VERSCHAFFELT W PAUL W. HERENBERG EN FOWLER L BNLLOUIN P. DEEVE M. KINLOSEN WIL BRAGG MA KAMRES P.AN DINC A-J. COMPTON L -44 BROLLE M. BORN N BOHR L LANGMUIR M. PLANCK MR CUBE H-A. LORENTZ A. EINSTEIN P. LANGENIN P. C. C. C. W. C. C. T.E. WISSON O'M, BICHARDSON

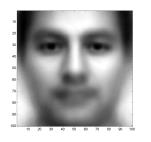
- n Finding face like patterns
  - $_{\mbox{\tiny q}}$  How do we find if a picture has faces in it
  - g Where are the faces?
- n A simple solution:
  - g Define a "typical face"
  - $_{\mbox{\tiny T}}$  Find the "typical face" in the image

#### Finding faces in an image



- n Picture is larger than the "typical face"
  - $_{\rm q}\,$  E.g. typical face is 100x100, picture is 600x800
- <sup>n</sup> First convert to greyscale
  - g R + G + B
  - $_{\rm q}$  Not very useful to work in color

#### Finding faces in an image





n Goal .. To find out if and where images that look like the "typical" face occur in the picture

#### Finding faces in an image



n Try to "match" the typical face to each location in the picture







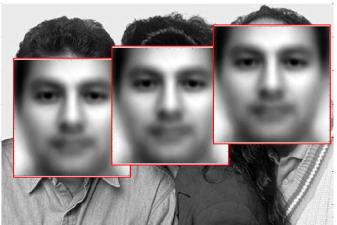






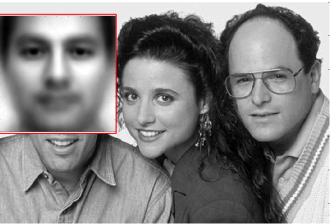




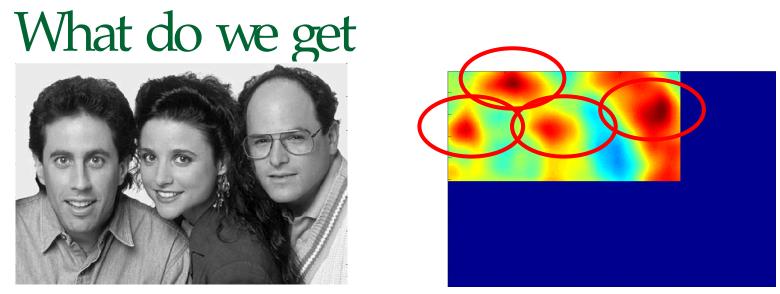


- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
  - These are the spots at which we probably have a face!

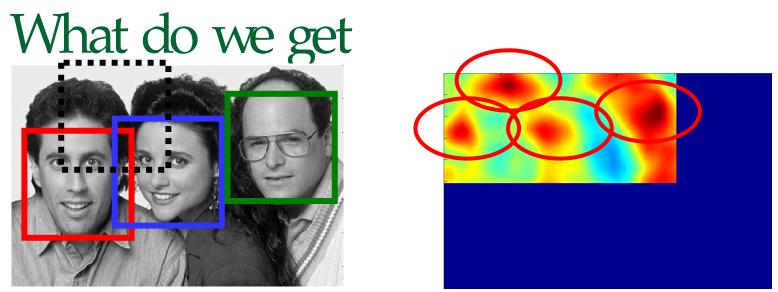
### How to "match"



- n What exactly is the "match"
  - g What is the match "score"
- n The DOT Product
  - g Express the typical face as a vector
  - $_{\mbox{\tiny q}}$  Express the region of the image being evaluated as a vector
    - n But first histogram equalize the region
      - Just the section being evaluated, without considering the rest of the image
  - G Compute the dot product of the typical face vector and the "region" vector



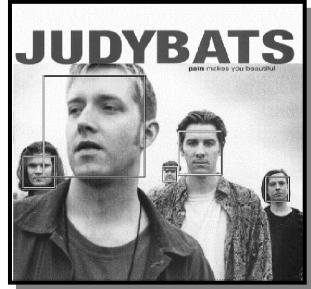
- n The right panel shows the dot product a various loctions
  - qRedder is higher
    - n The locations of peaks indicate locations of faces!



