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What is a signal
 A mechanism for conveying 

informationinformation
 Semaphores, gestures, traffic lights..

Electrical engineering: currents Electrical engineering: currents, 
voltages

 Digital signals: Ordered 
collections of numbers that 
convey information co ey o a o
 from a source to a destination
 about a real world phenomenon

Sounds images Sounds, images
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Signal Examples: Audio

A f b A sequence of numbers
 [n1 n2 n3 n4 …]

Th d i hi h th b i i t t The order in which the numbers occur is important
 Ordered

 Represent a perceivable sound Represent a perceivable sound
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Example: Images

Pixel = 0.5

A t l t ( t i ) f b A rectangular arrangement (matrix) of numbers 
 Or sets of numbers (for color images)

 Each pixel represents a visual representation of one Each pixel represents a visual representation of one 
of these numbers
 0 is minimum / black, 1 is maximum / white
 Position / order is important
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What is Signal Processing

 Analysis, Interpretation, and Manipulation of 
i lsignals.

 Decomposition: Fourier transforms, wavelet 
transformstransforms

 Denoising signals
 Coding: GSM LPC Mpeg Ogg Vorbis Coding: GSM, LPC, Mpeg, Ogg Vorbis
 Detection: Radars, Sonars
 Pattern matching: Biometrics Iris recognition Pattern matching: Biometrics, Iris recognition, 

finger print recognition
 Etc.
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What is Machine Learning
 The science that deals with the development of 

algorithms that can learn from dataalgorithms that can learn from data
 Learning patterns in data

 Automatic categorization of text into categories; Market basket 
analysis

 Learning to classify between different kinds of data
 Spam filtering: Valid email or junk?Spa te g a d e a o ju

 Learning to predict data
 Weather prediction, movie recommendation

 Statistical analysis and pattern recognition when 
performed by a computer scientist..
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MLSP
 The application of Machine Learning techniques to the analysis of 

signals such as audio, images and video
 Learning to characterize signals in a data driven manner g g

 What are they composed of?
 Can we automatically deduce that the fifth symphony is composed of notes?
 Can we segment out components of images?

C l th t t t i l Can we learn the sparsest way to represent any signal
 Learning to detect signals

 Radars. Face detection. Speaker verification
 Learning to recognize themes in signals Learning to recognize themes in signals

 Face recognition. Speech recognition.
 Learning to: interpret; optimally represent  etc

 In some sense, a combination of signal processing and machine 
learning
 But also includes learning based methods (as opposed to deterministic But also includes learning based methods (as opposed to deterministic 

methods) for data analysis
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MLSP
 IEEE Signal Processing Society has an MLSP committee

 The Machine Learning for Signal Processing Techinical
Committee (MLSP TC) is at the interface between theory andCommittee (MLSP TC) is at the interface between theory and 
application, developing novel theoretically-inspired 
methodologies targeting both longstanding and emergent signal 
processing applications. Central to MLSP is on-line/adaptive 
nonlinear signal processing and data driven learningnonlinear signal processing and data-driven learning 
methodologies. Since application domains provide unique 
problem constraints/assumptions and thus motivate and drive 
signal processing advances, it is only natural that MLSP research 
has a broad application base MLSP thus encompasses newhas a broad application base. MLSP thus encompasses new 
theoretical frameworks for statistical signal processing (e.g. 
machine learning-based and information-theoretic signal 
processing), new and emerging paradigms in statistical signal 
processing (e g independent component analysis (ICA) kernelprocessing (e.g. independent component analysis (ICA), kernel-
based methods, cognitive signal processing) and novel 
developments in these areas specialized to the processing of a 
variety of signals, including audio, speech, image, multispectral, 
industrial biomedical and genomic signalsindustrial, biomedical, and genomic signals. 
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MLSP: Fast growing field
 IEEE Workshop on Machine Learning for Signal Processing

 Held this year in Beijing. Sep 18-21, http/mlsp2011.conwiz.dk/
 Several special interest groups Several special interest groups

 IEEE  : multimedia and audio processing, machine learning and speech 
processing

 ACM
 ISCA

 Books
 In work: MLSP, P. Smaragdis and B. Raj
C (18797 f h fi ) Courses (18797 was one of the first)

 Used everywhere
 Biometrics: Face recognition, speaker identification
 User interfaces: Gesture UIs, voice UIs, music retrieval
 Data capture: OCR,. Compressive sensing
 Network traffic analysis: Routing algorithms, vehicular traffic..

