
1

11-755 Machine Learning for Signal Processing

Latent Variable Models and 
Signal Separation

Class 11.  6 Oct 2011

6 Oct 2011 111755/18797

Signal Separation from Monaural 
Recordings
 The problem:
 Multiple sources are producing sound 

simultaneously

 The combined signals are recorded over a single 

11755/18797

microphone

 The goal is to selectively separate out the signal 
for a target source in the mixture
 Or at least to enhance the signals from a selected 

source
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Problem Specification
 The mixed signal contains 

components from multiple 
sources

 Each source has its own “bases”

 In each frame
 Each source draws from its own 

collection of bases to compose a 

+ =a b
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p
spectrum
 Bases are selected with a frame 

specific mixture weight

 The overall spectrum is a mixture 
of the spectra of individual 
sources
 I.e. a histogram combining draws 

from both sources

 Underlying model: Spectra are 
histograms over frequencies
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Ball-and-urn model for a mixed signal
The caller!!
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 Each sound source is represented by its own picker and urns
 Urns represent the distinctive spectral structures for that source
 Assumed to be known beforehand (learned from some separate training data)

 The caller selects a picker at random
 The picker selects an urn randomly and draws a ball
 The caller calls out the frequency on the ball

 A spectrum is a histogram of frequencies called out
 The total number of draws of any frequency includes contributions from both sources
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

 The individual distributions are mixture multinomials

 And the urns are known

Separating the sources
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 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

 The individual distributions are mixture multinomials

 And the urns are known

Separating the sources
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources
 The individual distributions are mixture multinomials
 And the urns are known
 Estimate remaining terms using EM

Separating the sources
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Algorithm
 For each frame:

 Initialize Pt(s)
 The fraction of balls obtained from source s

 Alternately, the fraction of energy in that frame from source s

 Initialize Pt(z|s)
 The mixture weights of the urns in frame t for source s
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 The mixture weights of the urns in frame t for source s

 Reestimate the above two iteratively

 Note:  P(f|z,s) is not frame dependent
 It is also not re-estimated

 Since it is assumed to have been learned from separately 
obtained unmixed training data for the source
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each f

 Compute the a priori weight of speaker s
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 Compute the a priori weight of speaker s

 Compute mixture weight of zth urn for speaker s 
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What is Pt(s,z|f)
 Compute how each ball (frequency) is split between the urns of 

the various sources

 The ball is first split between the sources

 The fraction of the ball attributed to any source s is split between
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 The fraction of the ball attributed to any source s is split between 
its urns:

 The portion attributed to any urn of any source is a product of the 
two
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Reestimation
 The reestimate of source weights is simply 

the proportion of all balls that was attributed 
to the sources
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 The reestimate of mixture weights is the 
proportion of all balls attributed to each urn
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Separating the Sources

 For each frame:

 Given
 St(f) – The spectrum at frequency f of the mixed 

signal

E ti t

11755/18797

 Estimate
 St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f

 A simple maximum a posteriori estimator
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If we have only have bases for one source?

 Only the bases for one of the two sources is 
given
 Or, more generally, for N-1 of N sources
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If we have only have bases for one source?

 Only the bases for one of the two sources is given
 Or, more generally, for N-1 of N sources

 The unknown bases for the remaining source must also be 
estimated!
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Partial information: bases for one source 
unknown

 P(f|z,s) must be initialized for the additional 
source

 Estimation procedure now estimates bases 
along with mixture weights and source
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along with mixture weights and source 
probabilities
 From the mixed signal itself

 The final separation is done as before
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each f

 Compute the a priori weight of speaker s and mixture
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 Compute the a priori weight of speaker s and mixture 
weights

 Compute unknown bases
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Partial information: bases for one source 
unknown

 P(f|z,s) must be initialized for the additional 
source

 Estimation procedure now estimates bases 
along with mixture weights and source
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along with mixture weights and source 
probabilities
 From the mixed signal itself

 The final separation is done as before
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Separating Mixed Signals: Examples
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 “Raise my rent” by David 
Gilmour

 Background music “bases” 
learnt from 5-seconds of 
music-only segments within 
the song

 Lead guitar “bases” bases 
learnt from the rest of the song

 Norah Jones singing “Sunrise”

 A more difficult problem:
 Original audio clipped!