- The right panel shows the dot product a various loctions
  - Image: general sectorRedder is higher
    - <sup>n</sup> The locations of peaks indicate locations of faces!
- n Correctly detects all three faces
  - g Likes George's face most
    - n He looks most like the typical face
- <sup>n</sup> Also finds a face where there is none!
  - g A false alarm

### Scaling and Rotation Problems

- n Scaling
  - not all faces are the same size
  - g Some people have bigger faces
  - The size of the face on the image changes with perspective
  - Image: General SystemOur "typical face" only represents<br/>one of these sizes
- n Rotation
  - The head need not always be upright!
    - Our typical face image was upright





## Solution









- n Create many "typical faces"
  - $_{\rm q}$  One for each scaling factor
  - $_{\rm q}$  One for each rotation
    - <sup>n</sup> How will we do this?
- n Match them all
- n Does this work
  - $_{\mbox{\tiny q}}$  Kind of .. Not well enough at all
  - g We need more sophisticated models





### Face Detection: A Quick Historical Perspective

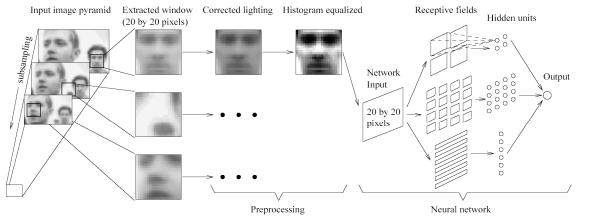


Figure 1: The basic algorithm used for face detection.

- n Many more complex methods
  - $_{\rm q}$  Use edge detectors and search for face like patterns
  - Find "feature" detectors (noses, ears..) and employ them in complex neural networks..
- n The Viola Jones method
  - g Boosted cascaded classifiers
- n But first, what is boosting

#### And even before that – what is classification?

- n Given "features" describing an entity, determine the category it belongs to
  - $_{\mbox{\tiny q}}$  Walks on two legs, has no hair. Is this
    - n A Chimpanizee
    - n A Human
  - $_{\mbox{\tiny q}}$  Has long hair, is 5'4" tall, is this
    - n A man
    - n A woman
  - <sup>q</sup> Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25, "nose" pattern with score 0.1. Are we looking at
    - n A face
    - n Not a face?

# Classification

- n Multi-class classification
  - g Many possible categories
    - n E.g. Sounds "AH, IY, UW, EY.."
    - <sup>n</sup> E.g. Images "Tree, dog, house, person.."
- <sup>n</sup> Binary classification
  - Image: general contract of the second seco
    - n Man vs. Woman
    - <sup>n</sup> Face vs. not a face..
- <sup>n</sup> Face detection: Recast as binary face classification
  - For each little square of the image, determine if the square represents a face or not

### Face Detection as Classification



For each square, run a classifier to find out if it is a face or not

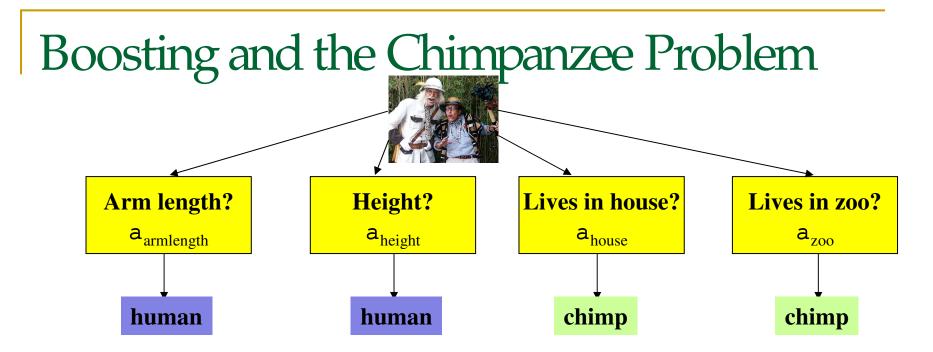
- <sup>n</sup> Faces can be many sizes
- n They can happen anywhere in the image
- n For each face size
  - $_{\rm q}$  For each location
    - Classify a rectangular region of the face size, at that location, as a face or not a face
- n This is a series of *binary* classification problems

# Introduction to Boosting

- An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier
  - g Simple classifiers are often called "weak" learners
  - The complex classifiers are called "strong" learners
- n Each weak learner focuses on instances where the previous classifier failed
  - Give greater weight to instances that have been incorrectly classified by previous learners
- n Restrictions for weak learners
  - <sup>q</sup> Better than 50% correct
- <sup>n</sup> Final classifier is *weighted* sum of weak classifiers

### Boosting: A very simple idea

- <sup>n</sup> One can come up with many rules to classify
  - g E.g. Chimpanzee vs. Human classifier:
  - $_{\text{q}}$  If arms == long, entity is chimpanzee
  - $_{\text{q}}$  If height > 5'6" entity is human
  - g If lives in house == entity is human
  - <sup>q</sup> If lives in zoo == entity is chimpanzee
- n Each of them is a reasonable rule, but makes many mistakes
  - g Each rule has an intrinsic error rate
- n *Combine* the predictions of these rules
  - g But not equally
  - Rules that are less accurate should be given lesser weight



<sup>n</sup> The total confidence in all classifiers that classify the entity as a chimpanzee is

$$Score_{chimp} = \sum_{classifier favors chimpanzee} a_{classifier}$$

<sup>n</sup> The total confidence in all classifiers that classify it as a human is

$$Score_{human} = \sum_{classifier favors human} a_{classifier}$$

<sup>n</sup> If *Score<sub>chimpanzee</sub> > Score<sub>human</sub>* then the our belief that we have a chimpanzee is greater than the belief that we have a human