 Synergy with other topics (text / genome)
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In this course
 Jetting through fundamentals:

 Signal Processing, Linear Algebra, Probability
 Machine learning concepts

 EM, various relevant estimation and classification techniques

 Sounds:
 Characterizing sounds
 Denoising speech
 Synthesizing speech Synthesizing speech
 Separating sounds in mixtures
 Processing music. 

 Images:
Ch t i ti Characterization

 Denoising
 Object detection and recognition
 Biometrics

 Representation:
 Transform methods
 Compressive sensing.

 Topics covered are representative Topics covered are representative
 Actual list to be covered may change, depending on how the course progresses
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Required Background
 DSP

 Fourier transforms linear systems basic statistical signal Fourier transforms, linear systems, basic statistical signal 
processing

 Linear Algebra Linear Algebra
 Definitions, vectors, matrices, operations, properties

P b bilit Probability
 Basics: what is an random variable, probability 

distributions, functions of a random variable

 Machine learning
 Learning modelling and classification techniques Learning, modelling and classification techniques
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Guest Lectures
 Several guest lectures by experts in the topics

Al Bl k (CMU) Alan Black (CMU)
 Statistical speech synthesis and Voice morphing

 Fernando de la Torre (CMU) Fernando de la Torre (CMU)
 Data representations

 Marios Savvides
 Iris recognition

 Paris Smaragdis (UIUC)
 Independent component analysis Independent component analysis

 Petros Boufounos (Mitsubishi)
 Compressive Sensing
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Guest Lectures
 Several guest lectures by experts in the topics

 Rahul Sukhtankar (Google)
 Music retrieval

 Mario Berges
 Load monitoring

 Roger Dannenberg
 Music processing

 Iain Matthews (Disney)
 Active appearance models

J h M D h John McDonough
 Microphone arrays

S bj t t h Subject to change
 Guest lecturers are notorious for having schedule changes �
 If the guest lecturer is unavailable, the topic will be covered by me
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Schedule of Other Lectures
 Early Lectures (the few weeks)

 Sep 1 : Linear algebra refresher
 Sep 5: More linear algebra
 Sep 8: Project ideas
 Sep 13: Representing sounds and images (DSP)

S 15 Ei f Sep 15 : Eigen faces
 Sep 20: Boosting, Face detection

S 22 E t ti M i i ti Sep 22: Expectation Maximization
 Sep 27: Expectation Maximization and Clustering

Sep 29 Latent Variable Models for A dio Sep 29: Latent Variable Models for Audio
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Schedule of Other Lectures
 Early Lectures (the few weeks)

 Oct 4 : Speech Synthesis (Black)
 Oct 6: Latent variable models: Shift invariance etc.
 Oct 11: Iris Recognition (Marios)
 Oct 13: Component Analysis (De La Torre) (2?)

O t 18 Li l ifi d i Oct 18: Linear classifiers and  regressions
 Oct 20: Sound Modification, Denoising

O t 25 Hidd M k M d l Oct 25: Hidden Markov Models
 Oct 27: NMF, NMF for sounds, images, etc.

No 1 Tracking and prediction Kalman filters Nov 1: Tracking and prediction: Kalman filters
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Schedule of Other Lectures
 Early Lectures (the few weeks)

 Nov 3: Paris Smaragdis Seminar
 Nov 8: Extended Kalman filtering
 Nov 10: Microphone array processing (McDonough)
 Nov 15: Active appearance models (Matthews)

N 17 B t d B li f P ti Nov 17: Bayes nets and Belief Propagation
 Nov 22: Independent Component Analysis

N 24 Th k i i ( l ) Nov 24: Thanksgiving (no class)
 Nov 29: Compressive Sensing (Boufounos)

Dec 1 M sic Retrie al (S kthankar) Dec 1: Music Retrieval (Sukthankar)
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Grading
 Homework assignments : 50%
 Mini projects Mini projects
 Will be assigned during course
 3 in all 3 in all
 You will not catch up if you slack on any homework