 Background music bases 
learnt from 5 seconds of 
music-only segments
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Where it works

 When the spectral structures of the two 
sound sources are distinct
 Don’t look much like one another

 E.g. Vocals and music

E L d it d i
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 E.g. Lead guitar and music

 Not as effective when the sources are similar
 Voice on voice
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Separate overlapping speech
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 Bases for both speakers learnt from 5 second 
recordings of individual speakers

 Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers
 Improvements are worse for same-gender mixtures
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How about non-speech data

 We can use the same model to represent other data

19x19 images = 361 dimensional vectors

11755/18797

p

 Images: 
 Every face in a collection is a histogram

 Each histogram is composed from a mixture of a fixed number of 
multinomials
 All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face

 Each component multinomial is also an image
 And can be learned from a collection of faces

 Component multinomials are observed to be parts of faces
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How many bases can we learn

 The number of bases that must be learned is a 
fundamental question
 How do we know how many bases to learn

 How many bases can we actually learn computationally
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 A key computational problem in learning bases:
 The number of bases we can learn correctly is restricted by 

the dimension of the data

 I.e., if the spectrum has F frequencies, we cannot estimate 
more than F-1 component multinomials reliably
 Why?
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Indeterminacy in Learning Bases
 Consider the four histograms 

to the right

 All of them are mixtures of the 
same K component 
multinomials

 For K < 3, a single global 
l ti i t
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solution may exist
 I.e there may be a unique set 

of component multinomials 
that explain all the 
multinomials
 With error – model will not be 

perfect

 For K = 3 a trivial solution 
exists
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Indeterminacy
 Multiple solutions for K = 3..

 We cannot learn a non-
trivial set of “optimal” bases 
from the histograms

 The component 
multinomials we do learn tell 
us nothing about the data
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us nothing about the data

 For K > 3, the problem only 
gets worse
 An inifinite set of solutions 

are possible
 E.g. the trivial solution plus 

a random basis

1 1 1 1

1 1 1

0 0 0 0 0 0

B1 B2 B3
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Indeterminacy in signal representations

 Spectra:
 If our spectra have D frequencies (no. of unique indices in 

the DFT) then..

 We cannot learn D or more meaningful component 
multinomials to represent them
 The trivial solution will give us D components, each of which
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 The trivial solution will give us D components, each of which 
has probability 1.0 for one frequency and 0 for all others

 This does not capture the innate spectral structures for the 
source

 Images: Not possible to learn more than P-1 
meaningful component multinomials from a 
collection of P-pixel images
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How many bases to represent sounds/images?
 In each case, the bases represent “typical unit structures”

 Notes

 Phonemes

 Facial features..

 How many notes in music
 Several octaves

 Several instruments
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 The typical sounds in speech –
 Many phonemes, many variations, can number in the thousands

 Images:
 Millions of units that can compose an image – trees, dogs, walls, sky, etc. 

etc. etc…

 To model the data well, all of these must be represented
 More bases than dimensions

6 Oct 2011 26

Overcomplete Representations

 Representations where there are more bases than dimensions are 
called Overcomplete
 E.g. more multinomial components than dimensions

 Overcomplete representations are required to represent the world 
adequately
 The complexity of the world is not restricted by the dimensionality of our representations!
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 Overcomplete representations are difficult to compute
 Straight-forward computation results in indeterminate solutions

 Additional constraints must be imposed in the learning process to 
learn more components than dimensions

 We will require our solutions to be sparse

6 Oct 2011 27

SPARSE Decompositions

 Allow any arbitrary number of bases (urns)
 Overcomplete
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 Specify that for any specific frame only a small number of bases may be 
used
 Although there are many spectral structures, any given frame only has a few of 

these

 In other words, the mixture weights with which the bases are combined 
must be sparse
 Have non-zero value for only a small number of bases

 Alternately, be of the form that only a small number of bases contribute 
significantly
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The history of sparsity
 The search for “sparse” decompositions has a long history

 Even outside the scope of overcomplete representations

 A landmark paper: Sparse Coding of Natural Images Produces Localized, 
Oriented, Bandpass Receptive Fields, by Olshausen and Fields
 “The images we typically view, or natural scenes, constitute a minuscule fraction of the 

space of all possible images. It seems reasonable that the visual cortex, which has 
evolved and developed to effectively cope with these images, has discovered efficient 
coding strategies for representing their structure. Here, we explore the hypothesis that 

11755/18797

the coding strategy employed at the earliest stage of the mammalian visual cortex 
maximizes the sparseness of the representation. We show that a learning algorithm 
that attempts to find linear sparse codes for natural scenes will develop receptive fields 
that are localized, oriented, and bandpass, much like those in the visual system.” 