# Boosting as defined by Freund

- A gambler wants to write a program to predict winning horses. His program must encode the expertise of his brilliant winner friend
- The friend has no single, encodable algorithm. Instead he has many rules of thumb
  - He uses a different rule of thumb for each set of races
    - n E.g. "in this set, go with races that have black horses with stars on their foreheads"
  - But cannot really enumerate what rules of thumbs go with what sets of races: he simply "knows" when he encounters a set
    - <sup>n</sup> A common problem that faces us in many situations
- n Problem:
  - How best to combine all of the friend's rules of thumb
  - What is the best set of races to present to the friend, to extract the various rules of thumb

# Boosting

- n The basic idea: Can a "weak" learning algorithm that performs just slightly better than random guessing be *boosted* into an arbitrarily accurate "strong" learner
  - g Each of the gambler's rules may be just better than random guessing
- n This is a "meta" algorithm, that poses no constraints on the form of the weak learners themselves
  - The gambler's rules of thumb can be anything

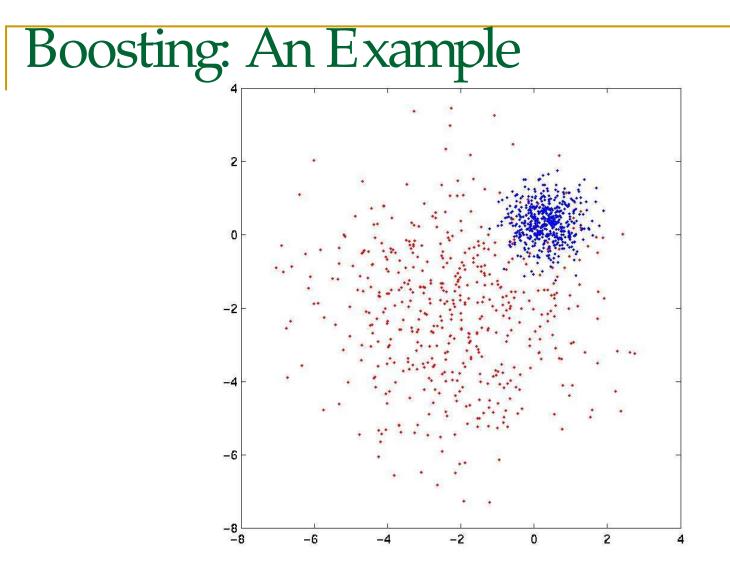
# Boosting: A Voting Perspective

<sup>n</sup> Boosting can be considered a form of voting

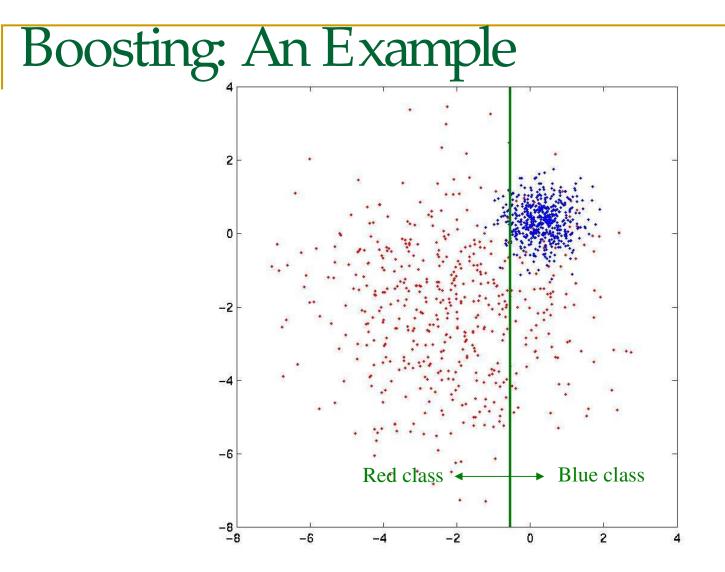
- Let a number of different classifiers classify the data
- Go with the majority
- Intuition says that as the number of classifiers increases, the dependability of the majority vote increases
- The corresponding algorithms were called Boosting by majority
  - A (weighted) majority vote taken over all the classifiers
  - How do we compute weights for the classifiers?
  - <sup>q</sup> How do we actually train the classifiers