 Those who didn’t slack will also do the next homework

 Final project: 50%
 Will be assigned early in course Will be assigned early in course
 Dec 6: Poster presentation for all projects, with 

demos (if possible) 
 Partially graded by visitors to the poster
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Projectsj

 2010 list given as handout
 Multiple publications and one thesis problem

2011 f 2011: Exciting set of projects
 Project from NASA
 Sarnoff Labs
 Deputy Coroner of Fayette..
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Instructor and TA Hillman

 Instructor: Prof. Bhiksha Raj
 Room 6705 Hillman Building

Windows
g

 bhiksha@cs.cmu.edu
 412 268 9826

My office

 TA:TA: 
 Manuel Tragut
 Anoop Ramakrishna

 Office Hours:

Forbes

 Office Hours:
 Bhiksha Raj:  Mon 3:00-4.00
 TA: TBD

Available by email: bhiksha@cs cmu edu Available by email:   bhiksha@cs.cmu.edu
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Additional Administrivia

 Website:
// / /f / http://mlsp.cs.cmu.edu/courses/fall2011/

 Lecture material will be posted on the day of each 
class on the websiteclass on the website

 Reading material and pointers to additional 
information will be on the websiteinformation will be on the website

 Discussion board Discussion board
 blackboard.andrew.cmu.edu/
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Representing Data

 Audio

 Images
Vid Video

 Other types of signals Other types of signals
 In a manner similar to one of the above
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What is an audio signal
 A typical audio signal
 It’s a sequence of points
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Where do these numbers come from?
Pressure highs

Spaces between
arcs show pressure
lowslows

 Any sound is a pressure wave: alternating highs and lows of air 
pressure moving through the air

 When we speak, we produce these pressure waves
 Essentially by producing puff after puff of air
 Any sound producing mechanism actually produces pressure waves

 These pressure waves move the eardrum
Hi h h it i l k it t Highs push it in, lows suck it out

 We sense these motions of our eardrum as “sound”
30 Aug 2011 11-755/18-797 23



SOUND PERCEPTION
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Storing pressure waves on a computer
 The pressure wave moves a diaphragm

 On the microphone
f The motion of the diaphragm is converted to 

continuous variations of an electrical signal
 Many ways to do thisa y ays to do t s

 A “sampler” samples the continuous signal at regular 
intervals of time and stores the numbers
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Are these numbers sound?
 How do we even know that the numbers we store on the 

computer have anything to do with speech really?
Recreate the sense of sound Recreate the sense of sound

 The numbers are used to control the levels of an electrical 
signal
Th l t i l i l di h b k d f th t The electrical signal moves a diaphragm back and forth to 
produce a pressure wave
 That we sense as sound

**
**

**

*
*

**
****

*

*************
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Are these numbers sound?
 How do we even know that the numbers we store on the 

computer have anything to do with speech really?
Recreate the sense of sound Recreate the sense of sound

 The numbers are used to control the levels of an electrical 
signal
Th l t i l i l di h b k d f th t The electrical signal moves a diaphragm back and forth to 
produce a pressure wave
 That we sense as sound

**
**
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*
*
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*
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How many samples a second
 Convenient to think of sound in terms of 

sinusoids with frequency 0.5

1



A sinusoid

 Sounds may be modelled as the sum of 
many sinusoids of different frequencies -0.5

0


P

re
ss

ur
e


 Frequency is a physically motivated unit
 Each hair cell in our inner ear is tuned to 

specific frequency

0 10 20 30 40 50 60 70 80 90 100
-1

 Any sound has many frequency 
components

We can hear frequencies up to 16000Hz We can hear frequencies up to 16000Hz
 Frequency components above 16000Hz 

can be heard by children and some young 
adults

 Nearly nobody can hear over 20000Hz. 
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Signal representation - Sampling
 Sampling frequency (or sampling rate) refers 

to the number of samples taken a second

 Sampling is measured in Hz
 We need a sample rate twice as high as the 

highest frequency we want to represent (Nyquist
freq) * *

**
freq)

 For our ears this means a sample rate of at least 
40kHz

Ca se e hear p to 20kH
*
*

**
****

*
 Cause we hear up to 20kHz

 Common sample rates
 For speech 8kHz to 16kHz

Time in secs.

