Machine Learning in Speech Synthesis

Alan W Black
Language Technologies Institute
Carnegie Mellon University

Overview

- Speech Synthesis History and Overview
- From hand-crafted to data-driven techniques
- Text to Speech Processes
- Waveform synthesis
- Unit selection and Statistical Parametric Synthesis
- Evaluation
- Voice conversion

Physical Models

- Blowing air through tubes...
- von Kemplen's synthesizer 1791

- Synthesis by physical models
- Homer Dudley's Voder. 1939

More Computation - More Data

- Formant synthesis (60s-80s)
- Waveform construction from components
- Diphone synthesis (80s-90s)
- Waveform by concatenation of small number of instances of speech
- Unit selection (90s-00s)
- Waveform by concatenation of very large number of instances of speech
- Statistical Parametric Synthesis (00s-..)
- Waveform construction from parametric models

Waveform Generation

－Formant synthesis
－Random word／phrase concatenation
－Phone concatenation
－Diphone concatenation
－Sub－word unit selection
－Cluster based unit selection
－Statistical Parametric Synthesis

Speech Synthesis

- Text Analysis
- Chunking, tokenization, token expansion
- Linguistic Analysis
- Pronunciations
- Prosody
- Waveform generation
- From phones and prosody to waveforms

Text processing

- Find the words
- Splitting tokens too e.g. "04/11/2009"
- Removing punctuation
- Identifying word types
- Numbers: years, quantities, ordinals
- 1996 sheep were stolen on 25 Nov 1996
- Identifying words/abbreviations
- CIA, 10m, 12sf, WeH7200

Pronunciations

- Giving pronunciation for each word
- A phoneme string (plus tone, stress ...)
- A constructed lexicon
- ("pencil" n (p eh1 n s ih I))
- ("two" n (t uw1))
- Letter to sound rules
- Pronunciation of out of vocabulary words
- Machine learning prediction from letters

Pronunciation of Unknown Words

- How do you pronounce new words
- 4\% of tokens (in news) are new
- You can't synthesis then without pronunciations
- You can't recognize them without pronunciations
Letter-to-Sounds rules
- Grapheme-to-Phoneme rules

LTS: Hand written

- Hand written rules
- [LeftContext] X [RightContext] -> Y
- e.g.
- c [h r] ->k
- c [h] -> ch
- c [i] ->s
- $c->k$

LTS: Machine Learning Techniques

- Need an existing lexicon
- Pronunciations: words and phones
- But different number of letters and phones
- Need an alignment
- Between letters and phones
- checked -> ch eh kt

LTS: alignment

- checked -> ch eh k t

c	h	e	c	k	e	d
$c h$	-	$e h$	k	-	-	t

- Some letters go to nothing
- Some letters go to two phones
- box -> b aa k-s
- table -> t ey bax-l -

Find alignment automatically

- Epsilon scattering
- Find all possible alignments
- Estimate $p(L, P)$ on each alignment
- Find most probable alignment
- Hand seed
- Hand specify allowable pairs
- Estimate $p(L, P)$ on each possible alignment
- Find most probable alignment
- Statistical Machine Translation (IBM model 1)
- Estimate $p(L, P)$ on each possible alignment
- Find most probably alignment

Not everything aligns

0, 1, and 2 letter cases

- e -> epsilon "moved"
- x-> k-s, g-z "box" "example"
- e->y-uw "askew"

Some alignment aren't sensible

- dept $->$ d ih p aa rtmaxnt
- cmu -> s iy eh m y uw

Training LTS models

- Use CART trees
- One model for each letter
- Predict phone (epsilon, phone, dual phone)
- From letter 3-context (and POS)
* \# \# chec-> ch
- \# \#check->
- \#checke->eh
-checked->k

LTS results

- Split lexicon into train/test $90 \% / 10 \%$
- i.e. every tenth entry is extracted for testing