ADA Boost: Adaptive algorithm for learning the weights

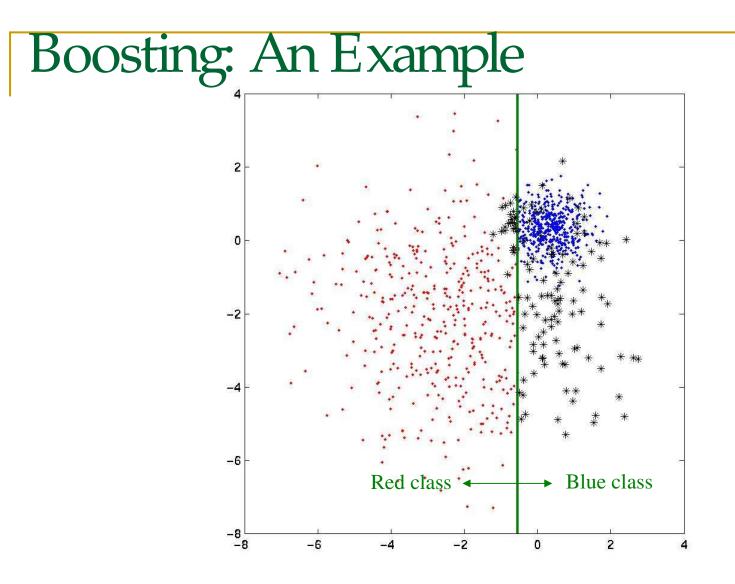
- n ADA Boost: Not named of ADA Lovelace
- n An adaptive algorithm that learns the weights of each classifier sequentially
  - g Learning adapts to the current accuracy
- n Iteratively:
  - <sup>q</sup> Train a simple classifier from training data
    - n It will make errors even on training data
    - Train a new classifier that focuses on the training data points that have been misclassified



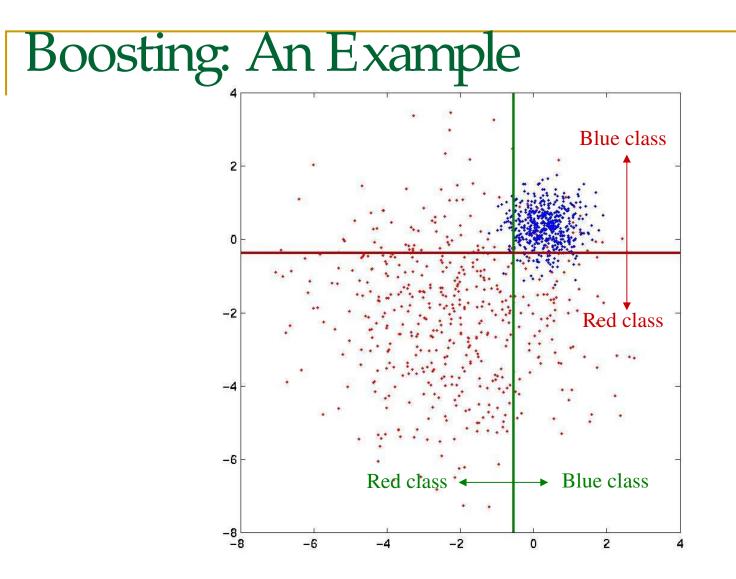
Red dots represent training data from Red class
 Blue dots represent training data from Blue class



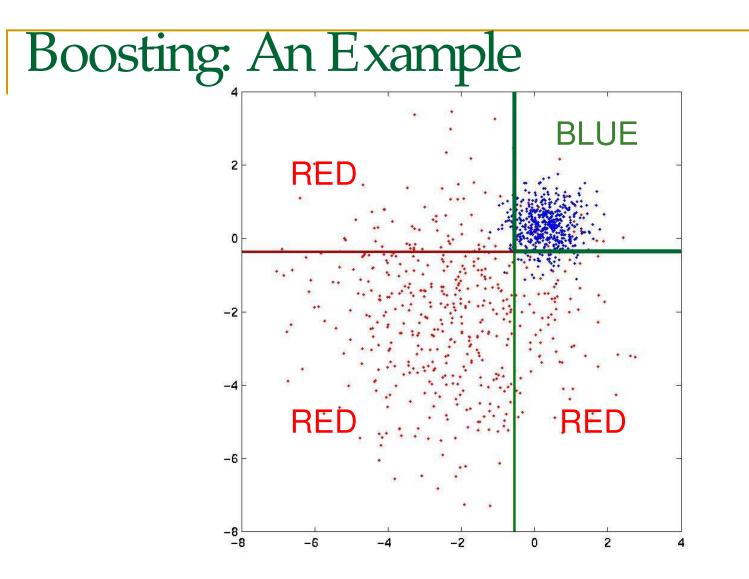
- N Very simple weak learner
  - $_{\mbox{\tiny q}}$  A line that is parallel to one of the two axes



