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Why Clustering

 Automatic grouping into “Classes”
 Different clusters may show different behavior

 Quantization
 All data within a cluster are represented by a 

single point

 Preprocessing step for other algorithms
 Indexing, categorization, etc.
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Clustering criteria

 Compactness criterion
 Measure that shows how “good” clusters are

 The objective function

Distance of a point from a cluster Distance of a point from a cluster
 To determine the cluster a data vector belongs to
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cluster

“Compactness” criteria for clustering
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 Distance based measures
 Total distance between each 

element in the cluster and every 
other element in the cluster

 Distance between the two 
farthest points in the cluster

“Compactness” criteria for clustering

p

 Total distance of every element in 
the cluster from the centroid of 
the cluster

 Distance measures are often 
weighted Minkowski metrics

n n

MMM

nn
bawbawbawdist  ...222111

1718 Oct 2011

Clustering: Distance from cluster

 How far is a data point from a 
cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point 
in the cluster

 Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster

 How far is a data point from a 
cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point in 
the cluster

 Probability of data measured on 
cluster distribution

 Fit of data to cluster-based 
regression 2218 Oct 2011

Optimal clustering: Exhaustive 
enumeration
 All possible combinations of data must be evaluated

 If there are M data points, and we desire N clusters, the 
number of ways of separating M instances into N clusters is
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 Exhaustive enumeration based clustering requires that the 
objective function (the “Goodness measure”) be evaluated 
for every one of these, and the best one chosen

 This is the only correct way of optimal clustering
 Unfortunately, it is also computationally unrealistic
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Not-quite non sequitir:  Quantization

Signal Value Bits Mapped to

S >= 3.75v 11 3 * const

3.75v > S >= 2.5v 10 2 * const

2.5v > S >= 1.25v 01 1 * const

1.25v > S >= 0v 0 0 
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 Linear quantization (uniform quantization):
 Each digital value represents an equally wide range of analog 

values

 Regardless of distribution of data

 Digital-to-analog conversion represented by a “uniform” table

24

Analog value (arrows are quantization levels)Pr
o
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Not-quite non sequitir:  Quantization
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ue Signal Value Bits Mapped to

S >= 4v 11 4.5

4v > S >= 2.5v 10 3.25

2.5v > S >= 1v 01 1.25

1.0v > S >= 0v 0 0.5

 Non-Linear quantization:
 Each digital value represents a different range of analog values

 Finer resolution in high-density areas

 Mu-law / A-law assumes a gaussian-like distribution of data

 Digital-to-analog conversion represented by a “non-uniform” table
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Analog value (arrows are quantization levels)Pr
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Non-uniform quantization
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 If data distribution is not Gaussianish?
 Mu-law / A-law are not optimal
 How to compute the optimal ranges for quantization

 Or the optimal table

26

Analog valuePr
ob

a

18 Oct 2011

The Lloyd Quantizer
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 Lloyd quantizer: An iterative algorithm for computing 
optimal quantization tables for non-uniformly 
distributed data

 Learned from “training” data
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Lloyd Quantizer

 Randomly initialize 
quantization points
 Right column entries of 

quantization table

 Assign all training points g g p
to the nearest 
quantization point

 Reestimate quantization 
points

 Iterate until convergence
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Lloyd Quantizer

 Randomly initialize 
quantization points
 Right column entries of 

quantization table

 Assign all training points g g p
to the nearest 
quantization point
 Draw boundaries

 Reestimate quantization 
points

 Iterate until convergence
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Generalized Lloyd Algorithm: K–means clustering

 K means is an iterative algorithm for clustering 
vector data
 McQueen, J. 1967. “Some methods for classification and 

analysis of multivariate observations.” Proceedings of the 
Fifth Berkeley Symposium on Mathematical Statistics and 
Probability, 281-297 

 General procedure:
 Initially group data into the required number of clusters 

somehow (initialization)

 Assign each data point to the closest cluster

 Once all data points are assigned to clusters, redefine 
clusters

 Iterate 
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K–means

 Problem: Given a set of data 
vectors, find natural clusters

 Clustering criterion is scatter: 
distance from the centroid

 Every cluster has a centroidy

 The centroid represents the 
cluster

 Definition:  The centroid is 
the weighted mean of the 
cluster

 Weight = 1 for basic scheme  
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
• ),( clustercluster mxd distance

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

5. If not converged, go back to 2
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K–means
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K-Means comments

 The distance metric determines the clusters
 In the original formulation, the distance is L2 

distance
 Euclidean norm, wi = 1

1

 If we replace every x by mcluster(x), we get Vector 
Quantization

 K-means is an instance of generalized EM

 Not guaranteed to converge for all distance 
metrics
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Initialization
 Random initialization

 Top-down clustering
 Initially partition the data into two (or a small 

number of) clusters using K means

 Partition each of the resulting clusters into two a o eac o e esu g c us e s o o
(or a small number of) clusters, also using K 
means

 Terminate when the desired number of clusters 
is obtained
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K-Means for Top–Down clustering
1. Start with one cluster 

2. Split each cluster into two:
 Perturb centroid of cluster slightly  (by < 5%) 

to generate two centroids

3. Initialize K means with new set of 
centroids

4. Iterate Kmeans until convergence

5. If the desired number of clusters is 
not obtained, return to 2
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K-Means for Top–Down clustering
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Non-Euclidean clusters

 Basic K-means results in good clusters in 
Euclidean spaces
 Alternately stated, will only find clusters that are 

“good” in terms of Euclidean distances

 Will not find other types of clusters

5418 Oct 2011
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For other forms of clusters we must modify the distance measure

f([x,y]) -> [x,y,z]
x = x
y = y
z = (x2 + y2)

Non-euclidean clusters

 For other forms of clusters we must modify the distance measure
 E.g. distance from a circle

 May be viewed as a distance in a higher dimensional space
 I.e Kernel distances

 Kernel K-means

 Other related clustering mechansims:
 Spectral clustering

 Non-linear weighting of adjacency

 Normalized cuts..
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f([x,y]) -> [x,y,z]
x = x
y = y
z = (x2 + y2)

The Kernel Trick

 Transform the data into a synthetic higher-dimensional space 
where the desired patterns become natural clusters
 E.g. the quadratic transform above

 Problem: What is the function/space?