Lexicon	Letter Acc	Word Acc
OALD	95.80%	75.56%
CMUDICT	91.99%	57.80%
BRULEX	99.00%	93.03%
DE-CELEX	98.79%	89.38%
Thai	95.60%	68.76%

Example Tree

For letter V:
if (n.name is v)
return -
if (n.name is \#)
if (p.p.name is t)
return f
return v
if (n.name is s)
if (p.p.p.name is n)
return f
return v
return v

But we need more than phones

- What about lexical stress
- praal jehkt-> praajeh1kt
- Two possibilities
- A separate prediction model
- Join model - introduce eh/eh1 (BETTER)

	LTP+S	LTPS
L no S	96.36%	96.27%
Letter	---	95.80%
W no S	76.92%	74.69%
Word	63.68%	74.56%

Does it really work

- 40K words from Time Magazine
- 1775 (4.6\%) not in OALD
- LTS gets 70\% correct (test set was 74\%)

	Occurs	$\%$
Names	1360	76.6
Unknown	351	19.8
US Spelling	57	3.2
Typos	7	0.4

Prosody Modeling

-Phrasing

- Where to take breaths
- Intonation
- Where (and what size) are accents
- FO realization
- Duration
- What is the length of each phoneme

Intonation Contour

Unit Selection vs Parametric

Unit Selection
The "standard" method
"Select appropriate sub-word units from large databases of natural speech"
Parametric Synthesis: [NITECH: Tokuda et al]
HMM-generation based synthesis
Cluster units to form models
Generate from the models
"Take 'average’ of units"

Unit Selection

- Target cost and Join cost [Hunt and Black 96]
- Target cost is distance from desired unit to actual unit in the databases
- Based on phonetic, prosodic metrical context
- Join cost is how well the selected units join

"Hunt and Black" Costs

Target distance is:
$-C^{t}\left(t_{i}, u_{i}\right)=\Sigma_{j=1}^{p} w_{j}^{t} C_{j}^{t}\left(t_{i}, u_{i}\right)$
For examples in the database we can measure

- $A C^{t}\left(t_{i}, u_{i}\right)$

Therefore estimate w_{1-j} from all examples of
$-A C^{t}\left(t_{i}, u_{i}\right) \approx \Sigma_{j=1}^{p} w_{j}^{t} C_{j}^{t}\left(t_{i}, u_{i}\right)$
Use linear regression

How well does it join:
$-C^{c}\left(u_{i-1}, u_{i}\right)=\Sigma_{k=1}^{p} w_{k}^{c} C_{k}^{c}\left(u_{i-1}, u_{i}\right)$

- if $\left(u_{i-1}==\operatorname{prev}\left(u_{i}\right)\right) C^{c}=0$

HB Unit Selection

Find best path of units through db that minimise:

$$
\begin{gathered}
C\left(t_{1}^{n}, u_{1}^{n}\right)=\quad \sum_{i=1}^{n} C^{t}\left(t_{i}, u_{i}\right)+\sum_{i=2}^{n} C^{c}\left(u_{i-1}, u_{i}\right)+ \\
C^{c}\left(S, u_{1}\right)+C^{c}\left(u_{n}, S\right)
\end{gathered}
$$

- Use Viterbi to find best set of units
- Note
- Finding "longest" is typically not optimal

Clustering Units

- Cluster units [Donovan et al 96, Black et al 97]
$\operatorname{Adist}(U, V)=\left\{\begin{array}{l}\text { if }|V|>|U| \operatorname{Adist}(V, U) \\ \frac{W D *|U|}{|V|} * \sum_{i=1}^{|U|} \sum_{j=1}^{n} \frac{W_{j} .\left(a b s\left(F_{i j}(U)-F_{(i *|V| /|U|) j}(V)\right)\right)}{S D_{j} * n *|U|}\end{array}\right.$
$|U|=$ number of frames in U
$F_{x y}(U)=$ parameter y of frame x of unit U
$S D_{j}=$ standard deviation of parameter j
$W_{j}=$ weight for parameter j
$W D=$ duration penalty
- Moves calculation to compile time

