Latent Variable Models and Signal Separation

Class 12. 11 Oct 2011

Summary So Far

- PLCA:
- The basic mixture-multinomial model for audio (and other data)
- Sparse Decomposition:
- The notion of sparsity and how it can be imposed on learning
- Sparse Overcomplete Decomposition:
- The notion of overcomplete basis set
- Example-based representations
- Using the training data itself as our representation

Next up: Shift/Transform Invariance

- Sometimes the "typical" structures that compose a sound are wider than one spectral frame
- E.g. in the above example we note multiple examples of a pattern that spans several frames

Next up: Shift/Transform Invariance

- Sometimes the "typical" structures that compose a sound are wider than one spectral frame
- E.g. in the above example we note multiple examples of a pattern that spans several frames
- Multiframe patterns may also be local in frequency
- E.g. the two green patches are similar only in the region enclosed by the blue box

Patches are more representative than frames

- Four bars from a music example
- The spectral patterns are actually patches
- Not all frequencies fall off in time at the same rate
- The basic unit is a spectral patch, not a spectrum

Images: Patches often form the image

- A typical image component may be viewed as a patch
- The alien invaders
- Face like patches
- A car like patch
- overlaid on itself many times..

Shift-invariant modelling

- A shift-invariant model permits individual bases to be patches
- Each patch composes the entire image.
- The data is a sum of the compositions from individual patches

Shift Invariance in one Dimension

- Our bases are now "patches"
- Typical spectro-temporal structures
- The urns now represent patches
- Each draw results in a (t,f) pair, rather than only f
- Also associated with each urn: A shift probability distribution $P(T \mid z)$
- The overall drawing process is slightly more complex
- Repeat the following process:
- Select an urn Z with a probability $P(Z)$
- Draw a value T from $P(t \mid Z)$
- Draw (t, f) pair from the urn
- Add to the histogram at ($\mathrm{t}+\mathrm{T}, \mathrm{f}$)

Shift Invariance in one Dimension

- The process is shift-invariant because the probability of drawing a shift $\mathrm{P}(\mathrm{T} \mid \mathrm{Z})$ does not affect the probability of selecting urn Z
- Every location in the spectrogram has contributions from every urn patch

Shift Invariance in one Dimension

- The process is shift-invariant because the probability of drawing a shift $\mathrm{P}(\mathrm{T} \mid \mathrm{Z})$ does not affect the probability of selecting urn Z
- Every location in the spectrogram has contributions from every urn patch

Shift Invariance in one Dimension

- The process is shift-invariant because the probability of drawing a shift $\mathrm{P}(\mathrm{T} \mid \mathrm{Z})$ does not affect the probability of selecting urn Z
- Every location in the spectrogram has contributions from every urn patch

Probability of drawing a particular (t, f) combination

$$
P(t, f)=\sum_{z} P(z) \sum_{\tau} P(\tau \mid z) P(t-\tau, f \mid z)
$$

- The parameters of the model:
- $P(t, f \mid z)$ - the urns
- $P(T \mid z)$ - the urn-specific shift distribution
- $P(z)$ - probability of selecting an urn
- The ways in which (t, f) can be drawn:
- Select any urn z
- Draw T from the urn-specific shift distribution
- Draw ($\mathrm{t}-\mathrm{T}, \mathrm{f}$) from the urn
- The actual probability sums this over all shifts and urns

Learning the Model

- The parameters of the model are learned analogously to the manner in which mixture multinomials are learned
- Given observation of (t,f), it we knew which urn it came from and the shift, we could compute all probabilities by counting!
- If shift is T and urn is Z
- $\quad \operatorname{Count}(Z)=\operatorname{Count}(Z)+1$
- For shift probability: $\operatorname{Count(T|Z)=\operatorname {Count}(T|Z)+1~}$
- For urn: Count(t-T,f|Z)=Count(t-T,f|Z)+1
- Since the value drawn from the urn was $t-T, f$
- After all observations are counted:
- Normalize Count(Z) to get P(Z)
- Normalize Count(T|Z) to get $P(T \mid Z)$
- Normalize Count $(\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$ to get $\mathrm{P}(\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$
- Problem: When learning the urns and shift distributions from a histogram, the urn (Z) and shift (T) for any draw of (t, f) is not known
- These are unseen variables

