

## Administrivia

- TA Times:
- Anoop Ramakrishna: Thursday 12.30-1.30pm
- Manuel Tragut: Friday 11am - 12pm.
- HW1: On the webpage
Projections
What would we see if the cone to the left were transparent if we
looked at it along the normal to the plane
a The plane goes through the origin
- Answer: the figure to the right
How do we get this? Projection
6.spl1




## Projections: A more physical meaning

- Let $\mathrm{W}_{1}, \mathrm{~W}_{2} . . \mathrm{W}_{\mathrm{k}}$ be "bases"
- We want to explain our data in terms of these "bases"
- We often cannot do so
- But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors $W_{1}, W_{2}, . . W_{k}$, is the projection of the data on the $W_{1} . . W_{k}$ (hyper) plane
- In our previous example, the "data" were all the points on a cone
- The interpretation for volumetric data is obvious

6Scp 2011
11-755/18-797

Projection : an example with sounds


- The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
- I.e. how much can it be explained by the notes
${ }_{6} 6$ ep 201



## Projection and Least Squares

- Projection actually computes a least squared error estimate
- For each vector V in the music spectrogram matrix
- Approximation: $\mathrm{V}_{\text {approx }}=\mathrm{a}^{*}$ note $1+\mathrm{b}^{*}$ note2 $+\mathrm{c}^{*}$ note3..

- Error vector $\mathrm{E}=\mathrm{V}-\mathrm{V}_{\text {approx }}$
- Squared error energy for $\mathrm{V} \quad \mathrm{e}(\mathrm{V})=\operatorname{norm}(\mathrm{E})^{2}$

Total error = sum_over_all_V $\{\mathrm{e}(\mathrm{V})\}=\Sigma_{\mathrm{V}} \mathrm{e}(\mathrm{V})$

- Projection computes $\mathrm{V}_{\text {approx }}$ for all vectors such that Total error is minimized
- It does not give you "a", "b", "c".. Though
- That needs a different operation - the inverse / pseudo invers

6 Scp 201
11-755/18-797

## Orthogonal and Orthonormal Matrices

- Orthonormal matrices will retain the relative angles between transformed vectors
- Essentially, they are combinations of rotations, reflections and permutations
- Rotation matrices and permutation matrices are all orthonormal matrices
- The vectors in an orthonormal matrix are at 90 degrees to one another
- Orthogonal matrices are like Orthonormal matrices with stretching
- The product of a diagonal matrix and an orthonormal matrix

Orthogonal and Orthonormal matrices


- Orthogonal Matrix : $\mathrm{AA}^{\top}=$ diagonal
- Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix
- Orthonormal Matrix: $\mathrm{AA}^{\top}=\mathrm{A}^{\top} \mathrm{A}=1$
- In additional to be orthogonal, each vector has length exactly = 1.0
- Interesting observation: In a square matrix if the length of the row vectors is 1.0 , the length of the column vectors is also 1.0

6 Scp 2011

Matrix Rank and Rank-Deficient Matrices


- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the trasnsformed version of a full-dimensional object
6Scp 2011
-755/18-797




## The Rank of a Matrix



- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never increase dimensions
- Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two ${ }_{6}$ Sp dimensions 11-755/18-797

Non-square Matrices


$$
\begin{aligned}
& {\left[\begin{array}{lll}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right]}
\end{aligned} \quad\left[\begin{array}{lllll}
x_{1} & x_{2} & . & . & x_{N} \\
y_{1} & y_{2} & . & . & y_{N}
\end{array}\right]
$$

- Non-square matrices add or subtract axes
$\square$
- 
- Fewer rows than columns $\rightarrow$ reduce axes - May reduce dimensionality of the data
${ }_{6}$ Scp 201 Scp 2011 - May reduce dimensionality of the


Matrix rank is unchanged by transposition


- If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix

11-755/18.797

Matrix Determinant


- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
- Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective


- The determinant is the ratio of N -volumes
- If $\mathrm{V}_{1}$ is the volume of an N -dimensional object " O " in N dimensional space
- O is the complete set of points or vertices that specify the object
- If $\mathrm{V}_{2}$ is the volume of the N -dimensional object specified by $\mathrm{A}^{*} \mathrm{O}$, where $A$ is a matrix that transforms the space
- $|A|=V_{2} / V_{1}$

11-755/18797

## Multiplication properties

- Properties of vector/matrix products
- Associative

$$
\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})=(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}
$$

- Distributive

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}
$$

- NOT commutative!!!


## $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

- left multiplications $\neq$ right multiplications
- Transposition

$$
(\mathbf{A} \cdot \mathbf{B})^{T}=\mathbf{B}^{T} \cdot \mathbf{A}^{T}
$$

${ }^{6} \operatorname{Sep} 201$
11-755/18-797

## Determinant properties

- Associative for square matrices $\quad|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}|=|\mathbf{A}| \cdot|\mathbf{B}| \cdot|\mathbf{C}|$
- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes $\quad|(\mathbf{B}+\mathbf{C})| \neq|\mathbf{B}|+|\mathbf{C}|$
- The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices
- Commutative for square matrices!!!

$$
|\mathbf{A} \cdot \mathbf{B}|=|\mathbf{B} \cdot \mathbf{A}|=|\mathbf{A}| \cdot|\mathbf{B}|
$$

- The order in which you scale the volume of an object is irrelevant


## Matrix Inversion



- The product of a matrix and its inverse is the identity matrix
- Transforming an object, and then inverse transforming it gives us back the original object


Revisiting Projections and Least Squares

- Projection computes a least squared error estimate
- For each vector $V$ in the music spectrogram matrix
- Approximation: $V_{\text {approx }}=a^{*}$ note1 $+b^{*}$ note $2+c^{*}$ note3..