Unit Selection Issues

- Cost metrics
- Finding best weights, best techniques etc
- Database design
- Best database coverage
- Automatic labeling accuracy
- Finding errors/confidence
- Limited domain:
- Target the databases to a particular application
- Talking clocks
- Targeted domain synthesis

Old vs New

Unit Selection:
large carefully labelled database quality good when good examples available quality will sometimes be bad no control of prosody
Parametric Synthesis:
smaller less carefully labelled database quality consistent resynthesis requires vocoder, (buzzy) can (must) control prosody model size much smaller than Unit DB

Parametric Synthesis

- Probabilistic Models

$$
\operatorname{argmax}(P(O \mid W))
$$

- Simplification

$$
\operatorname{argmax}\left(P\left(o_{0} \mid W\right), P\left(o_{1} \mid W\right), \ldots, P\left(o_{n} \mid W\right)\right)
$$

- Generative model
- Predict acoustic frames from text

Trajectories

- Frame (State) based prediction
- Ignores dynamics
- Various solutions
- MLPG (maximum likelihood parameter generation)
- Trajectory HMMs
- Global Variance
- MGE, minimal generation error

SPSS Systems

- HTS (NITECH)
- Based on HTK
- Predicts HMM-states
- (Default) uses MCEP and MLSA filter
- Supported in Festival
- Clustergen (CMU)
- No use of HTK
- Predicts Frames
- (Default) uses MCEP and MLSA filter
- More tightly coupled with Festival

Synthesizer

Requires:
Prompt transcriptions (txt.done.data)
Waveform files (well recorded)
FestVox Labelling
EHMM (Kishore)
Context Independent models and forced alignment (Have used Janus labels too).
Parameter extraction:
(HTS's) melcep/mlsa filter for resynthesis
F0 extraction
Clustering
Wagon vector clustering
for each HMM-state name

Clustering by CART

Update to Wagon (Edinburgh Speech Tools).
Tight coupling of features with FestVox utts
Support for arbitrary vectors
Define impurity on clusters of N vectors

$$
\left(\sum_{i=1}^{24} \sigma_{i}\right) * N
$$

Clustering
F0 and MCEP
Tested jointly and separately
Features for clustering (51):
phonetic, syllable, phrasal context

Training Output

Three models:
Spectral (MCEP) CART tree
F0 CART tree
Duration CART tree

F0 model:
Smoothed extracted F0 through all speech
(i.e. unvoiced regions get F 0 values)

Chose voicing at runtime phonetically

CLUSTERGEN Synthesis

Generate phoneme strings (as before)
For each phone:
Find HMM-state names: ah_1, ah_2, ah_3
Predict duration of each
Create empty mcep vector to fill duration
Predict mcep values from cluster tree
Predict F0 value from cluster tree
Use MLSA filter to regenerate speech

Objective Score

CLUSTERGEN

Mean Mel Cepstral Distortion over test set

$$
10 / \ln 10 \sqrt{2 \sum_{d=1}^{24}\left(m c_{d}^{(t)}-m c_{d}^{(e)}\right)^{2}}
$$

MCD: Voice Conversion ranges 4.5-6.0 MCD: CG scores 4.0-8.0 smaller is better

Example CG Voices

7 Arctic databases:

1200 utterances, 43 K segs, 1 hr speech

| awb | bdl |
| :--- | :--- | :--- |
| clb | jmk |
| ksp | |
| slt | rms |

Database size vs Quality

slt_arctic data size

Utts	Clusters	RMS FO	MCD	
50	230	24.29	6.761	
100	435	19.47	6.278	
200	824	17.41	6.047	
500	2227	15.02	5.755	
1100	4597	14.55	5.685	

Making it Better

- Label data, build model
-But maybe there are better labels
-So find labels that maximize model accuracy