Learning the Model

- Urn Z and shift T are unknown
- So (t, f) contributes partial counts to every value of T and Z
- Contributions are proportional to the a posteriori probability of Z and T, Z

$$
\begin{array}{|ll|}
P(t, f, Z)=P(Z) \sum_{T} P(T \mid Z) P(t-T, f \mid Z) & P(T, t, f \mid Z)=P(T \mid Z) P(t-T, f \mid Z) \\
P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z^{\prime}} P\left(t, f, Z^{\prime}\right)} & P(T \mid Z, t, f)=\frac{P(T, t-T, f \mid Z)}{\sum_{T^{\prime}} P\left(T^{\prime}, t-T^{\prime}, f \mid Z\right)} \\
\hline
\end{array}
$$

- Each observation of (t, f)
- $\quad P(z \mid t, f)$ to the count of the total number of draws from the urn

$$
\text { - } \quad \operatorname{Count}(Z)=\operatorname{Count}(Z)+P(z \mid t, f)
$$

- $P(z \mid t, f) P(T \mid z, t, f)$ to the count of the shift T for the shift distribution
- $\operatorname{Count}(T \mid Z)=\operatorname{Count}(T \mid Z)+P(z \mid t, f) P(T \mid Z, t, f)$
- $P(z \mid t, f) P(T \mid z, t, f)$ to the count of $(t-T, f)$ for the urn

[^0]
Shift invariant model: Update Rules

- Given data (spectrogram) S(t,f)
- Initialize $\mathrm{P}(\mathrm{Z}), \mathrm{P}(\mathrm{T} \mid \mathrm{Z}), \mathrm{P}(\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$
- Iterate

$$
\begin{aligned}
& P\left(\begin{array}{l}
P(t, f, Z)=P(Z) \sum_{T} P(T \mid Z) P(t-T, f \mid Z) \quad P(T, t, f \mid Z)=P(T \mid Z) P(t-T, f \mid Z) \\
P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z^{\prime}} P\left(t, f, Z^{\prime}\right)} \quad P(T \mid Z, t, f)=\frac{P(T, t-T, f \mid Z)}{\sum_{T^{\prime}} P\left(T^{\prime}, t-T^{\prime}, f \mid Z\right)} \\
P(Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)}{\sum_{Z^{\prime}} \sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)} \quad P(T \mid Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) P(T \mid Z, t, f) S(t, f)}{\sum_{T^{\prime}} \sum_{t} \sum_{f} P(Z \mid t, f) P\left(T^{\prime} \mid Z, t, f\right) S(t, f)} \\
P(t, f \mid Z)=\frac{\sum_{T} P(Z \mid T, f) P(T-t \mid Z, T, f) S(T, f)}{\sum_{t^{\prime}} \sum_{T} P(Z \mid T, f) P\left(T-t^{\prime} \mid Z, T, f\right) S(T, f)} \\
11 \text { Oct 2011 }
\end{array}\right. \\
& \hline
\end{aligned}
$$

Shift-invariance in one time: example

- An Example: Two distinct sounds occuring with different repetition rates within a signal
- Modelled as being composed from two time-frequency bases
- NOTE: Width of patches must be specified

INPUT SPECTROGRAM

Shift Invariance in Time: Dereverberation

- Reverberation - a simple model
- The Spectrogram of the reverberated signal is a sum of the spectrogram of the clean signal and several shifted and scaled versions of itself
\square A convolution of the spectrogram and a room response

Dereverberation

- Given the spectrogram of the reverberated signal:
- Learn a shift-invariant model with a single patch basis
- Sparsity must be enforced on the basis
- The "basis" represents the clean speech!

