

Class 11. 6 Oct 2011

Problem Specification

- The mixed signal contains components from multiple sources
- Each source has its own "bases"
- In each frame
- Each source draws from its own collection of bases to compose a spectrum
- Bases are selected with a frame specific mixture weight
- The overall spectrum is a mixture of the spectra of individual sources
- I.e. a histogram combining draws
from both sources
- Underlying model: Spectra are
histograms over frequencies

$$
\begin{array}{ll}
\text { 6Oct 2011 } & 11755 / 18797 \\
\hline
\end{array}
$$

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
- The individual distributions are mixture multinomials
- The individual distributions are mixture multinomials
- And the urns are known

$$
\begin{gathered}
P_{t}(f)=P_{t}\left(s_{1}\right) P_{t}\left(f \mid s_{1}\right)+P_{t}\left(s_{2}\right) P_{t}\left(f \mid s_{2}\right) \\
P_{t}(f)=P_{t}\left(s_{1}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{1}\right)+P_{t}\left(s_{2}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{2}\right)
\end{gathered}
$$

Iterative algorithm

- Iterative process:
- Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for each speaker for each f

- Compute the a priori weight of speaker s

$$
P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

- Compute mixture weight of $z^{\text {th }}$ urn for speaker s

Reestimation

- The reestimate of source weights is simply the proportion of all balls that was attributed to the sources
$P_{t}(s)=\frac{\sum_{i} \sum_{t} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{t} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}$
- The reestimate of mixture weights is the proportion of all balls attributed to each urn

What is $P_{t}(s, z \mid f)$

- Compute how each ball (frequency) is split between the urns of the various sources
- The ball is first split between the sources

$$
P_{t}(s \mid f)=\frac{P_{t}(s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right)}
$$

- The fraction of the ball attributed to any source s is split between its urns:

$$
P_{t}(z \mid s, f)=\frac{P_{t}(z \mid s) P(f \mid z, s)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s\right) P\left(f \mid z^{\prime}, s\right)}
$$

- The portion attributed to any urn of any source is a product of the two

Oct 201

Separating the Sources

- For each frame:
- Given
- $\mathrm{S}_{\mathrm{t}}(\mathrm{f})$ - The spectrum at frequency f of the mixed signal
- Estimate
- $\mathrm{S}_{\mathrm{t}, \mathrm{i}}(\mathrm{f})$ - The spectrum of the separated signal for the i-th source at frequency f
- A simple maximum a posteriori estimator

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

6 Oct 201
11755/18997

$$
\begin{aligned}
& \text { If we have only have bases for one source? } \\
& \text { Only the bases for one of the two sources is } \\
& \text { given } \\
& \text { Or, more generally, for } \mathrm{N}-1 \text { of } \mathrm{N} \text { sources } \\
& P_{t} \\
& P_{t}(f)=P_{t}\left(s_{1}\right) \sum_{z} P_{t}\left(s_{t} \mid s_{1}\right) P\left(f \mid z, s_{1}\right)+P_{t}\left(s_{2}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{2}\right)
\end{aligned}
$$

Partial information: bases for one source unknown

- $P(f \mid z, s)$ must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
- From the mixed signal itself
- The final separation is done as before
${ }^{6}$ Oct 2011
11755/18797

Partial information: bases for one source unknown

- $P(f \mid z, s)$ must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
- From the mixed signal itself
- The final separation is done as before

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

6 Oct 2011
11755/18797

If we have only have bases for one source?

- Only the bases for one of the two sources is given - Or, more generally, for $\mathrm{N}-1$ of N sources
- The unknown bases for the remaining source must also be estimated!

Iterative algorithm

- Iterative process:
- Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for the speaker for each f
$P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum P_{t}\left(s^{\prime}\right) \sum_{P} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime} s^{\prime}\right)}$ $\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)$
- Compute the a priori weight of speaker s and mixture

- Compute unknown bases

60 ct 2011
1755/18797

Where it works

- When the spectral structures of the two sound sources are distinct
- Don't look much like one another
- E.g. Vocals and music
- E.g. Lead guitar and music
- Not as effective when the sources are similar - Voice on voice

Separate overlapping speech

- Bases for both speakers learnt from 5 second recordings of individual speakers
- Shows improvement of about 5dB in Speaker-toSpeaker ratio for both speakers
- Improvements are worse for same-gender mixtures
\qquad

How many bases can we learn

- The number of bases that must be learned is a fundamental question
- How do we know how many bases to learn

How many bases can we actually learn computationally

- A key computational problem in learning bases:
- The number of bases we can learn correctly is restricted by the dimension of the data
- I.e., if the spectrum has F frequencies, we cannot estimate more than F -1 component multinomials reliably
- Why?