- n First weak learner makes many mistakes
  - g Errors coloured black

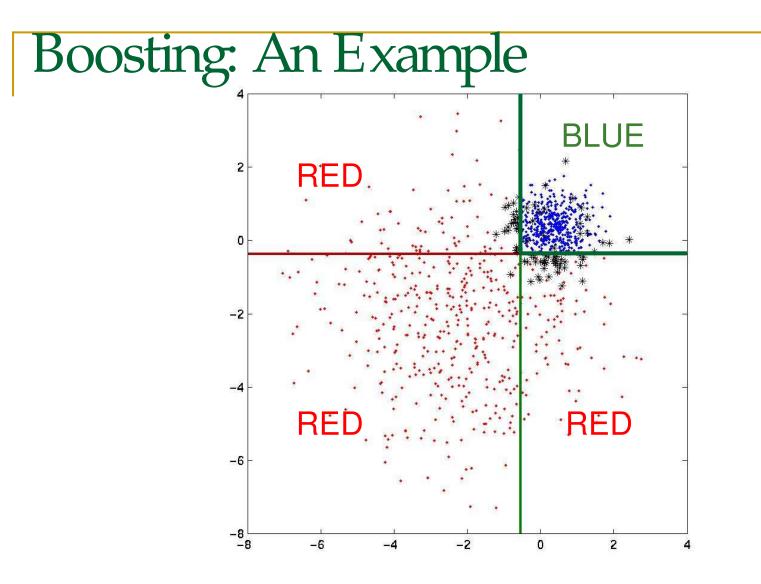


n Second weak learner focuses on errors made by first learner



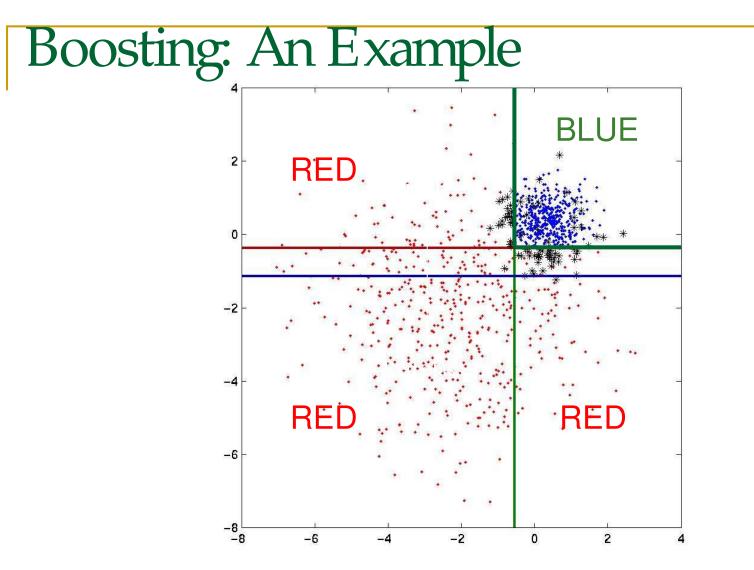
Second strong learner: weighted combination of first and second weak learners

Decision boundary shown by black lines 11-755 MLSP: Bhiksha Raj



n The second strong learner also makes mistakes

 ${\rm g} \quad Errors \ colored \ black^{1-755 \ MLSP: \ Bhiksha \ Raj}$ 



n Third weak learner concentrates on errors made by second strong learner

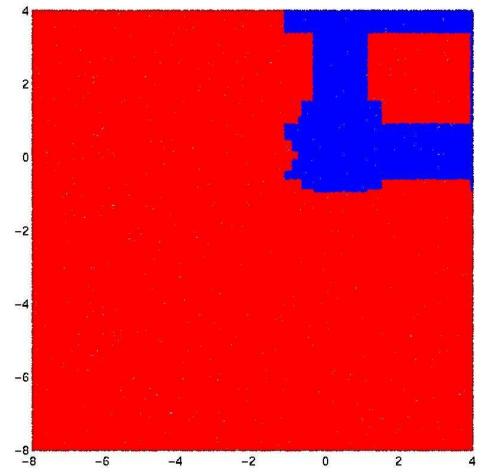
#### Boosting: An Example Blue class 2 0 -2 **Red** class -6 Blue class Red class -2 -6 0 2 -8

- S Third weak learner concentrates on errors made by combination of previous weak learners
- S Continue adding weak learners until....

#### Boosting: An Example 2 0 -2 -4 -6 -8 ՝ -8 2 -6 0 -2 -4

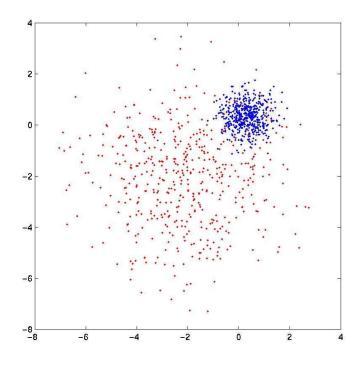
Noila! Final strong learner: very few errors on the training data