Shift Invariance in Two Dimensions

- We now have urn-specific shifts along both T and F
- The Drawing Process
- Select an urn Z with a probability $P(Z)$
- Draw SHIFT values (T,F) from $P_{s}(T, F \mid Z)$
- Draw (t, f) pair from the urn
- Add to the histogram at $(\mathrm{t}+\mathrm{T}, \mathrm{f}+\mathrm{F})$
- This is a two-dimensional shift-invariant model
- We have shifts in both time and frequency
- Or, more generically, along both axes

Learning the Model

- Learning is analogous to the 1-D case
- Given observation of (t, f), it we knew which urn it came from and the shift, we could compute all probabilities by counting!
- If shift is T,F and urn is Z
- $\operatorname{Count}(Z)=\operatorname{Count}(Z)+1$
- For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1
- For urn: Count(t-T,f-F | Z) $=\operatorname{Count}(t-T, f-F \mid Z)+1$
- Since the value drawn from the urn was $t-T, f-F$
- After all observations are counted:
- Normalize Count(Z) to get P(Z)
- Normalize ShiftCount(T,F|Z) to get $P_{s}(T, F \mid Z)$
- Normalize Count($\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$ to get $\mathrm{P}(\mathrm{t}, \mathrm{f} \mid \mathrm{Z})$
- Problem: Shift and Urn are unknown

Learning the Model

- Urn Z and shift T,F are unknown
- So (t,f) contributes partial counts to every value of T,F and Z
- Contributions are proportional to the a posteriori probability of Z and $T, F \mid Z$

$$
\begin{aligned}
& P(t, f, Z)=P(Z) \sum_{T, F} P(T, F \mid Z) P(t-T, f-F \mid Z) \quad P(T, F, t, f \mid Z)=P(T, F \mid Z) P(t-T, f-F \mid Z) \\
& P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z^{\prime}} P\left(t, f, Z^{\prime}\right)} \quad P(T, F \mid Z, t, f)=\frac{P(T, F, t-T, f-F \mid Z)}{\sum_{T^{\prime}, F^{\prime}} P\left(T^{\prime}, F^{\prime}, t-T^{\prime}, f-F^{\prime} \mid Z\right)}
\end{aligned}
$$

- Each observation of (t,f)
- $\quad P(z \mid t, f)$ to the count of the total number of draws from the urn

$$
\text { - } \quad \operatorname{Count}(Z)=\operatorname{Count}(Z)+P(z \mid t, f)
$$

- $P(z \mid t, f) P(T, F \mid z, t, f)$ to the count of the shift T,F for the shift distribution
- $\quad \operatorname{ShiftCount}(T, F \mid Z)=\operatorname{ShiftCount}(T, F \mid Z)+P(z \mid t, f) P(T \mid Z, t, f)$
- $\quad P(T \mid z, t, f)$ to the count of (t-T, f-F) for the urn

[^1]
Shift invariant model: Update Rules

- Given data (spectrogram) S(t,f)
- Initialize $P(Z), P_{s}(T, F \mid Z), P(t, f \mid Z)$
- Iterate

$$
\begin{aligned}
& P(t, f, Z)=P(Z) \sum_{T, F} P(T, F \mid Z) P(t-T, f-F \mid Z) \quad P(T, F, t, f \mid Z)=P(T, F \mid Z) P(t-T, f-F \mid Z) \\
& P(Z \mid t, f)=\frac{P(t, f, Z)}{\sum_{Z^{\prime}} P\left(t, f, Z^{\prime}\right)} \quad P(T, F \mid Z, t, f)=\frac{P(T, F, t-T, f-F \mid Z)}{\sum_{T^{\prime}, F^{\prime}} P\left(T^{\prime}, F^{\prime}, t-T^{\prime}, f-F^{\prime} \mid Z\right)} \\
& P(Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)}{\sum_{Z^{\prime}} \sum_{t} \sum_{f} P\left(Z^{\prime} \mid t, f\right) S(t, f)} \quad P(T, F \mid Z)=\frac{\sum_{t} \sum_{f} P(Z \mid t, f) P(T, F \mid Z, t, f) S(t, f)}{\sum_{T^{\prime}} \sum_{F^{\prime}} \sum_{t} \sum_{f} P(Z \mid T, f) P\left(T^{\prime}, F^{\prime} \mid Z, t, f\right) S(t, f)} \\
& P(t, f \mid Z)=\frac{\sum_{T, F}}{\sum_{t^{\prime}, f^{\prime}} \sum_{T, F} P(Z \mid T, F) P\left(T-t^{\prime}, F-f^{\prime} \mid Z, T, F\right) S(T, F)}
\end{aligned}
$$

