11-755 Machine Learning for Signal Processing

Course Projects

Class 9. 22 Sep 2009

Administrivia

- n THURSDAY'S CLASS: WEAN HALL 5403
 - **Thanks to Ramkumar Krishnan for arranging the room!**
- n Almost all submissions of Homework 1 are in
 - Thanks to all students who have submitted
 - $_{\rm q}$ Three submissions are still due
- n Fernando's lecture
 - r_{r} Clarifications required? J
- ⁿ Homework 2 is up on the website
 - Face detection using a single Eigen face
 - ^q Will expand to using multiple Eigen faces in stage 2
 - n Complex homework
 - ⁿ Homework 3 will be very simple: L1 estimation of L2 algebraic operations
 - $_{\text{q}}$ If (insufficient(time)==true) givenhomework(3) = false

Course Projects

- n Covers 50% of your grade
- n 9-10 weeks
- n Required:
 - g A seriously attempted project
 - g Demo if possible
 - g Project report
 - ^q 20 minute project presentation
- n Project complexity
 - ^q Depends on what you choose to do
 - ^q Complexity of project will be considered in grading

Course Projects

- n Projects will be done by teams of students
 - ^q Ideal team size: 4
 - ^q Find yourself a team
 - $_{\rm q}$ If you wish to work alone, that is OK
 - ⁿ But we will not require less of you for this
 - ^q If you cannot find a team by yourselves, you will be assigned to a team
 - **Teams will be listed on the website**
 - ^q All currently registered students will be put in a team eventually
- ⁿ Will require background reading and literature survey
 - ^q Learn about the the problem
- n Grading will be done by team
 - $_{\rm q}$ $\,$ All members of a team will receive the same grade
 - n But I retain discretionary powers over this

Projects

- A list of possible projects will be presented to you in the rest of this lecture
- n This is just a sampling
- Nou may work on one of the proposed projects, or one that you come up with yourselves
- Teams must inform us of their choice of project by 29th September 2009
 - The later you start, the less time you will have to work on the project

Projects

- n Projects range from simple to very difficult
 - g Important to work in teams
- n Guest lecturers with project ideas
 - g Anatole Gershman (LTI)
 - g Alan Black (LTI)
 - g Eakta Jain (RI)
 - gFernando De La Torre
 - n Not presenting
- n Important: Be realistic
 - Partially completed projects will still get grades *IF:*
 - n The work performed is a serious attempt at completing it
 - g But only completed projects are likely to result in papers/publications if any

Now.. To our guests..

- n Alan Black
- n Anatole Gershman
- n Eakta Jain

More Project Ideas

- n Sound
 - g Separation
 - g Music
 - g Classification
 - g Synthesis
- n Images
 - $_{\text{q}}$ Processing
 - g Editing
 - g Classification
- n Video
 - q ...
 - d ...

I'm not the only one to find the high-pitched stuff annoying

n Sarah McDonald (Holy Cow): ".. shrieking..."

- n Khazana.com: ".. female Indian movie playback singers who can produce ultra high frequncies which only dogs can hear clearly.."
- n www.roadjunky.com: ".. High pitched female singers doing their best to sound like they were seven years old .."

Subjectivity of Taste

- n High pitched female voices can often sound unpleasant
- Net these songs are very popular in India
 G Subjectivity of taste
- n The melodies are often very good, in spite of the high singing pitch

"Personalizing" the Song

- n Retain the melody, but modify the pitch
 - $_{\rm q}$ To something that one finds pleasant
 - The choice of "pleasant" pitch is personal, hence "personalization"
- n Must be able to separate the vocals from the background music
 - $_{\rm q}$ Music and vocals are mixed in most recordings
 - ^q Must modify the pitch without messing the music
- n Separation need not be perfect
 - ^q Must only be sufficient to enable pitch modification of vocals
 - Pitch modification is tolerant of low-level artifacts
 - ⁿ For octave level pitch modification artifacts can be undetectable.

¹¹⁻⁷⁵⁵ MLSP: Bhiksha Raj

ⁿ Example 1: Vocals shifted down by 4 semitones

- n Example 1: Vocals shifted down by 4 semitones
- n Example 2: Gender of singer partially modified

Projects..

- Several component techniques
- n Illustrate various ML and signal processing concepts
- ⁿ Signal separation
 - g Latent variable models
 - Image: Non-negative factorization
- n Signal modification
 - Pitch and spectral modification
 - $_{\rm q}~$ Phase and phase estimation

Song "Personalizer"

- n Modify vocals as desired
 - g Mono or Stereo
 - g "Knob" control to modify pitch of vocals
- n Given a song
 - g Separate music and song
 - g Modify pitch as required
 - g Adjust parameters for minimal artifacts
 - g Add..
- n Issues:
 - g Separation
 - ${}_{\mbox{\tiny q}}$ Modification
 - $_{\rm q}$ Use of appropriate statisical model and signal processing

Talk-Along Karaoke

- ⁿ Pick a song that features a prominent vocal lead
 - Preferably with only one lead vocal
- ⁿ Build a system such that:
 - User talks the song out with reasonable rhythm
 - The system produces a version of the song with the user *singing* the song instead of the lead vocalist
 - n i.e. The user's singing voice now replaces the vocalist in the song
- n No. of issues:
 - g Separation
 - Pitch estimation
 - g Alignment
 - Pitch shifting