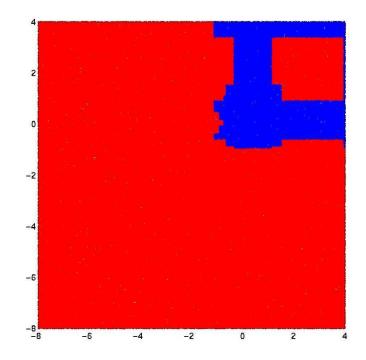
#### Boosting: An Example



n The final strong learner has learnt a complicated decision boundary

# Boosting: An Example

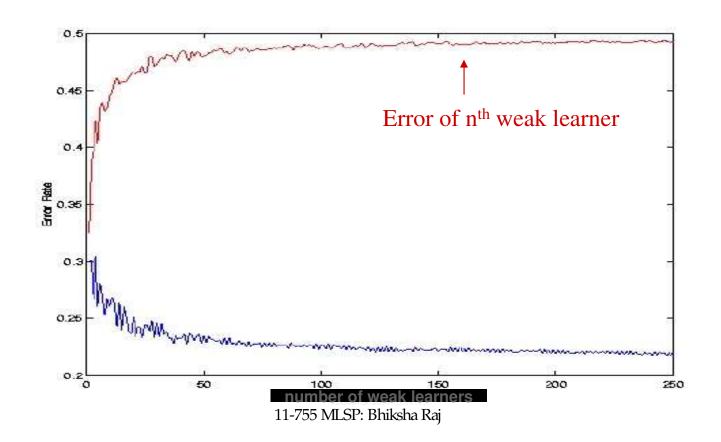




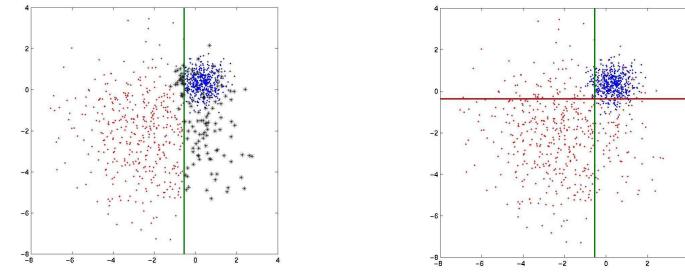
- The final strong learner has learnt a complicated decision boundary
- Decision boundaries in areas with low density of training points assumed inconsequential

## **Overall Learning Pattern**

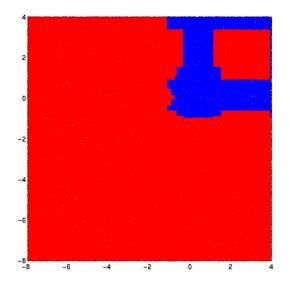
- Strong learner increasingly accurate with increasing number of weak learners
- S Residual errors increasingly difficult to correct Additional weak learners less and less effective



- Cannot just add new classifiers that work well only the the previously misclassified data
- Problem: The new classifier will make errors on the points that the **earlier** classifiers got right
  - g Not good
  - On test data we have no way of knowing which points were correctly classified by the first classifier
- Solution: Weight the data when training the second classifier
  - <sup>q</sup> Use all the data but assign them weights
    - n Data that are already correctly classified have less weight
    - n Data that are currently incorrectly classified have more weight



- <sup>n</sup> The red and blue points (correctly classified) will have a weight a < 1
- <sup>n</sup> Black points (incorrectly classified) will have a weight  $b \in 1/a$  > 1
- n To compute the optimal second classifier, we minimize the total weighted error
  - Each data point contributes a or b to the total count of correctly and incorrectly classified points
    - E.g. if one of the red points is misclassified by the new classifier, the total error of the new classifier goes up by a



- n Each new classifier modifies the weights of the data points based on the accuracy of the *current* classifier
- n The final classifier too is a weighted combination of all component classifiers

# Formalizing the Boosting Concept

- <sup>n</sup> Given a set of instances  $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$ 
  - $x_i$  is the set of attributes of the *i*<sup>th</sup> instance
  - $g y_1$  is the class for the *i*<sup>th</sup> instance
    - n  $y_1$  can be 1 or -1 (binary classification only)
- <sup>n</sup> Given a set of classifiers  $h_1, h_2, \ldots, h_T$ 
  - $h_i$  classifies an instance with attributes x as  $h_i(x)$
  - $h_i(x)$  is either -1 or +1 (for a binary classifier)
  - $_{\rm q}~y^{*}h(x)$  is 1 for all correctly classified points and -1 for incorrectly classified points
- Devise a function  $f(h_1(x), h_2(x), ..., h_T(x))$  such that classification based on f() is superior to classification by any  $h_i(x)$ 
  - The function is succinctly represented as f(x)

# The Boosting Concept

- n A simple combiner function: Voting
  - $f(x) = S_i h_i(x)$
  - G Classifier  $H(x) = \operatorname{sign}(f(x)) = \operatorname{sign}(S_i h_i(x))$
  - g Simple majority classifier
    - <sup>n</sup> A simple voting scheme
- A better combiner function: Boosting
  - q  $f(x) = S_i a_i h_i(x)$ 
    - <sup>n</sup> Can be any real number
  - G Classifier  $H(x) = \operatorname{sign}(f(x)) = \operatorname{sign}(S_i a_i h_i(x))$
  - g A weighted majority classifier
    - <sup>n</sup> The weight  $a_i$  for any  $h_i(x)$  is a measure of our trust in  $h_i(x)$