Indeterminacy

- Multiple solutions for $\mathrm{K}=3$..
- We cannot learn a nontrivial set of "optimal" bases from the histograms
- The component multinomials we do learn tell us nothing about the data
- For K > 3, the problem only gets worse
- An inifinite set of solutions are possible
- E.g. the trivial solution plus a random basis

${ }^{00} \square^{1} \square^{1} \square^{1} 00$

Indeterminacy in signal representations

- Spectra:
- If our spectra have D frequencies (no. of unique indices in the DFT) then..
- We cannot learn D or more meaningful component multinomials to represent them
- The trivial solution will give us D components, each of which has probability 1.0 for one frequency and 0 for all others
- This does not capture the innate spectral structures for the source
- Images: Not possible to learn more than P-1 meaningful component multinomials from a collection of P-pixel images

6 Oct 2011
11755/18797

Overcomplete Representations

- Representations where there are more bases than dimensions are called Overcomplete
- E.g. more multinomial components than dimensions
- Overcomplete representations are required to represent the world adequately
- The complexity of the world is not restricted by the dimensionality of our representations!
- Overcomplete representations are difficult to compute
- Straight-forward computation results in indeterminate solutions
- Additional constraints must be imposed in the learning process to learn more components than dimensions
- We will require our solutions to be sparse