Move Labels

Cluster trees

Predicted gaussians

Actual values

Move Labels

- Use EHMM to label segments/HMM states
- Build Clustergen Model
- Iterate
- Predict Cluster (mean/std) for each frame
- For each label boundary
®If dist(actual_after,pred_before) < dist(actual_after,pred_after)
\otimes Move label forward
®If dist(actual_before,pred_after) < dist(actual_before,pred_before)
® Move label backward

Distance Metric

Distance from predicted to actual

- Euclidean
- FO, static, deltas, voicing
- With/without standard deviation normalization
- Weighting
- Best choice
- Static without stddev normalization
- (This is closest to MCD)

ML with 10 iterations

- rms voice (66 minutes of speech)
- train 1019 utts, test 113 utts (every tenth)

Pass	Move	+ve	-ve	MCD	stddev	FO
0	0	0	0	5.247	1.965	13.990
1	48211	23162	25949	5.121	1.846	14.251
2	40731	20223	20508	5.090	1.794	14.220
3	35059	17835	17224	5.073	1.779	14.267
4	33083	16503	16580	5.061	1.765	14.260
5	31131	15518	15613	5.046	1.753	14.306
6	29693	14813	14880	5.042	1.754	14.287
7	28361	14143	14218	5.042	1.757	14.240
8	27571	13730	13841	5.035	1.740	14.239
9	26839	13457	13382	5.040	1.750	14.187

Move Labels

Voice	$\mathbf{2 0 0 6}$	2008 base	$\mathbf{2 0 0 8} \mathbf{~ m l}$
ahw	-	5.234	5.057
awb	6.557	4.445	4.483
bdl	6.129	5.685	5.467
clb	5.417	4.838	4.698
jmk	6.165	5.398	5.239
ksp	5.980	5.289	5.140
rms	5.731	5.247	5.035
$r x r$	-	5.298	5.160
slt	5.713	5.170	4.983

Average improvement 0.172 (excluding awb)

Does it sound better

rms
－abtest（10 utterances）
$\otimes \mathbf{m l} 7$
\otimes base 1
$\otimes=2$

- Slt
－abtest
$\otimes \mathbf{m l} 7$
\otimes base 2
$\otimes=1$
base ml
㫿
昨
㫿

宱

Arctic MLSB improvements

Grapheme Based Synthesis

- Synthesis without a phoneme set
- Use the letters as phonemes
- ("alan" nil (a la n))
- ("black" nil (black))

Spanish (easier ?)

- 419 utterances
- HMM training to label databases
- Simple pronunciation rules
- Polici'a -> polici'a
- Cuatro -> cuatro

Spanish Grapheme Synthesis

Word	Castillian	gloss
casa	$/ \mathbf{k}$ a s a/	house
cesa	$/$ th e s a/	stop
cine	$/$ th in e/	cinema
cosa	$/ \mathbf{k}$ o s a/	thing
cuna	$/ \mathbf{k}$ u n a/	cradle
hechizo	$/ \mathrm{e}$ ch i th o/	charm, spell

In Spanish the letter "c" may be pronounced /k/, /ch/ and $/ \mathrm{th} /$ or $/ \mathrm{s} /$ (depending on dialect). The choice of phone is determined by the letter context.

English Grapheme Synthesis

- Use Letters are phones
- 26 "phonemes"
("alan" n (a lan))
- ("black" n(black))
- Build HMM acoustic models for labeling
- For English
"This is a pen"
"We went to the church at Christmas"
Festival intro
"do eight meat"
- Requires method to fix errors

Letter to letter mapping

Common Data Sets

- Data drive techniques need data
- Diphone Databases
- CSTR and CMU US English Diphone sets (kal and ked)

CMU ARCTIC Databases

- 1200 phonetically balanced utterances (about 1 hour)
- 7 different speakers (2 male 2 female 3 accented)
- EGG, phonetically labeled
- Utterances chosen from out-of-copyright text
- Easy to say
- Freely distributable
- Tools to build your own in your own language