Dereverberation

Sound recorded in an Auditorium

- Develop a *supervised* technique that can dereverberate a noisy signal
 - $_{\mbox{\tiny q}}$ Will work with artificially reveberated data
- n Issues:
 - $_{\mbox{\tiny q}}$ Modeling the data
 - g Learning parameters
 - g Overcomplete representations

Real-time music transcription

- n Proposed by Siddharth Hazra
- n Discover sheet music for a guitar on-line, as it is played

Voice transformation with Canonical Correlation Analysis

- n Canonical correlation Analysis:
 - $_{\rm q}$ Given spectra S_x from speaker X
 - $_{\rm q}$ And spectra S_{y} from speaker Y
 - $_{\rm q}$ $\,$ Find transform matrices A and B such that AS_x predicts BS_y $\,$
- ⁿ Will *transform* the voice of speaker X to that of speaker Y
- n Issues:
 - g CCA
 - Image: general systemVoice transformation

The Doppler Ultrasound Sensor

n Using the Doppler Effect

The Doppler Effect

- The observed frequency of a moving sound source differs from the emitted frequency when the source and observer are moving relative to each other
 - ^q Discovery attributed to Christian Doppler (1803-1853)

Person being approached by a police car hears a higher frequency than a person from whom the car is moving away __755 MLSP: Bhiksha Raj

Observed frequency

- ⁿ The relationship of actual to percieved frequencies is known
- Case 1: The source is moving with velocity
 v, but the listener is static
 - **observed frequency is:**

- n Case 2: The observer is emitting the signal which is reflected off the moving object
 - ^q Observed frequency is:

$$f' = \frac{(c_{sound} + v)f}{c_{sound} - v}$$

Doppler Spectra

n 40 Khz tone reflected by an object approaching at approximately

n 40 Khz tone reflected by two objects, one approaching at approximately 5m/s and another at 3m/s

¹¹⁻⁷⁵⁵ MLSP: Bhiksha Raj

Doppler from Walking Person

- n Human beings are articulated objects
- When a person walks, different parts of his body move with different velocities. The combination of velocities is characteristic of the person
 - These can be measured as the spectrum of a reflected Doppler signal

The spikes in the spectrogram are measurement artefacts

Identifying moving objects

- n Doppler spectra are signatures of the motion
 - The pattern of velocities associated with the movement of an object are unique

Gait Recognition

- n Beam Ultrasound at a walking subject
- n Capture reflections
- Determine identity of subject from analysis of reflections

n Issues:

- g Type of Signal Processing
- g Type of classifier
- g Hardware..

Identifying talking faces..

- n Beam ultrasound on talker's face
- n Capture and analyze reflections
- n Identify subject

The Gesture Recognizer

- n Gesture recognizer
 - $_{\rm q}$ $\,$ and examples of actions constituting a gesture

Synthesizing speech from ultrasound observations of a talking face

- Subject mimes speech, but does not produce any sound
- Can we synthesize understandable speech?

Sound Classification: Identifying Cars / Automobiles from their sound

- n Sounds are often signatures
- Simple problem: Can we build a system that can identify the make (and possibly model) of a car by listening to it?
 - G Can you make out the difference between a V6 and a V8?
 - What do you know of the underlying design that can help?
- n Issues:
 - g Gathering Training Data
 - g Signal Represenation
 - g Modeling

IMAGES

Viola Jones Face Detection

- n Boosting-based face detection algorithm
 - g State of the art
- Problem: Build a Viola-Jones detector that can detect faces in images
 - G Can we also build a classifier that will detect the *pose* (profile or facing) of the face?
 - G Can it work from Video?
 - G Can we *track* face locations in continuous video

Face Recognition

- Similar to the face detector, but now we want to *recognize* the faces too
 - $_{\rm q}\,$ Who was it who walked by my camera?
- ⁿ Can use a variety of techniques
 - $_{\text{q}}$ Boosting, SVMs..
 - Image: Generation of the sensorImage: Can also combine evidence from an ultrasound sensor
 - $_{\rm q}\,$ Can be combined with face detection..

Recognizing Gender of a Face

- n A tough problem
- ⁿ Similar to face recognition
- n How can we detect the gender of a face from the picture?
 - $_{\rm q}~$ Even humans are bad at this

Image Manipulation: Seam Carving

n See video

n Project

- g Implement Seam Carving
- Experiment with different ways of eliminating
 objects without affecting the rest of the image

Image Manipulation: Filling in

- Some objects are often occluded by other objects in an image
- Goal: Search a database of images to find the one that best fills in the occluded region

Image Manipulation: Filling in

- n Some objects are often occluded by other objects in an image
- n Goal: Search a database of images to find the one that best fills in the occluded region

Image Manipulation: Modifying images

- n Moving objects around
 - g "Patch transforms", Cho, Butman, Avidan and Freeman
 - g Markov Random Fields with complicated a priori probability models

Applications – Subject reorganization Input image

Applications – Subject reorganization User input

Applications – Subject reorganization Output with corresponding seams

Applications – Subject reorganization Output image after Poisson blending

Image Composition

- ⁿ Structure from Motion:
 - Given several images of the same person under different pose changes build a 3D face model.

Image Composition

- Solving for correspondence across viewpoint:
 - Given several faces images of the same person across different pose, expression and illumination conditions solve for the correspondence across facial features.
 - The frontal image will be labeled with 66 landmarks.
- n Similar to patch models
 - g Finding correspondences that match