6 Oct 2011
11755/18797

The history of sparsity

```
The search for "sparse" decompositions has a long history
    - Even outside the scope of overcomplete representations
- A landmark paper: Sparse Coding of Natural Images Produces Localized,
    Oriented, Bandpass Receptive Fields, by Olshausen and Fields
    - "The images we typically view, or natural scenes, constitute a minuscule fraction of the
        space of all possible images. It seems reasonable that the visual cortex, which has
        evolved and developed to effectively cope with these images, has discovered efficient
        coding strategies for representing their structure. Here, we explore the hypothesis tha
        maximizes the sparseness of the representation. We show that a learning algorithm
        that attempts to find linear sparse codes for natural scenes will develop receptive fields
        that are localized, oriented, and bandpass, much like those in the visual system.
    - Images can be described in terms of a small number of descriptors from a large set
        " E.g. a scene is "a grapevine plus grapes plus a fox plus sky"
- Other studies indicate that human perception may be based on sparse
        compositions of a large number of "icons"
* The number of sensors (rods/cones in the eye, hair cells in the ear) is much
    smaller than the number of visual / auditory objects in the world around us
GOct 2011

How many bases to represent sounds/images?
- In each case, the bases represent "typical unit structures"
- Notes
- Phonemes
- Facial features..
- How many notes in music
- Several octaves
- Several instruments
- The typical sounds in speech -
- Many phonemes, many variations, can number in the thousands
- Images:
- Millions of units that can compose an image - trees, dogs, walls, sky, etc. etc. etc...
- To model the data well, all of these must be represented
- More bases than dimensions
\(\qquad\) \({ }^{26}\)

\section*{SPARSE Decompositions}
 - Overcomplete
- Specify that for any specific frame only a small number of bases may be used
- Although there are many spectral structures, any given frame only has a few of these
- In other words, the mixture weights with which the bases are combined must be sparse
- Have non-zero value for only a small number of bases
- Alternately, be of the form that only a small number of bases contribute significantly
\begin{tabular}{lll} 
6Oct 2011 & \(11755 / 18797\) & 28 \\
\hline
\end{tabular}

Estimating Mixture Weights given Multinomials
- Basic estimation: Maximum likelihood
- \(\operatorname{Argmax}_{w} \log P(X ; B, W)=\operatorname{Argmax}_{w} \Sigma_{f} X(f) \log \left(\Sigma_{i} w_{i} B_{i}(f)\right)\)
- Modified estimation: Maximum a posteriori
- Denote W = [w1 w2 ..] (in vector form)
- \(\operatorname{Argmax}_{w} \Sigma_{f} X(f) \log \left(\Sigma_{i} w_{i} B_{i}(f)\right)+\beta \log P(W)\)
- Sparsity obtained by enforcing an a priori probability distribution \(\mathrm{P}(\mathrm{W})\) over the mixture weights that favors sparse mixture weights
- The algorithm for estimating weights must be modified to account for the priors

\section*{The a priori distribution}
- A variety of a priori probability distributions all provide a bias towards "sparse" solutions
- The Dirichlet prior:
- \(P(W)=Z^{*} \Pi_{i} w_{i}^{\alpha-1}\)
- The entropic prior:
- \(P(W)=Z^{*} \exp (-\alpha H(W))\)
\[
\text { = } H(W)=\text { entropy of } W=-\Sigma_{i} w_{i} \log \left(w_{i}\right)
\]

Probability Simplex

- The sparsest probability vectors lie on the vertices of the simplex
- The edges of the simplex are progressively less sparse
- Two-dimensional edges have 2 non-zero elements
- Three-dimensional edges have 3 non-zero elements
- Etc

A simplex view of the world


\((0,1,0)\)
- The mixture weights are a probability distribution
- \(\Sigma_{i} w_{i}=1.0\)
- They can be viewed as a vector
- \(W=\left[w_{0} w_{1} W_{2} w_{3} W_{4} \ldots\right]\)
- The vector components are positive and sum to 1.0
- All probability vectors lie on a simplex
- A convex region of a linear subspace in which all vectors sum to 1.0

6 Oct 2011
11755/18797

Sparse Priors: Dirichlet

\(P(W)=Z^{\star} \Pi_{i} w_{i}^{\alpha-1}\)
- For alpha < 1, sparse probability vectors are more likely than dense ones

\section*{Optimization with the entropic prior}
- The objective function
\(\operatorname{Argmax}_{\mathrm{w}} \Sigma_{\mathrm{X}} \mathrm{X}(\mathrm{f}) \log \left(\Sigma_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}(\mathrm{f})\right)-\alpha \mathrm{H}(\mathrm{W})\)
- By estimating W such that the above equation is maximized, we can derive minimum entropy solutions
- Jointly optimize W for predicting the data while minimizing its entropy
- Vectors (probability distributions) with low entropy are more probable than those with high entropy - Low-entropy distributions are sparse!

\section*{The Expectation Maximization Algorithm}
- The parameters are actually learned using the Expectation Maximization (EM) algorithm
- The EM algorithm actually optimizes the following objective function
- \(Q=\Sigma_{\times} P(Z \mid f) X(f) \log (P(Z) P(f \mid Z))-\alpha H(\{P(Z)\})\) - \(P(Z)=w_{z},\{P(Z)\}=W\)
- The second term here is derived from the entropic prior
- Optimization of the above needs a solution to the following
\[
\frac{\sum_{f} S(t, f) P_{t}(z \mid f)}{P_{t}(z)}+\alpha\left(1+\log P_{t}(z)\right)+\lambda=0
\]
- The solution requires a new function:
- The lambert W function

60 ct 2011
11755/18797

Estimating \(\mathrm{W}_{0}(\mathrm{z})\)
- An iterative solution
- Newton's Method