 For music 32kHz to 44.1kHz
 Pro-equipment 96kHz
 When in doubt use 44.1kHz
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Aliasing
 Low sample rates result in aliasing
 High frequencies are misrepresented High frequencies are misrepresented
 Frequency f1 will become (sample rate – f1 )
 In video also when you see wheels go In video also when you see wheels go 

backwards
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Aliasing examples
Sinusoid sweeping from 0Hz to 20kHz

44kHz SR is ok 22kHz SR aliasing! 11kHz SR double aliasing!
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Avoiding Aliasing
Antialiasing

Filter Sampling
Analog signal Digital signal

 Sound naturally has all perceivable frequencies
 And then some And then some
 Cannot control the rate of variation of pressure waves in 

nature
 Sampling at any rate will result in aliasing
 Solution: Filter the electrical signal before sampling 

itit
 Cut off all frequencies above samplingfrequency/2
 E.g., to sample at 44.1Khz, filter the signal to eliminate all E.g., to sample at 44.1Khz, filter the signal to eliminate all 

frequencies above 22050 Hz
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Storing numbers on the Computer
 Sound is the outcome of a continuous range of 

variations
Th t k l ( ithi li it) The pressure wave can take any value (within limit)

 The diaphragm can also move continuously
 The electrical signal from the diaphragm has continuous 

variations

 A computer has finite resolutionp
 Numbers can only be stored to finite resolution
 E.g. a 16-bit number can store only 65536 values, while a 4-

bit number can store only 16 valuesbit number can store only 16 values
 To store the sound wave on the computer, the continuous 

variation must be “mapped” on to the discrete set of numbers 
we can storewe can store
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Mapping signals into bits
 Example of 1-bit sampling table

Signal Value Bit sequence Mapped to

S > 2.5v 1 1 * const

S <=2.5v 0 0 

Original Signal Quantized approximation
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Mapping signals into bits
 Example of 2-bit sampling table

Signal Value Bit sequence Mapped to
S >= 3.75v 11 3 * const
3 75v > S > 2 5v 10 2 * const3.75v > S >= 2.5v 10 2 * const
2.5v > S >= 1.25v 01 1 * const
1.25v > S >= 0v 0 0 

Original Signal Quantized approximation
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Storing the signal on a computer
 The original signal

 8 bit quantization

 3 bit quantization

 2 bit quantization 2 bit quantization

 1 bit quantization
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Tom Sullivan Says his Name
 16 bit sampling

 5 bit sampling

 4 bit sampling

 3 bit sampling3 b t sa p g

 1 bit sampling
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A Schubert Piece
 16 bit sampling

 5 bit sampling

 4 bit sampling

 3 bit sampling 3 bit sampling

 1 bit sampling
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Quantization Formats
 Sampling can be uniform
 Sample values equally spaced out

Signal Value Bits Mapped to
S >= 3.75v 11 3 * const
3.75v > S >= 2.5v 10 2 * const

O if

2.5v > S >= 1.25v 01 1 * const
1.25v > S >= 0v 0 0 

 Or nonuniform
Signal Value Bits Mapped to
S >= 4v 11 4 5 * constS >  4v 11 4.5  const
4v > S >= 2.5v 10 3.25 * const
2.5v > S >= 1v 01 1.25 * const
1 0v > S >= 0v 0 0 5 * const1.0v > S >= 0v 0 0.5  const 
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Uniform Quantization

UPON BEING SAMPLED AT ONLY 3 BITS (8 LEVELS)
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Uniform Quantization

 At the sampling instant, the actual value of the 
waveform is rounded off to the nearest level 
permitted by the quantizationpermitted by the quantization

 Values entirely outside the range are quantized 
to either the highest or lowest valuesto either the highest or lowest values
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Uniform Quantization

There is a lot more action in the central region than o tside There is a lot more action in the central region than outside.
 Assigning only four levels to the busy central region and 

four entire levels to the sparse outer region is inefficientp g
 Assigning more levels to the central region and less to the 

outer region can give better fidelity
 for the same storage
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Non-uniform Quantization

 Assigning more levels to the central region and less to theAssigning more levels to the central region and less to the 
outer region can give better fidelity for the same storage
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Non-uniform Quantization
Uniform

Non-uniform

 Assigning more levels to the central region and less to the Assigning more levels to the central region and less to the 
outer region can give better fidelity for the same storage
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Non-uniform Sampling
Original Uniform Nonuniform