2D Shift Invariance: The problem of

 indeterminacy- $P(t, f \mid Z)$ and $P_{s}(T, F \mid Z)$ are analogous
- Difficult to specify which will be the "urn" and which the "shift"
- Additional constraints required to ensure that one of them is clearly the shift and the other the urn
- Typical solution: Enforce sparsity on $\mathrm{P}_{\mathrm{s}}(\mathrm{T}, \mathrm{F} \mid \mathrm{Z})$
- The patch represented by the urn occurs only in a few locations in the data

Example: 2-D shift invariance

- Only one "patch" used to model the image (i.e. a single urn)
\square The learnt urn is an "average" face, the learned shifts show the locations 11 Oct ${ }^{201}$ of faces

Example: 2-D shift invarince

- The original figure has multiple handwritten renderings of three characters
- In different colours
- The algorithm learns the three characters and identifies their locations in the figure

Beyond shift-invariance: transform

invariance

- The draws from the urns may not only be shifted, but also transformed
- The arithmetic remains very similar to the shiftinvariant model
- We must now impose one of an enumerated set of transforms to (t, f), after shifting them by (T, F)
- In the estimation, the precise transform applied is an unseen variable

Transform invariance: Generation

- The set of transforms is enumerable
- E.g. scaling by 0.9 , scaling by 1.1, rotation right by 90 degrees, rotation left by 90 degrees, rotation by 180 degrees, reflection
- Transformations can be chosen by draws from a distribution over transforms
- E.g. P(rotation by 90 degrees) $=0.2$.
- Distributions are URN SPECIFIC
- The drawing process:
- Select an urn Z (patch)
- Select a shift (T,F) from $P_{s}(T, F \mid Z)$
- Select a transform from $P(t x f m \mid Z)$
- Select a (t,f) pair from $P(t, f \mid Z)$
- Transform (t, f) to txfm(t, f)
- Increment the histogram at txfm(t,f) $+(T, F)$

Transform invariance

- The learning algorithm must now estimate
- $P(Z)$ - probability of selecting urn/patch in any draw
- $P(t, f \mid Z)$ - the urns / patches
- $P(t x f m \mid Z)$ - the urn specific distribution over transforms
- $P_{s}(T, F \mid Z)$ - the urn-specific shift distribution
- Essentially determines what the basic shapes are, where they occur in the data and how they are transformed
- The mathematics for learning are similar to the maths for shift invariance
- With the addition that each instance of a draw must be fractured into urns, shifts AND transforms
- Details of learning are left as an exercise
- Alternately, refer to Madhusudana Shashanka's PhD thesis at BU

Example: Transform Invariance

- Top left: Original figure
- Bottom left - the two bases discovered
- Bottom right -
- Left panel, positions of "a"
- Right panel, positions of "l"
- Top right: estimated distribution underlying original figure

Transform invariance: model limitations

and extensions

- The current model only allows one transform to be applied at any draw
- E.g. a basis may be rotated or scaled, but not scaled and rotated
- An obvious extension is to permit combinations of transformations
- Model must be extended to draw the combination from some distribution
- Data dimensionality: All examples so far assume only two dimensions (e.g. in spectrogram or image)
- The models are trivially extended to higherdimensional data

Transform Invariance: Uses and Limitations

- Not very useful to analyze audio
- May be used to analyze images and video
- Main restriction: Computational complexity
- Requires unreasonable amounts of memory and CPU
- Efficient implementation an open issue

Example: Higher dimensional data - Video example

Kemel 1

Kemel 2

Kemel 3

[^0]: - Count(t-T,f|Z) $=\operatorname{Count}(t-T, f \mid Z)+P(z \mid t, f) P(T \mid z, t, f)$

[^1]: Count(t-T,f-F | Z $)=\operatorname{Count}(t-T, f-F \mid Z)+P(z \mid t, f) P(t-T, f-F \mid z, t, f)$