\[
w_{j+1}=w_{j}-\frac{w_{j} e^{w_{j}}-z}{e^{w_{j}}+w_{j} e^{w_{j}}}
\]
- Halley Iterations
\[
w_{j+1}=w_{j}-\frac{w_{j} e^{u_{j}}-z}{e^{w_{j}}\left(w_{j}+1\right)-\frac{\left(w_{j}+2\right)\left(w_{j} e^{w_{j}}-z\right)}{2 w_{j}+2}}
\]
- Code for Lambert's W function is available on wikipedia

Oct 2011
11755/18797

\section*{Lambert's W Function}
- Lambert's W function is the solution to: \(\mathrm{W}+\log (\mathrm{W})=\mathrm{X}\)
Where \(W=F(X)\) is the Lambert function
- Alternately, the inverse function of - \(\mathrm{X}=\mathrm{W} \exp (\mathrm{W})\)
- In general, a multi-valued function
1. If \(X\) is real, \(W\) is real for \(X>-1 / e\)


Still multi-valued
- If we impose the restriction \(\mathrm{W}>-1\) and \(\mathrm{W}==\) real we get the zeroth branch of the W function
- Single valued
- For \(W<-1\) and \(W==\) real we get the -1 th branch of the \(W\) function
- Single valued

\section*{Solutions with entropic prior}
\[
\begin{gathered}
P_{t}(z)=\frac{-\gamma / \alpha}{W\left(-\gamma e^{1+\lambda / \alpha} / \alpha\right)} ; \quad \gamma=\sum_{f} S_{t}(f) P_{t}(z \mid f) \\
\lambda=-\left(\frac{\gamma}{P_{t}(z)}+\alpha\left(1+\log \left(P_{t}(z)\right)\right)\right)
\end{gathered}
\]
- The update rules are the same as before, with one minor modification
- To estimate the mixture weights, the above two equations must be iterated
- To convergence
- Or just for a few iterations
- Alpha is the sparsity factor
- \(P_{t}(z)\) must be initialized randomly

6Oct 2011 11755/18797

\section*{A Simplex Example for Overcompleteness}


Sparsity can be employed without overcompleteness
- Overcompleteness requires sparsity
- Sparsity does not require overcompleteness
- Sparsity only imposes the constraint that the data are composed from a mixture of as few multinomial components as possible
- This makes no assumption about overcompleteness

Oct 2011
11755/18797


\section*{Signal Separation with Overcomplete Bases}
- Learn overcomplete bases for each source
- For each frame of the mixed signal
- Estimate prior probability of source and mixture weights for each source - Constraint: Use sparse learning for mixture weights
- Estimate separated signals as \(\hat{S}_{t, i}(f)=S_{t}(f) \sum P_{t}(z, s \mid f)\)


Sparse Overcomplete Bases: Separation


Oct 2011
11755/18797

Working at the limits of overcompleteness: The "Example-Based" Model
- Every training vector is a basis
- Normalized to be a distribution
- Let \(\mathrm{S}(\mathrm{t}, \mathrm{f})\) be the \(\mathrm{t}^{\text {th }}\) training vector
- Let \(T\) be the total number of training vectors
- The total number of bases is T
- The \(k^{\text {th }}\) basis is given by - \(\mathrm{B}(\mathrm{k}, \mathrm{f})=\mathrm{S}(\mathrm{k}, \mathrm{f}) / \Sigma_{\mathrm{f}} \mathrm{S}(\mathrm{k}, \mathrm{f})=\mathrm{S}(\mathrm{k}, \mathrm{f}) /|\mathrm{S}(\mathrm{k}, \mathrm{f})|_{1}\)
- Learning bases requires no additional learning steps besides simply collecting (and computing spectra from) training data

6 Oct 2011
11755/18797

\section*{Signal Processing with the Example Based Model}
- All previously defined operations can be performed using the example based model exactly as before
- For each data vector, estimate the optimal mixture weights to combine the bases
- Mixture weights MUST be estimated to be sparse
- The example based representation is simply a special case of an overcomplete basis set

Oct 2011
11755/18797

\section*{The Limits of Overcompleteness}
- How many bases can we learn?
- The limit is: as many bases as the number of vectors in the training data
- Or rather, the number of distinct histograms in the training data
- Since we treat each vector as a histogram
- It is not possible to learn more than this number regardless of sparsity
- The arithmetic supports it, but the results will be meaningless

- In the above example all training data lie on the curve shown (Left Panel)
\[
\text { Each of them is a vector that sums to } 1.0
\]
- The learning procedure for bases learns multinomial components that are linear combinations of the data (Middle Panel)
- These can lie anywhere within the area enclosed by the data The layout of the components hides the actual structure of the layout of the data
- The example based representation captures the layout of the data perfectly (right panel)
Since the data are the bases
6 Oct 2011

\section*{Speaker Separation Example}

- Speaker-to-interference ratio of separated speakers
- State-of-the-art separation results

11755/18797
\[
\begin{aligned}
& \text { Example-based model: } A l l \text { the training } \\
& \text { data? } \\
& \text { In principle, no need to use all training data } \\
& \text { as the model } \\
& \text { A well-selected subset will do } \\
& \text { E.g. - ignore spectral vectors from all pauses and } \\
& \text { non-speech regions of speech samples } \\
& \text { E.g. - eliminate spectral vectors that are nearly } \\
& \text { identical } \\
& \text { The problem of selecting the optimal set of } \\
& \text { training examples remains open, however } \\
& \text { 6ocran1 }
\end{aligned}
\]
        Summary So Far
- PLCA:
    - The basic mixture-multinomial model for audio (and other
        The ba
data)
    - Sparse Decomposition:
        - The notion of sparsity and how it can be imposed on
        learning
- Sparse Overcomplete Decomposition:
    - The notion of overcomplete basis set
- Example-based representations
    - Using the training data itself as our representation
- Using the training data itself as our representation```