 At the sampling instant, the actual value of the 
waveform is rounded off to the nearest level 
permitted by the quantizationpermitted by the quantization

 Values entirely outside the range are quantized 
to either the highest or lowest valuesto either the highest or lowest values
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Non-uniform Sampling
NonlinearUniform NonlinearUniform
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 Uniform sampling maps uniform widths of the analog signal to units 

Analog valuequ Analog valuequ

steps of the quantized signal
 In non-uniform sampling the step sizes are smaller near 0 and wider 

farther away
 The curve that the steps are drawn on follow a logarithmic law:  

 Mu Law:  Y  =  C. log(1 + X/C)/(1+)
 A Law:  Y =  C. (1 + log(a.X)/C)/(1+a)

O h l ff i h 8bi f li One can get the same perceptual effect with 8bits of non-linear 
sampling as 12bits of linear sampling
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Storage based on prediction

* * **
Sample predicted based on trend

*
*

* *
Prediction error; store only this

 “Predict” the next sample and store the difference between the value 
we predict and what we actually see using a small number of bits

* Actual observed sample

we predict and what we actually see using a small number of bits
 To reconstruct, predict the next sample and add the stored 

difference back in
 Variety of formats:  DPCM, ADPCM.
 Coding schemes: LPC based methods (G728,G729), Mpeg, Ogg 

Vorbis, …,
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Dealing with audio
Signal Value Bits Mapped to
S >= 3.75v 11 3
3.75v > S >= 2.5v 10 2

Signal Value Bits Mapped to
S >= 4v 11 4.5
4v > S >= 2.5v 10 3.25

2.5v > S >= 1.25v 01 1
1.25v > S >= 0v 0 0 

2.5v > S >= 1v 01 1.25
1.0v > S >= 0v 0 0.5

 Capture / read audio in the format provided by the file or hardware
 Linear PCM, Mu-law, A-law, Coded

 Convert to 16-bit PCM value
 I.e. map the bits onto the number on the right column
 This mapping is typically provided by a table computed from the sample 

compression function
N l k f d t t d i PCM No lookup for data stored in PCM

 Conversion from Mu law:
 http://www.speech.cs.cmu.edu/comp.speech/Section2/Q2.7.html
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Common Audio Capture Errors
 Gain/Clipping: High gain 

levels in A/D can result inlevels in A/D can result in 
distortion of the audio

 Antialiasing:  If the audio is 
sampled at N kHz, it must 
first be low-pass filtered at  < 
N/2 kHz
 Otherwise high frequency Otherwise high-frequency 

components will alias into lower 
frequencies and distort them
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Images
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Images
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The Eye

RetinaRetina

Basic Neuroscience: Anatomy and Physiology Arthur C. Guyton, M.D. 1987 W.B.Saunders Co.
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The Retina

http://www.brad.ac.uk/acad/lifesci/optometry/resources/modules/stage1/pvp1/Retina.html
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Rods and Cones
 Separate Systems
 Rods Rods

 Fast
 Sensitive
 predominate in the 

periphery
 Cones

 Slow
 Not so sensitive

Fovea / Macula Fovea / Macula
 COLOR!

Basic Neuroscience: Anatomy and Physiology Arthur C. Guyton, M.D. 1987 W.B.Saunders Co.
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The Eye

 The density of cones is highest at the fovea
 The region immediately surrounding the fovea is the macula The region immediately surrounding the fovea is the macula

 The most important part of your eye: damage == blindness
 Peripheral vision is almost entirely black and white

 Eagles are bifoveate
 Dogs and cats have no fovea, instead they have an elongated slit
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Spatial Arrangement of the Retina

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
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Three Types of Cones (trichromatic 
vision)
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Wavelength in nm
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Trichromatic Vision

 So-called “blue” light sensors respond to an 
ti f f ientire range of frequencies

 Including in the so-called “green” and “red” 
regionsregions

 The difference in response of “green” and 
“red” sensors is smallred  sensors is small
 Varies from person to person

 Each person really sees the world in a different color Each person really sees the world in a different color
 If the two curves get too close, we have color 

blindness
 Ideally traffic lights should be red and blue
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White Light
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Response to White Light

?
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Response to White Light
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Response to Sparse Light

??
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Response to Sparse Light
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Human perception anomalies

Dim Bright

 The same intensity of monochromatic light will result in 
different perceived brightness at different wavelengthsdifferent perceived brightness at different wavelengths

 Many combinations of wavelengths can produce the 
same sensation of colour.