# Adaptive Boosting

n As before:

- g **y** is either -1 or +1
- g *H*(*x*) is +1 or -1
- If the instance is correctly classified, both y and H(x) will have the same sign
  - <sup>n</sup> The product y.H(x) is 1
  - <sup>n</sup> For incorrectly classified instances the product is -1
- n Define the error for  $x : \frac{1}{2}(1 yH(x))$ 
  - $_{\rm q}\,$  For a correctly classified instance, this is 0
  - $_{\rm q}\,$  For an incorrectly classified instance, this is 1

- n Given: a set  $(x_1, y_1), \dots (x_N, y_N)$  of training instances
  - $x_i$  is the set of attributes for the *i*<sup>th</sup> instance
  - $y_i$  is the class for the *i*<sup>th</sup> instance and can be either +1 or -1

```
n Initialize D_1(x_i) = 1/N
```

- n For *t* = 1, ..., T
  - **Train a weak classifier**  $h_t$  using distribution  $D_t$
  - g Compute total error on training data

n 
$$e_t = \text{Sum} \{\frac{1}{2} (1 - y_i h_t(x_i))\}$$

g Set  $a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$ 

n set  $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ 

 $_{\rm q}$  Normalize  $D_{t+1}$  to make it a distribution

```
n The final classifier is
```

 $H(x) = \operatorname{sign}(S_t a_t h_t(x))$ 

#### Initialize $D_1(x_i) = 1/N$

#### <sup>n</sup> For t = 1, ..., T

- $_{\rm q}$  Train a weak classifier  $h_t$  using distribution  $D_t$
- g Compute total error on training data

n 
$$e_t = \text{Sum} \{\frac{1}{2} (1 - y_i h_t(x_i))\}$$

$$a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$$

n set  $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ 

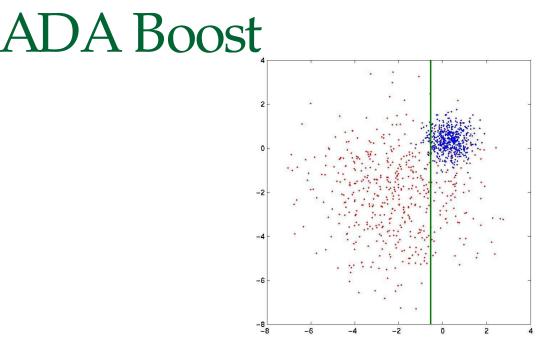
 $_{\rm q}$  Normalize  $D_{t+1}$  to make it a distribution

#### n The final classifier is

 $\mathbf{H}(x) = \operatorname{sign}(\mathbf{S}_t \mathbf{a}_t h_t(x))$ 

- n Initialize  $D_1(x_i) = 1/N$
- n Just a normalization: total weight of all instances is 1
  - g Makes the algorithm invariant to training data set size

#### The ADABoost Algorithm n Initialize $D_1(x_i) = 1/N$ <sup>n</sup> For *t* = 1, ..., T Train a weak classifier $h_t$ using distribution $D_t$ <sup>q</sup> Compute total error on training data n $e_t = \text{Sum} \{\frac{1}{2} (1 - y_i h_t(x_i))\}$ g Set $a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$ G For *i* = 1... N n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ $_{\rm q}$ Normalize $D_{t+1}$ to make it a distribution n The final classifier is $_{\text{q}}$ $H(x) = \text{sign}(S_t a_t h_t(x))$



- <sup>n</sup> Train a weak classifier  $h_t$  using distribution  $D_t$
- Simply train the simple classifier that that classifies data with error 50%
  - <sup>raction</sup> Where each data *x* point contributes D(x) towards the count of errors or correct classification
  - **Initially D(x) = 1/N for all data**
- n Better to actually train a *good* classifier

n Initialize 
$$D_1(x_i) = 1/N$$

n For 
$$t = 1, ..., T$$

- Train a weak classifier  $h_t$  using distribution  $D_t$
- Compute total error on training data  $p_i = Sum \{\frac{1}{2} (1 - y_i h_t(x_i))\}$