Blizzard Challenge

- Realistic evaluation
- Under the same conditions
- Blizzard Challenge [Black and Tokuda]
- Participants build voice from common dataset
- Synthesis test sentences
- Large set of listening experiments
- Since 2005, now in $7^{\text {th }}$ year
- 18 groups in 2010
- Audio books in 2012

How to test synthesis

- Blizzard tests:
- Do you like it? (MOS scores)
- Can you understand it?
\otimes SUS sentence
\otimes The unsure steaks overcame the zippy rudder
-Can't this be done automatically?
- Not yet (at least not reliably enough)
- But we now have lots of data for training techniques
-Why does it still sound like robot?
- Need better (appropriate testing)

SUS Sentences

－sus＿00022

明
－sus＿00012
sus＿00005
眽
明
sus＿00017
楽
楽

SUS Sentences

- The serene adjustments foresaw the acceptable acquisition
The temperamental gateways forgave the weatherbeaten finalist
The sorrowful premieres sang the ostentatious gymnast
The disruptive billboards blew the sugary endorsement

Voice Identity

What makes a voice identity

- Lexical Choice:
®Woo-hoo,
®I pity the fool ...
- Phonetic choice
- Intonation and duration
- Spectral qualities (vocal tract shape)
- Excitation

Voice Conversion techniques

- Full ASR and TTS
- Much too hard to do reliably

Codebook transformation

- ASR HMM state to HMM state transformation

GMM based transformation

- Build a mapping function between frames

Learning VC models

- First need to get parallel speech
- Source and Target say same thing
- Use DTW to align (in the spectral domain)
- Trying to learn a functional mapping
- 20-50 utterances
"Text-independent" VC
- Means no parallel speech available
- Use some form of synthesis to generate it

VC Training process

- Extract FO, power and MFCC from source and target utterances
- DTW align source and target
- Loop until convergence
- Build GMM to map between source/target
- DTW source/target using GMM mapping

VC Training process

VC Run-time

Voice Transformation

－Festvox GMM transformation suite（Toda）

	awb	bdl	jmk	slt
awb	明	的	明	Q
bdl	4	d	4	Q
jmk	冎	里	4	監
slt	楽	明	d	Q

VC in Synthesis

Can be used as a post filter in synthesis

- Build kal_diphone to target VC
- Use on all output of kal_diphone

Can be used to convert a full DB

- Convert a full db and rebuild a voice

Style/Emotion Conversion

- Unit Selection (or SPS)
- Require lots of data in desired style/emotion
- VC technique
- Use as filter to main voice (same speaker)
- Convert neutral to angry, sad, happy ...

Can you say that again?

- Voice conversion for speaking in noise
- Different quality when you repeat things Different quality when you speak in noise
- Lombard effect (when very loud)
- "Speech-in-noise" in regular noise

Speaking in Noise (Langner)

- Collect data
- Randomly play noise in person's ears
- Normal
- In Noise
- Collect 500 of each type
- Build VC model
- Normal -> in-Noise
- Actually
- Spectral, duration, f0 and power differences

Synthesis in Noise

- For bus information task
- Play different synthesis information utts
- With SIN synthesizer
- With SWN synthesizer
- With VC (SWN->SIN) synthesizer
- Measure their understanding
- SIN synthesizer better (in Noise)
- SIN synthesizer better (without Noise for elderly)

Transterpolation

- Incrementally transform a voice X\%
- BDL-SLT by 10%
- SLT-BDL by 10\%
-Count when you think it changes from M-F
- Fun but what are the uses ...

De-identification

- Remove speaker identity
- But keep it still human like
- Health Records
- HIPAA laws require this
- Not just removing names and SSNs
- Remove identifiable properties
- Use Voice conversion to remove spectral
- Use FO/duration mapping to remove prosodic
- Use ASR/MT techniques to remove lexical

Summary

- Data-driven speech synthesis
- Text processing
- Prosody and pronunciation
- Waveform synthesis
- Finding the right optimization
- Find an objective metric that correlates with human perception