 Yet humans can distinguish 10 million colours
30 Aug 2011 11-755/18-797 64



Representing Images

 Utilize trichromatic nature of human vision
 Sufficient to trigger each of the three cone types in a manner that produces Sufficient to trigger each of the three cone types in a manner that produces 

the sensation of the desired color
 A tetrachromatic animal would be very confused by our computer images

 Some new-world monkeys are tetrachromatic

 The three “chosen” colors are red (650nm), green (510nm) and blue 
(475nm)
 By appropriate combinations of these colors, the cones can be excited to 

produce a very large set of coloursproduce a very large set of colours
 Which is still a small fraction of what we can actually see

 How many colours? …30 Aug 2011 11-755/18-797 65



The “CIE” colour space
 From experiments done in the 1920s by W. 

David Wright and John Guild 
 Subjects adjusted x y and z on the right of a

International council on illumination, 1931

 Subjects adjusted x,y,and z on the right of a 
circular screen to match a colour on the left

 X, Y and Z are normalized responses of the 
three sensorsthree sensors
 X + Y + Z is 1.0

 Normalized to have to total net intensity

Th i ll l The image represents all colours a person can 
see
 The outer curved locus represents monochromatic 

light
 X,Y and Z as a function of 

 The lower line is the line of purples
 End of visual spectrum

 The CIE chart was updated  in 1960 and 1976
 The newer charts are less popular
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What is displayed
 The RGB triangle

 Colours outside this area cannot be matched 
b bi i l 3 lby combining only 3 colours
 Any other set of monochromatic colours would 

have a differently restricted area
 TV images can never be like the real world

 Each corner represents the (X,Y,Z) 
coordinate of one of the three “primary” 
colours used in imagescolours used in images

 In reality, this represents a very tiny 
fraction of our visual acuityfraction of our visual acuity
 Also affected by the quantization of levels of 

the colours
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Representing Images on Computers
 Greyscale: a single matrix of numbers

 Each number represents the intensity of the image at a 
specific location in the image

 Implicitly, R = G = B at all locations

 Color: 3 matrices of numbers
 The matrices represent different things in different 

representations
 RGB Colorspace: Matrices represent intensity of Red, 

Green and Blue
 CMYK Colorspace:  Cyan, Magenta, Yellow
 YIQ Colorspace..

HSV C l HSV Colorspace..
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Computer Images: Grey Scale
R = G = B. Only a single number need
be stored per pixel

Picture Element (PIXEL)Picture Element (PIXEL)
Position & gray value (scalar)
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What we see What the computer “sees”

10

1010
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Image Histograms
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Example 
hihistograms

From:  Digital Image g g
Processing,

by Gonzales and Woods, 
Addison Wesley, 1992
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Pixel operations
 New value is a function of the old value

 Tonescale to change image brightness Tonescale to change image brightness
 Threshold to reduce the information in an image
 Colorspace operations
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J=1.5*I
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Saturation
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J=0.5*I
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J=uint8(0.75*I)
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What’s this?
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Non-Linear Darken
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Non-Linear Lighten
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Linear vs. Non-Linear
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Color Images

Pi t El t (PIXEL)Picture Element (PIXEL)
Position & color value (red, green, blue)
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RGB Representation

RR

GGGG

original
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RGB Manipulation Example: Color Balance

RR

GGGG

original
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The CMYK color space

 Represent 
colors in terms 
f llof cyan, yellow 

and magenta
Th “K” t d The “K” stands 
for “Key”, not 
“black”

Blue
black
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CMYK is a subtractive representation

 RGB is based on composition, i.e. it is an additive representation
Addi l t f d d bl t hit Adding equal parts of red, green and blue creates white

 What happens when you mix red, green and blue paint?
 Clue – paint colouring is subtractive..

