

Administrivia

- Registration: Anyone on waitlist still?
- Homework 1: Will be handed out with class 3. - Linear algebra

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Vector products
- Matrix products
- Various matrix types
- Matrix inversion
- Matrix interpretation
- Eigenanalysis
- Singular value decomposition

1 Sep 201
11-755/18-797

Book

- Fundamentals of Linear Algebra, Gilbert Strang
- Important to be very comfortable with linear algebra
- Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
- Appears through various properties of matrices that are used in machine learning, particularly when applied to images and sound
- Today's lecture: Definitions
- Very small subset of all that's used
- Important subset, intended to help you recollect

1 Sep 2011
11-755/18-797

And other things you can do

Scalars, vectors, matrices, ...

- A scalar a is a number
- $a=2, a=3.14, a=-1000$, etc.
- A vector a is a linear arrangement of a collection of scalars

$$
\mathbf{a}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \mathbf{a}=\left[\begin{array}{l}
3.14 \\
-32
\end{array}\right]
$$

- A matrix \mathbf{A} is a rectangular arrangement of a collection of vectors

$$
\mathbf{A}=\left[\begin{array}{cc}
3.12 & -10 \\
10.0 & 2
\end{array}\right]
$$

- MATLAB syntax: $a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], A=\left[\begin{array}{lll}1 & 2 ; 3 & 4\end{array}\right]$

1 Scp 2011
117.75/18.797

Vector/Matrix types and shapes

- Vectors are either column or row vectors

$$
\mathbf{c}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{r}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \mathbf{s}=[\text { hhow ham }]
$$

- A sound can be a vector, a series of daily temperatures can be a vector, etc ..
- Matrices can be square or rectangular

$$
\mathbf{S}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \mathbf{M}=\left[\begin{array}{ll}
\\
p
\end{array}\right]
$$

- Images can be a matrix, collections of sounds can be a matrix, etc ..
1 Scp 2011 11-755/18.797

Dimensions of a matrix

- The matrix size is specified by the number of rows and columns

$$
\mathbf{c}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{r}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]
$$

- $c=3 \times 1$ matrix: 3 rows and 1 column - $r=1 \times 3$ matrix: 1 row and 3 columns

$$
\mathbf{S}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

D

- $S=2 \times 2$ matrix
- $\mathrm{R}=2 \times 3$ matrix
- Pacman $=321 \times 399$ matrix

1 Sp 2011
${ }^{11-755 / 18,797}$

Vectors

- Ordered collection of numbers
- Examples: [3 4 5], [a b c d],

- Typically viewed as identifying (the path from origin to) a location in an N -dimensional space

1 Scp 2011
11-755/18-797

Vectors vs. Matrices

- A vector is a geometric notation for how to get from $(0,0)$ to some location in the space
- A matrix is simply a collection of destinations!
- Properties of matrices are average properties of the traveller's path to these destinations
1 Scp 2011
11-755/18-797

Vector Operations

- Operations tell us how to get from (\{0\}) to the result of the vector operations
- (3,4,5) + (3,-2,-3) = (6,2,2)

1 Scp 2011
${ }^{11-755 / 18-797}$

Basic arithmetic operations

- Addition and subtraction

- Element-wise operations

$$
\mathbf{a}+\mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
a_{3}+b_{3}
\end{array}\right] \quad \mathbf{a}-\mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]-\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
a_{3}-b_{3}
\end{array}\right]
$$

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

- MATLAB syntax: $\mathrm{a}+\mathrm{b}$ and $\mathrm{a}-\mathrm{b}$

1 Scp 2011
11-755/18-797

Vector Norm

- Geometrically the shortest distance to travel from the origin to the destination
- As the crow flies
- Assuming Euclidean Geometry

1 Scp $2011 \quad$ 11-755/18-797

Transposition

- A transposed row vector becomes a column (and vice versa)

$$
\mathbf{x}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{x}^{T}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \mathbf{y}^{T}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- A transposed matrix gets all its row (or column) vectors transposed in order

- MATLAB syntax: ${ }^{\prime}$

1 Sep 2011
11-755/18.797

Vector multiplication

- Multiplication is not element-wise!
- Dot product, or inner product
- Vectors must have the same number of elements
- Row vector times column vector = scalar

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right] \cdot\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=a \cdot d+b \cdot e+c \cdot f
$$

- Cross product, outer product or vector direct product
- Column vector times row vector = matrix

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{lll}
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
a \cdot d & a \cdot e & a \cdot f \\
b \cdot d & b \cdot e & b \cdot f \\
c \cdot d & c \cdot e & c \cdot f
\end{array}\right]
$$

- MATLAB syntax: $a * b$

Vector dot product in Manhattan

- Multiplying the "yard" vectors
- Instead of avenue/street we'll use yards
a $\mathrm{a}=[2001600], \mathrm{b}=[770300]$
- The dot product of the two vectors relates to the length of a projection
- How much of the first vector have we covered by following the second one?
- The answer comes back as a unit of the first vector so we divide by its length

$$
\frac{\mathbf{a b}^{\mathrm{T}}}{\|\mathbf{a}\|}=\frac{\left[\begin{array}{ll}
200 & 1600
\end{array}\right] \cdot\left[\begin{array}{l}
770 \\
300
\end{array}\right]}{\|\left[\begin{array}{ll}
200 & 1600 \|
\end{array}\right]} \approx 393 \mathrm{yd}
$$

Vector dot product

- Vectors are spectra
- Energy at a discrete set of frequencies
- Actually 1x4096
- X axis is the index of the number in the vector - Represents frequency
- Y axis is the value of the number in the vector - Represents magnitude