 Images can be described in terms of a small number of descriptors from a large set
 E.g. a scene is “a grapevine plus grapes plus a fox plus sky”

 Other studies indicate that human perception may be based on sparse 
compositions of a large number of “icons”

 The number of sensors (rods/cones in the eye, hair cells in the ear) is much 
smaller than the number of visual / auditory objects in the world around us
 The internal representation of images must be overcomplete
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Estimating Mixture Weights given Multinomials

 Basic estimation: Maximum likelihood
 ArgmaxW log P(X ; B,W)  = ArgmaxW f X(f)log(i wi Bi(f))

 Modified estimation: Maximum a posteriori
 Denote W = [w1 w2 .. ]  (in vector form)
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 ArgmaxW f X(f)log(i wi Bi(f)) + log P(W)

 Sparsity obtained by enforcing an a priori probability 
distribution P(W) over the mixture weights that 
favors sparse mixture weights

 The algorithm for estimating weights must be 
modified to account for the priors
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The a priori distribution
 A variety of a priori probability distributions all 

provide a bias towards “sparse” solutions

 The Dirichlet prior:
 P(W) = Z* i wi
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( ) i i

 The entropic prior:
 P(W) = Z*exp(-H(W))

 H(W) = entropy of W = -i wi log(wi)
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A simplex view of the world

 The mixture weights are a probability distribution
  w = 1 0

(1,0,0)

(0,1,0)(0,0,1)(1,0,0)

(0,1,0)

(0,0,1)
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 i wi = 1.0

 They can be viewed as a vector
 W = [w0 w1 w2 w3 w4 …]
 The vector components are positive and sum to 1.0

 All probability vectors lie on a simplex
 A convex region of a linear subspace in which all vectors sum to 

1.0
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Probability Simplex

(1,0,0)

(0,1,0)(0,0,1)
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 The sparsest probability vectors lie on the vertices of the simplex
 The edges of the simplex are progressively less sparse

 Two-dimensional edges have 2 non-zero elements
 Three-dimensional edges have 3 non-zero elements
 Etc.
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Sparse Priors: Dirichlet

P(W) = Z* i wi


=0.5
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 For alpha < 1, sparse probability vectors are 
more likely than dense ones
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Sparse Priors: The entropic prior

P(W) = Z*exp(-H(W))

=0.5
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 Vectors (probability distributions) with low entropy 
are more probable than those with high entropy
 Low-entropy distributions are sparse!

6 Oct 2011 35

Optimization with the entropic prior

 The objective function
ArgmaxW X X(f)log(i wi Bi(f)) - H(W)

 By estimating W such that the above 
equation is maximized we can derive

11755/18797

equation is maximized, we can derive 
minimum entropy solutions
 Jointly optimize W for predicting the data while 

minimizing its entropy
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The Expectation Maximization Algorithm

 The parameters are actually learned using the Expectation 
Maximization (EM) algorithm

 The EM algorithm actually optimizes the following objective 
function

 Q = X P(Z | f) X(f)log(P(Z) P(f|Z)) - H({P(Z)})
 P(Z) = wz, {P(Z)} = W

11755/18797

( ) z, { ( )}

 The second term here is derived from the entropic prior
 Optimization of the above needs a solution to the following

 The solution requires a new function: 
 The lambert W function
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Lambert’s W Function
 Lambert’s W function is the solution to:

W + log(W) = X

 Where W = F(X) is the Lambert function

 Alternately, the inverse function of
 X = W exp(W)

 In general, a multi-valued function

If X is real W is real for X > 1/e

W0(x)
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 If X is real, W is real for X > -1/e
 Still multi-valued

 If we impose the restriction W > -1 and W == real we get the zeroth 
branch of the W function
 Single valued

 For W < -1 and W == real we get the -1th branch of the W function
 Single valued
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Estimating W0(z)

 An iterative solution
 Newton’s Method
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 Halley Iterations

 Code for Lambert’s W function is available on 
wikipedia
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Solutions with entropic prior
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 The update rules are the same as before, with one minor modification

 To estimate the mixture weights, the above two equations must be 
iterated 
 To convergence

 Or just for a few iterations

 Alpha is the sparsity factor

 Pt(z) must be initialized randomly
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Learning Rules for Overcomplete Basis Set

 Exactly the same as earlier, with the 
modification that Pt(z) is now estimated to be 
sparse
 Initialize Pt(z) for all t and P(f|z)

 Iterate Iterate
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A Simplex Example for Overcompleteness

11755/18797

 Synthetic data: Four clusters of data within the probability simplex
 Regular learning with 3 bases learns an enclosing triangle
 Overcomplete solutions without sparsity restults in meaningless 

solutions
 Sparse overcomplete model captures the distribution of the data
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Sparsity can be employed without 
overcompleteness
 Overcompleteness requires sparsity

 Sparsity does not require overcompleteness
 Sparsity only imposes the constraint that the data
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 Sparsity only imposes the constraint that the data 
are composed from a mixture of as few 
multinomial components as possible

 This makes no assumption about 
overcompleteness
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Examples without overcompleteness
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 Left panel, Regular learning: most bases have significant energy in all frames
 Right panel, Sparse learning: Fewer bases active within any frame

 Sparse decomposiions result in more localized activation of bases
 Bases, too, are better defined in their structure6 Oct 2011 44

Face Data: The effect of sparsity
 As solutions get more sparse, bases 

become more informative
 In the limit, each basis is a complete 

face by itself.