 CMYK is based on masking, i.e. it is subtractiveg,
 The base is white
 Masking it with equal parts of C, M and Y creates Black
 Masking it with C and Y creates Green

 Yellow masks blue Yellow masks blue
 Masking it with M and Y creates Red

 Magenta masks green
 Masking it with M and C creates Blue

 Cyan masks green Cyan masks green
 Designed specifically for printing

 As opposed to rendering
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An Interesting Aside

 Paints create subtractive coloring Paints create subtractive coloring
 Each paint masks out some colours
 Mixing paint subtracts combinations of colors
 Paintings represent subtractive colour masks Paintings represent subtractive colour masks

 In the 1880s Georges-Pierre Seurat pioneered an 
additive colour technique for painting based on “pointilism”additive-colour technique for painting based on pointilism
 How do you think he did it?
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NTSC color components

Y = “luminance” 
I = “red-green” 
Q = “blue-yellow”

a.k.a. YUV although g
YUV is actually the 
color specification p
for PAL video
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YIQ Color Space
Green

Y

Red IQRed
Blue Q

.299 .587 .114

.596 .275 .321
Y R
I G
     
            

.212 .523 .311Q B
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Color Representations
R Y

G IQ

B

 Y value lies in the same range as R,G,B ([0,1])
 I is to [-0.59 0.59][ ]
 Q is limited to [-0.52 0.52]
 Takes advantage of lower human sensitivity to I and 

QQ axes 
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YIQ
 Top: Original image
 Second: Y Second: Y
 Third: I (displayed as red-cyan)
 Fourth: Q (displayed as green-Q ( p y g

magenta)
 From http://wikipedia.org/

 Processing (e.g. histogram 
equalization) only needed on Y
 In RGB must be done on all three 

colors. Can distort image colors
 A black and white TV only needs Y
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Bandwidth (transmission resources) for the components of 
the television signalg

Luminance Chrominance

de
am

pl
itu

d

0                   1                   2                  3                   4
frequency (MHz)

Understanding image perception allowed NTSC to add color to the black 
and white television signal. The eye is more sensitive to I than Q, so 
lesser bandwidth is needed for Q Both together used much less than Ylesser bandwidth is needed for Q. Both together used much less than Y, 
allowing for color to be added for minimal increase in transmission 
bandwidth.
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Hue, Saturation, Value

Blue

V = [0,1], S = [0,1]
H [0 360]The HSV Colour Model    By Mark Roberts     

http://www.cs.bham.ac.uk/~mer/colour/hsv.html
H = [0,360]
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HSV
 V = Intensity

 0 = Black 0 = Black
 1 = Max (white at S = 0)

 S = 1:S  1:
 As H goes from 0 (Red) 

to 360, it represents a 
different combinations ofdifferent combinations of 
2 colors

 As S->0, the color 
components from the 
opposite side of the 
polygon increase

V = [0,1], S = [0,1]
H = [0,360]polygon increase H  [0,360]
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Hue, Saturation, Value, ,

M i th i f (R G B)Max  is the maximum of (R,G,B)
Min is the minimum of (R,G,B)
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HSV
 Top: Original image

S d H ( i S 1 V 1) Second H (assuming S = 1, V = 1)
 Third S (H=0, V=1)

Fourth V (H=0 S=1)

H

 Fourth V (H=0, S=1)

SS

V
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Quantization and Saturation 
 Captured images are typically quantized to N-bits

St d d l 8 bit Standard value: 8 bits
 8-bits is not very much < 1000:1

Humans can easily accept 100 000:1 Humans can easily accept 100,000:1
 And most cameras will give you 6-bits anyway…
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Processing Colour Images

 Typically work only on the Grey Scale image
f Decode image from whatever representation to 

RGB
 GS = R + G + B GS = R + G + B

 The Y of YIQ may also be used
Y i li bi ti f R G d B Y is a linear combination of R,G and B

 For specific algorithms that deal with colour, 
individual colours may be maintainedindividual colours may be maintained
 Or any linear combination that makes sense may 

be maintainedbe maintained.
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Reference Info

 Many books
G Digital Image Processing, by Gonzales and 

Woods, Addison Wesley, 1992
 Computer Vision: A Modern Approach by David Computer Vision: A Modern Approach, by David 

A. Forsyth and Jean Ponce 
 Spoken Language Processing: A Guide to Theory, Spoken Language Processing: A Guide to Theory, 

Algorithm and System Development, by Xuedong 
Huang, Alex Acero and Hsiao-Wuen Hon
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