<sup>q</sup> Set 
$$a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$$

n set  $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ 

 $_{\rm q}$  Normalize  $D_{t+1}$  to make it a distribution

#### n The final classifier is

 $\mathbf{H}(x) = \operatorname{sign}(\mathbf{S}_t \mathbf{a}_t h_t(x))$ 

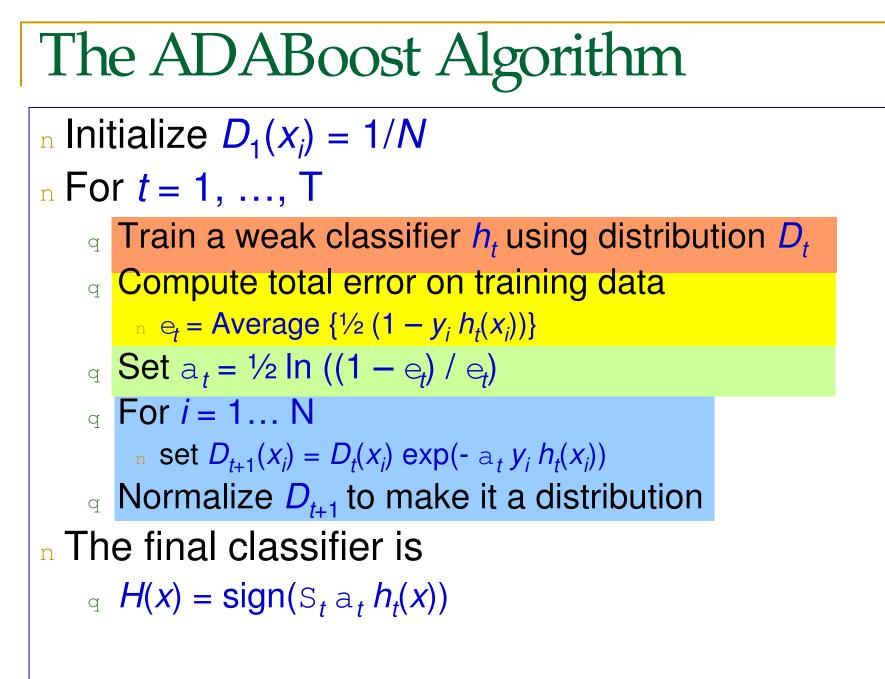
- n Compute total error on training data
  - $\mathbf{q} \quad \mathbf{e}_t = \mathrm{Sum} \left\{ \frac{1}{2} \left( 1 y_i h_t(x_i) \right) \right\}$
- For each data point x,  $\frac{1}{2}(1-y.h(x)) = 0$  for correct classification, 1 for error
- $e_t$  is simply the sum of the weights D(x) for all points that are misclassified by the latest classifier  $h_t(x)$ 
  - $_{\rm q}$  Will lie between 0 and 1

$$e_t = \sum_{x \text{ such that } x \text{ is misclassified by } h_t(x)} D(x)$$

#### The ADABoost Algorithm n Initialize $D_1(x_i) = 1/N$ <sup>n</sup> For *t* = 1, ..., T Train a weak classifier $h_t$ using distribution $D_t$ G Compute total error on training data n $e_t = \text{Sum} \{\frac{1}{2} (1 - y_i h_t(x_i))\}$ g Set $a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$ $\sigma$ For *i* = 1... N n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ $_{\rm q}$ Normalize $D_{t+1}$ to make it a distribution n The final classifier is $_{\text{q}}$ $H(x) = \text{sign}(S_t a_t h_t(x))$

# **Classifier Weight**

- <sup>n</sup> Set  $a_t = \frac{1}{2} \ln ((1 e_t)/e_t)$
- <sup>n</sup> The a<sub>t</sub> for any classifier is always positive
- <sup>n</sup> The weight for the  $t^{th}$  classifier is a function of its error
  - The poorer the classifier is, the closer  $a_t$  is to 0
  - If the error of the classifier is exactly 0.5,  $a_t$  is 0.
    - $_{\tt n}$  We don't trust such classifiers at all  ${\tt J}$
  - $_{\text{q}}$  If the error approaches 0,  $a_t$  becomes high
    - <sup>n</sup> We trust these classifiers



- <sup>n</sup> For i = 1... N
  - g set  $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$
- <sup>n</sup> Normalize  $D_{t+1}$  to make it a distribution
- n Readjusting the weights of all training instances
  - If the instance is correctly classified, multiply its weight by
    - $b (= \exp(-a_t)) < 1$
  - If it is *misclassified*, multiply its weight by  $b (= exp(a_t)) > 1$
- n Renormalize, so they all sum to 1

$$D_{renormalized}(x) = D(x) / \sum_{x'} D(x')$$

q

```
n Initialize D_1(x_i) = 1/N
```

n For 
$$t = 1, ..., T$$

- Train a weak classifier  $h_t$  using distribution  $D_t$
- g Compute total error on training data

$$n \in_t = \text{Average} \{ \frac{1}{2} (1 - y_i h_t(x_i)) \}$$

g Set  $a_t = \frac{1}{2} \ln ((1 - e_t) / e_t)$ 

n set  $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$ 

 $_{\text{q}}$  Normalize  $D_{t+1}$  to make it a distribution

```
n The final classifier is
```

$$H(x) = \operatorname{sign}(S_t a_t h_t(x))$$

n The final classifier is

 $H(x) = \operatorname{sign}(S_t a_t h_t(x))$ 

 The output is 1 if the total weight of all weak learners that classify x as 1 is greater than the total weight of all weak learners that classify it as -1

#### Next Class

- n Fernando De La Torre
- Ne will continue with Viola Jones after a few classes