 Problem: Distances in higher dimensional-space are more 
expensive to compute
 Yet only carry the same information in the lower-dimensional space 
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Distance in higher-dimensional space

 Transform data x through an unknown function 
(x) into a higher (potentially infinite) 
dimensional space
 z = (x)

 The distance between two points is computed in 
the higher-dimensional space
 d(x1, x2) =  ||z1- z2||2 = ||(x1) – (x2)||2

 d(x1, x2) can be computed without computing z
 Since it is a direct function of x1 and x2
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Distance in higher-dimensional space

 Distance in lower-dimensional space: A combination 
of dot products
 ||x1- x2||2 = (z1- z2)T(z1- z2) = z1.z1 + z2.z2 -2 z1.z2

 Distance in higher-dimensional spaceg p
 d(x1, x2) =||(x1) – (x2)||2

= (x1). (x1) + (x2). (x2) -2 (x1). (x2)

 d(x1, x2) can be computed without knowing (x) if:
 (x1). (x2) can be computed for any x1 and x2 without 

knowing (.)
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The Kernel function

 A kernel function K(x1,x2) is a function such that:
 K(x1,x2) = (x1). (x2) 

 Once such a kernel function is found, the 
distance in higher-dimensional space can be g p
found in terms of the kernels
 d(x1, x2) =||(x1) – (x2)||2

= (x1). (x1) + (x2). (x2) -2 (x1). (x2)
= K(x1,x1) + K(x2,x2) - 2K(x1,x2)

 But what is K(x1,x2)?
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A property of the dot product

 For any vector v, vTv = ||v||2 >= 0
 This is just the length of v and is therefore non-

negative

 For any vector u = i ai vi ||u||2 >=0 For any vector u  i ai vi,  ||u|| > 0
 => (i ai vi)T(i ai vi) >= 0

 => i j ai aj vi .vj >= 0

 This holds for ANY real {a1, a2, …}

6018 Oct 2011
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The Mercer Condition
 If z = (x) is a high-dimensional vector derived 

from x then for all real {a1, a2, …} and any set  
{z1, z2, … } = {(x1), (x2),…}
 i j ai aj zi .zj >= 0

 i j ai aj(xi).(xj)   >= 0

 If K(x1,x2) = (x1). (x2)
 i j ai aj K(xi,xj)   >= 0

 Any function K() that satisfies the above 
condition is a valid kernel function
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The Mercer Condition
 K(x1,x2) = (x1). (x2)

 i j ai aj K(xi,xj)   >= 0

 A corollary: If any kernel K(.) satisfies the Mercer 
condition 
d(x1, x2) = K(x1,x1) + K(x2,x2) - 2K(x1,x2) 
satisfies the following requirements for a 
“distance”
 d(x,x) = 0

 d(x,y) >= 0

 d(x,w) + d(w,y) >= d(x,y)
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Typical Kernel Functions

 Linear: K(x,y) = xTy + c

 Polynomial K(x,y) = (axTy + c)n

 Gaussian: K(x,y) = exp(-||x-y||2/2)( y) p( || y|| )

 Exponential: K(x,y) =  exp(-||x-y||/)

 Several others
 Choosing the right Kernel with the right 

parameters for your problem is an artform
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K(x,y)= (xT y + c)2

Kernel K-means

 Perform the K-mean in the Kernel space

 The space of z = (x)

 The algorithm..
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K–means

 Initialize the clusters with a 
random set of K points

 Cluster has 1 point

 For each data point x, find the closest cluster
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
• ),( clustercluster mxd distance

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids
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2. For each data point x, find the 
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K–means
1. Initialize a set of centroids
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2. For each data point x, find the 
distance from the centroid for 
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• ),( clustercluster mxd distance
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
• ),( clustercluster mxd distance

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points are 
clustered, recompute centroids

5. If not converged, go back to 2
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Kernel K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
• ),( clustercluster mxd distance

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points are 
clustered, recompute centroids

5. If not converged, go back to 2
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How many clusters?

 Assumptions:
 Dimensionality of kernel space > no. of clusters

 Clusters represent separate directions in Kernel 
spaces

 Kernel correlation matrix K
 Kij = K(xi,xj)

 Find Eigen values  and Eigen vectors e of 
kernel matrix
 No. of clusters = no. of dominant i (1Tei) terms
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Spectral Methods

 “Spectral” methods attempt to find “principal” 
subspaces of the high-dimensional kernel space

 Clustering is performed in the principal 
subspaces
 Normalized cuts Normalized cuts

 Spectral clustering

 Involves finding Eigenvectors and Eigen values 
of Kernel matrix

 Fortunately, provably analogous to Kernel K-
means
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Other clustering methods

 Regression based clustering

 Find a regression representing each cluster

 Associate each point to the cluster with the 
best regression
 Related to kernel methods
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Clustering..

 Many many other variants

 Many applications..

 Important: Appropriate choice of featurep pp p
 Appropriate choice of feature may eliminate need 

for kernel trick..

 Google is your friend.
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