 Mixture weights simply select face

 Solution also allows for mixture 

High-entropy mixture weights
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weights to have maximum entropy
 Maximally dense, i.e. minimally sparse

 The bases become much more 
localized components

 The sparsity factor allows us to tune 
the bases we learn Sparse mixture weights

No sparsity
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Benefit of overcompleteness
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 19x19 pixel images (361 pixels)

 Up to1000 bases trained from 2000 faces

 SNR of reconstruction from overcomplete basis set more than 
10dB better than reconstruction from corresponding “compact” 
(regular) basis set
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Signal Processing: How

 Exactly as before

 Learn an overcomplete set of bases

 For each new data vector to be processed, 
compute the optimal mixture weights
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 Constrainting the mixture weights to be sparse 
now

 Use the estimated mixture weights and the 
bases to perform additional processing
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 Learn overcomplete bases for each source

 For each frame of the mixed signal 
 Estimate prior probability of source and mixture weights for each source

 Constraint: Use sparse learning for mixture weights

 Estimate separated signals as  

Signal Separation with Overcomplete Bases
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Sparse Overcomplete Bases: Separation
 3000 bases for each of the speakers

 The speaker-to-speaker ratio typically doubles (in dB) w.r.t “compact” bases

Panels 2 and 3: Regular learning

Regular bases
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Panels 2 and 3: Regular learning

Panels 4 and 5: Sparse learning

Sparse bases
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The Limits of Overcompleteness

 How many bases can we learn?

 The limit is: as many bases as the number of 
vectors in the training data
 Or rather, the number of distinct histograms in the 

training data
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training data
 Since we treat each vector as a histogram

 It is not possible to learn more than this 
number regardless of sparsity
 The arithmetic supports it, but the results will be 

meaningless
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Working at the limits of overcompleteness: 
The “Example-Based” Model

 Every training vector is a basis
 Normalized to be a distribution

 Let S(t,f) be the tth training vector

 Let T be the total number of training vectors
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 Let T be the total number of training vectors

 The total number of bases is T

 The kth basis is given by
 B(k,f) = S(k,f) / fS(k,f) = S(k,f) / |S(k,f)|1

 Learning bases requires no additional learning steps 
besides simply collecting (and computing spectra 
from) training data

6 Oct 2011 51

The example based model – an illustration

 In the above example all training data lie on the curve shown (Left 
Panel)
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Panel)
 Each of them is a vector that sums to 1.0

 The learning procedure for bases learns multinomial components that 
are linear combinations of the data (Middle Panel)
 These can lie anywhere within the area enclosed by the data

 The layout of the components hides the actual structure of the layout of the 
data

 The example based representation captures the layout of the data 
perfectly (right panel)
 Since the data are the bases

6 Oct 2011 52

Signal Processing with the Example Based 
Model

 All previously defined operations can be 
performed using the example based model 
exactly as before
 For each data vector estimate the optimal mixture
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 For each data vector, estimate the optimal mixture 
weights to combine the bases
 Mixture weights MUST be estimated to be sparse

 The example based representation is simply 
a special case of an overcomplete basis set
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Speaker Separation Example
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 Speaker-to-interference ratio of separated 
speakers
 State-of-the-art separation results

6 Oct 2011 54
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Example-based model: All the training 
data?

 In principle, no need to use all training data 
as the model
 A well-selected subset will do

E g ignore spectral vectors from all pauses and
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 E.g. – ignore spectral vectors from all pauses and 
non-speech regions of speech samples

 E.g. – eliminate spectral vectors that are nearly 
identical

 The problem of selecting the optimal set of 
training examples remains open, however
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Summary So Far

 PLCA:
 The basic mixture-multinomial model for audio (and other 

data)

 Sparse Decomposition:
 The notion of sparsity and how it can be imposed on 
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p y p
learning

 Sparse Overcomplete Decomposition:
 The notion of overcomplete basis set

 Example-based representations
 Using the training data itself as our representation
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