1 Sep 2011 1-755/18-79

Vector cross product

- The column vector is the spectrum
- The row vector is an amplitude modulation
- The crossproduct is a spectrogram
- Shows how the energy in each frequency varies with time
- The pattern in each column is a scaled version of the spectrum
- Each row is a scaled version of the modulation
- How much can you fake a D by playing an S
D.S $/|\mathrm{D}||\mathrm{S}|=0$.
- How much of D is in D2?
D. $\mathrm{D} 2 /|\mathrm{D}| /|\mathrm{D} 2|=0.5$

Scp 2011
11-755/18-797
Matrix multiplication

- Generalization of vector multiplication - Dot product of each vector pair

$$
\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{lll}
\leftarrow & \mathbf{a}_{1} & \rightarrow \\
\leftarrow & \mathbf{a}_{2} & \rightarrow
\end{array}\right] \cdot\left[\begin{array}{cc}
\uparrow & \uparrow \\
\mathbf{b}_{1} & \mathbf{b}_{2} \\
\downarrow & \downarrow
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a}_{1} \cdot \mathbf{b}_{1} & \mathbf{a}_{1} \cdot \mathbf{b}_{2} \\
\mathbf{a}_{2} \cdot \mathbf{b}_{1} & \mathbf{a}_{2} \cdot \mathbf{b}_{2}
\end{array}\right]
$$

- Dimensions must match!!
- Columns of first matrix = rows of second
- Result inherits the number of rows from the first matrix and the number of columns from the second matrix
- MATLAB syntax: a *b
1 Scp 2011
11.755/18797

Matrix Multiplication is projection

- The k-th axis corresponds to the normal to the hyperplane represented by the $1 . . \mathrm{k}-1, \mathrm{k}+1$.. N -th row vectors in the matrix
- Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
- The distance along the new axis equals the length of the projection on the k-th row vector
- Expressed in inverse-lengths of the vector

1 Scp 2011

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=x\left[\begin{array}{l}
a \\
d
\end{array}\right]+y\left[\begin{array}{l}
b \\
e
\end{array}\right]+z\left[\begin{array}{l}
c \\
f
\end{array}\right]
$$

- So much for spaces .. what does multiplying a matrix by a vector really do?
- It mixes the column vectors of the matrix using the numbers in the vector
- The column space of the Matrix is the complete set of all vectors that can be formed by mixing its columns

1 Scp 2011
11-755/18-797

Matrix Multiplication: Row space

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=x\left[\begin{array}{lll}
a & b & c
\end{array}\right]+y\left[\begin{array}{lll}
d & e & f
\end{array}\right]
$$

- Left multiplication mixes the row vectors of the matrix.
- The row space of the Matrix is the complete set of all vectors that can be formed by mixing its rows

1 Scp 2011 11-755/18-797

Matrix multiplication: Mixing vectors

- Mixing two images
- The images are arranged as columns - position value not included
$\underset{1 \text { Scp 2011 }}{\square}$ The result of the multiplication is rearranged as an image

Why is that useful?

x

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing vectors

$\left[\begin{array}{ccc}1 & 3 & 0 \\ . & . & 0 \\ 9 & 24 & \cdot \\ . & \cdot & 1\end{array}\right]$

- A physical example
- The three column vectors of the matrix X are the spectra of three notes
- The multiplying column vector Y is just a mixing vector
- The result is a sound that is the mixture of the three notes
${ }^{1}$ Scp 2011
11-755/18-797 ${ }^{32}$

Matrix multiplication: another view

$$
\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{ccc}
a_{11} & \cdot & \cdot \\
a_{21} & \cdot & a_{1 N} \\
\cdot & \cdot & a_{2 N} \\
\cdot & \cdot & \cdot \\
a_{M 1} & \cdot & \cdot \\
M N
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdot & b_{N K} \\
\cdot & \cdot & \cdot \\
b_{N 1} & \cdot & b_{N K}
\end{array}\right]=\left[\begin{array}{ccc}
\sum_{k} a_{1 k} b_{k 1} & \cdot & \sum_{k} a_{1 k} b_{k K} \\
\cdot & \cdot & \cdot \\
\sum_{k} a_{M k} b_{k 1} & \cdot & \sum_{k} a_{M k} b_{k K}
\end{array}\right]
$$

- What does this mean?

> - The outer product of the first column of A and the first row of $B+$ outer product of the second column of A and the second row of $B+\ldots$.
> ${ }_{1}$ Sep 2011

- Sounds: Three notes modulated
\qquad ${ }^{37}$

Matrix multiplication: Mixing modulated spectra

Sounds: Three notes modulated independently

1 Scp 2011
11-755/18-797

- Sounds: Three notes modulated independently

Matrix multiplication: Image transition

- Each column is one image
- The columns represent a sequence of images of decreasing intensity
- Image1 fades out linearly

1 Scp 2011
11-755/18-797

Matrix multiplication: Image transition

Permutation Matrix

- Reflections and 90 degree rotations of images and objects
- Object represented as a matrix of 3-Dimensional "position" vectors
- Positions identify each point on the surface

11-755//18-797
${ }^{53}$

Modifying color

$\left[\begin{array}{ccc}1 & 0 & 0\end{array}\right]$
Newpic $=P\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

- Scale only Green

1 Sep 2011
11-755/18-797 ${ }^{50}$

Permutation Matrix

- Reflections and 90 degree rotations of images and objects

1 Sep 201
${ }^{11-755 / 18-797}$

