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Summary So Far
 PLCA:

 The basic mixture-multinomial model for audio (and other The basic mixture multinomial model for audio (and other 
data)

 Sparse Decomposition: Sparse Decomposition:
 The notion of sparsity and how it can be imposed on 

learning

 Sparse Overcomplete Decomposition:
 The notion of overcomplete basis set

 Example-based representations
 Using the training data itself as our representation
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 Using the training data itself as our representation
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Next up: Shift/Transform Invariance

 Sometimes the “typical” structures that 
compose a sound are wider than one spectral 
frame
 E.g. in the above example we note multiple 

examples of a pattern that spans several frames
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Next up: Shift/Transform Invariance

 Sometimes the “typical” structures that compose a 
sound are wider than one spectral framesound are wider than one spectral frame
 E.g. in the above example we note multiple examples of a 

pattern that spans several frames
 Multiframe patterns may also be local in frequency

 E.g. the two green patches are similar only in the region 
l d b th bl b
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enclosed by the blue box
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Patches are more representative than frames

 Four bars from a music example
Th t l tt t ll t h The spectral patterns are actually patches
 Not all frequencies fall off in time at the same rate

 The basic unit is a spectral patch not a spectrum
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 The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image

A typical image component may be viewed as a A typical image component may be viewed as a 
patch
 The alien invaders
 Face like patches
 A car like patch 

l id i lf i
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 overlaid on itself many times..
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Shift-invariant modelling
 A shift-invariant model permits individual 

bases to be patchesbases to be patches
 Each patch composes the entire image.

The data is a sum of the compositions from The data is a sum of the compositions from 
individual patches
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Shift Invariance in one Dimension
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 Our bases are now “patches”
 Typical spectro-temporal structures

Th t t h The urns now represent patches
 Each draw results in a (t,f) pair, rather than only f
 Also associated with each urn:  A shift probability distribution P(T|z)

 The overall drawing process is slightly more complex The overall drawing process is slightly more complex
 Repeat the following process:

 Select an urn Z with a probability P(Z)
 Draw a value T from P(t|Z)

Draw (t f) pair from the urn
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 Draw (t,f) pair from the urn
 Add to the histogram at (t+T, f)

11 Oct 2011 8



Shift Invariance in one Dimension
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 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch
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Shift Invariance in one Dimension

5
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81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch
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Probability of drawing a particular (t,f) combination

  
z

zftPzPzPftP
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 The parameters of the model:
 P(t f|z) – the urns P(t,f|z) the urns
 P(T|z) – the urn-specific shift distribution
 P(z) – probability of selecting an urn

 The ways in which (t,f) can be drawn:
 Select any urn z
 Draw T from the urn-specific shift distribution
 Draw (t-T,f) from the urn

 The actual probability sums this over all shifts and urns
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Learning the Model
 The parameters of the model are learned analogously to the manner in 

which mixture multinomials are learned

Gi b ti f (t f) it k hi h it f d th hift Given observation of (t,f), it we knew which urn it came from and the shift, 
we could compute all probabilities by counting!
 If shift is T and urn is Z

 Count(Z) = Count(Z) + 1 Count(Z) = Count(Z) + 1
 For shift probability: Count(T|Z) = Count(T|Z)+1
 For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1

 Since the value drawn from the urn was t-T,f

 After all observations are counted:
 Normalize Count(Z) to get P(Z)
 Normalize Count(T|Z) to get P(T|Z) Normalize Count(T|Z) to get P(T|Z)
 Normalize Count(t,f|Z) to get P(t,f|Z)

 Problem: When learning the urns and shift distributions from a histogram, 
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the urn (Z) and shift (T) for any draw of (t,f) is not known
 These are unseen variables
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Learning the Model
 Urn Z and shift T are unknown

 So (t,f) contributes partial counts to every value of T and Z
 Contributions are proportional to the a posteriori probability of Z and T,Z
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 Each observation of (t,f) 
 P(z|t,f) to the count of the total number of draws from the urn

 Count(Z) = Count(Z) + P(z | t,f)

 P(z|t,f)P(T | z,t,f) to the count of the shift T for the shift distribution
 Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f)
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 P(z|t,f)P(T | z,t,f) to the count of (t-T, f) for the urn
 Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,f)P(T | z,t,f)
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Shift invariant model: Update Rules
 Given data (spectrogram) S(t,f)
 Initialize P(Z), P(T|Z), P(t,f | Z) Initialize P(Z), P(T|Z), P(t,f | Z)
 Iterate
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Shift-invariance in one time: example
 An Example: Two distinct sounds occuring with different repetition rates 

within a signal
 Modelled as being composed from two time-frequency bases
 NOTE: Width of patches must be specified

INPUT SPECTROGRAM
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Discovered time-frequency 
“patch” bases (urns)

Contribution of individual bases to the recording11 Oct 2011 16



Shift Invariance in Time: Dereverberation

=+  +

 Reverberation – a simple modelReverberation a simple model
 The Spectrogram of the reverberated signal is a 

sum of the spectrogram of the clean signal and 
several shifted and scaled versions of itself

 A convolution of the spectrogram and a room 
response
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Dereverberation

 Given the spectrogram of the reverberated Given the spectrogram of the reverberated 
signal:
 Learn a shift-invariant model with a single patch basis Learn a shift invariant model with a single patch basis

 Sparsity must be enforced on the basis

 The “basis” represents the clean speech!
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Shift Invariance in Two Dimensions

5 5 598 1 274453 1 7520453 914115015025
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81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 We now have urn-specific shifts along both T and Fp g
 The Drawing Process

 Select an urn Z with a probability P(Z)
 Draw SHIFT values (T,F) from Ps(T,F|Z)( , ) s( , | )
 Draw (t,f) pair from the urn
 Add to the histogram at (t+T, f+F)

 This is a two-dimensional shift-invariant model
 We have shifts in both time and frequency

 Or, more generically, along both axes

11755/1879711 Oct 2011 19



Learning the Model
 Learning is analogous to the 1-D case

 Given observation of (t,f), it we knew which urn it came from and ( , ),
the shift, we could compute all probabilities by counting!
 If shift is T,F and urn is Z

 Count(Z) = Count(Z) + 1 Count(Z)  Count(Z)  1
 For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1
 For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1

 Since the value drawn from the urn was t-T,f-F,

 After all observations are counted:
 Normalize Count(Z) to get P(Z)( ) g ( )
 Normalize ShiftCount(T,F|Z) to get Ps(T,F|Z)
 Normalize Count(t,f|Z) to get P(t,f|Z)
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 Problem: Shift and Urn are unknown
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Learning the Model
 Urn Z and shift T,F are unknown

 So (t,f) contributes partial counts to every value of T,F and Z
 Contributions are proportional to the a posteriori probability of Z and T,F|Z
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 Each observation of (t,f) 
 P(z|t,f) to the count of the total number of draws from the urn

 Count(Z) = Count(Z) + P(z | t,f)

 P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
 ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,f)P(T | Z, t, f)
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 P(T | z,t,f) to the count of (t-T, f-F) for the urn
 Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f)
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Shift invariant model: Update Rules
 Given data (spectrogram) S(t,f)
 Initialize P(Z), Ps(T,F|Z), P(t,f | Z) Initialize P(Z), Ps(T,F|Z), P(t,f | Z)
 Iterate
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2D Shift Invariance: The problem of 
indeterminacy
 P(t,f|Z) and Ps(T,F|Z) are analogouss

 Difficult to specify which will be the “urn” and which the 
“shift”

 Additional constraints required to ensure that one of 
them is clearly the shift and the other the urn

 Typical solution: Enforce sparsity on Ps(T,F|Z) 
 The patch represented by the urn occurs only in a few 

locations in the datalocations in the data
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Example: 2-D shift invariance
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 Only one “patch” used to model the image (i.e. a single urn)
 The learnt urn is an “average” face, the learned shifts show the locations 

of faces11 Oct 2011 24



Example: 2-D shift invarince

 The original figure has multiple handwritten 
d i f th h trenderings of three characters

 In different colours
Th l ith l th th h t d The algorithm learns the three characters and 
identifies their locations in the figure

Input data

D
is

co
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re
d
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ca
tio

ns
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Beyond shift-invariance: transform 
invariance

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The draws from the urns may not only be shifted, 
but also transformed
Th ith ti i i il t th hift The arithmetic remains very similar to the shift-
invariant model
 We must now impose one of an enumerated set of We must now impose one of an enumerated set of 

transforms to (t,f), after shifting them by (T,F)
 In the estimation, the precise transform applied is an 

unseen variable
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unseen variable
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Transform invariance: Generation
 The set of transforms is enumerable

 E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation g g y , g y , g y g ,
left by 90 degrees, rotation by 180 degrees, reflection

 Transformations can be chosen by draws from a distribution over 
transforms
 E.g. P(rotation by 90 degrees) = 0.2..
 Distributions are URN SPECIFIC

 The drawing process: The drawing process:
 Select an urn Z (patch)
 Select a shift (T,F) from Ps(T, F| Z)
 Select a transform from P(txfm | Z) Select a transform from P(txfm | Z)
 Select a (t,f) pair from P(t,f | Z)
 Transform (t,f) to txfm(t,f)

Increment the histogram at txfm(t f) + (T F) Increment the histogram at txfm(t,f) + (T,F)
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Transform invariance
 The learning algorithm must now estimate

 P(Z) – probability of selecting urn/patch in any draw
 P(t,f|Z) – the urns / patches
 P(txfm | Z) – the urn specific distribution over transforms
 Ps(T,F|Z) – the urn-specific shift distribution

 Essentially determines what the basic shapes are, where they occur in 
the data and how they are transformed
The mathematics for learning are similar to the maths for shift The mathematics for learning are similar to the maths for shift 
invariance
 With the addition that each instance of a draw must be fractured into urns, shifts 

AND transforms

 Details of learning are left as an exercise
 Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU
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Example: Transform Invariance

 Top left: Original figure
 Bottom left – the two bases discovered
 Bottom right –

 Left panel, positions of “a”
 Right panel positions of “l”
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 Right panel, positions of l
 Top right: estimated distribution underlying original figure
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Transform invariance: model limitations 
and extensions
 The current model only allows one transform to be 

applied at any draw
 E.g. a basis may be rotated or scaled, but not scaled and 

rotated
 An obvious extension is to permit combinations of 

transformations
M d l t b t d d t d th bi ti f Model must be extended to draw the combination from 
some distribution

 Data dimensionality: All examples so far assume 
only two dimensions (e.g. in spectrogram or image)

 The models are trivially extended to higher-
dimensional datadimensional data
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Transform Invariance: Uses and 
Limitations

Not very useful to analyze audio Not very useful to analyze audio
 May be used to analyze images and video

 Main restriction: Computational complexity
 Requires unreasonable amounts of memory and 

CPU
 Efficient implementation an open issue
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Example: Higher dimensional data
 Video example
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