- Error vector $\mathrm{E}=\mathrm{V}-\mathrm{V}_{\text {approx }}$
- Squared error energy for $V \quad e(V)=\operatorname{norm}(E)^{2}$
- Total error $=$ Total error $+e(V)$
- Projection computes $\mathrm{V}_{\text {approx }}$ for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?
$\qquad$ ${ }^{94}$


## The Pseudo Inverse (PINV)



- We are approximating spectral vectors V as the transformation of the vector $[a b c]^{\top}$
- Note - we're viewing the collection of bases in T as a transformation
- The solution is obtained using the pseudo inverse
- This give us a LEAST SQUARES solution
- If $T$ were square and invertible $\operatorname{Pinv}(\mathrm{T})=\mathrm{T}^{-1}$, and $\mathrm{V}=\mathrm{V}_{\text {approx }}$



## Pseudo-inverse (PINV)

Pinv() applies to non-square matrices

- $\operatorname{Pinv}(\operatorname{Pinv}(A)))=A$
- $A^{*} \operatorname{Pinv}(A)=$ projection matrix!
- Projection onto the columns of A
- If $A=K \times N$ matrix and $K>N$, A projects $N-D$ vectors into a higher-dimensional K-D space
- $\operatorname{Pinv}(\mathrm{A})^{*} \mathrm{~A}=\mathrm{I}$ in this case

6 Scp 2011
11-755/18-797

## Matrix inversion (division)

- The inverse of matrix multiplication
- Not element-wise division!!
- Provides a way to "undo" a linear transformation
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist! - But pseudoinverse exists
- Pay attention to multiplication side!
$\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{-1}, \mathbf{B}=\mathbf{A}^{-1} \cdot \mathbf{C}$
- Matrix inverses defined for square matrices only - If matrix not square use a matrix pseudoinverse:
$\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{+}, \mathbf{B}=\mathbf{A}^{+} \cdot \mathbf{C}$



## Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something
- Sound example:
0
00
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
- Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
- Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis
${ }^{6}$ Sep 2011
11-755/18-797

EigenVectors and EigenValues


- Vectors that do not change angle upon transformation
- They may change length

$$
M V=\lambda V
$$

- $\mathrm{V}=$ eigen vector

ㅁ $\lambda=$ eigen value

- Matl ab: $[\mathrm{V}, \mathrm{L}]=$ ei $g(M)$
- $L$ is a diagonal matrix whose entries are the eigen values
- V is a maxtrix whose columns are the eigen vectors

6 Scp 2011
1.755//18-797


## Matrix multiplication revisited



- Matrix transformation "transforms" the space - Warps the paper so that the normals to the two vectors now lie along the axes
${ }^{6} \operatorname{Scp} 2011$
11-755/18-797

A stretching operation


- Draw two lines
- Stretch / shrink the paper along these lines by factors $\lambda_{1}$ and $\lambda_{2}$
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space
${ }^{6}$ Scp 2011
107
$\qquad$


## A stretching operation



- Draw two lines
- Stretch / shrink the paper along these lines by factors $\lambda_{1}$ and $\lambda_{2}$
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

106

## Physical interpretation of eigen vector



- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix
${ }^{6}$ Scp $2011 \quad 1{ }^{11-755 / 18-797} \quad 108$


## Eigen Analysis

- Not all square matrices have nice eigen values and vectors
- E.g. consider a rotation matrix

- This rotates every vector in the plane - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Some matrices are special however. ${ }^{6}$ Scp 2011 117-75/18-797
 by a matrix
- The axes of stretching/shrinking are the eigenvectors The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

6 Scp 2011
11-755/18-797 ${ }^{109}$

## Singular Value Decomposition



- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the right that carries information about the transform - Can you identify it?

6 Scp 2011
11-755/18-797

## Singular Value Decomposition



- The major and minor axes of the transformed ellipse define the ellipse
- They are at right angles
- These are transformations of right-angled vectors on the original circle!

6Sep 2011
11755/18-797

## Singular Value Decomposition

- The left and right singular vectors are not the same
- If $A$ is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
- $\operatorname{Max}(|A x| /|x|)=s_{\text {max }}$
- The smallest singular value is the smallest amount by which a vector is scaled by A
- $\operatorname{Min}(|A x| /|x|)=s_{\text {min }}$
- This can be 0 (for low-rank or non-square matrices) vectors in $U$
- And scaled by the singular values that are the diagonal entries of S

6Scp 2011
1 1-755/18-797

## The Singular Values



- Square matrices: The product of the singular values is the determinant of the matrix
. This is also the product of the eigen values
l.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix $A$, the largest singular value of any square submatrix $B$ cannot be larger than the largest singular value of $A$
An analogous rule applies to the smallest singluar value
This property is utilized in various problems, such as compressive sensing
6 Scp 2011
11-755/18.797
115



## Symmetric Matrices



Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid

- The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors $\mathrm{V}_{\mathrm{i}}$ are orthonormal
- $V_{i}^{\top} V_{i}=1$
- $V_{i}^{\top} V_{j}=0, i!=j$
- Listing all eigen vectors in matrix form V
- $\mathrm{V}^{\top}=\mathrm{V}^{-1}$
- $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$
- $\mathrm{VV}^{\top}=\mathrm{I}$
- $C V_{i}=\lambda V_{i}$
- In matrix form : C V = V
- $L$ is a diagonal matrix with all eigen values
- $C=V L V^{\top}$

6 Scp 2011
11-755/18-797

The Correlation and Covariance Matrices


- Consider a set of column vectors represented as a DxN matrix M
- The correlation matrix is
- $C=(1 / N) M M^{\top}$
- If the average value (mean) of the vectors in M is $\mathrm{O}, \mathrm{C}$ is called the covariance matrix
Diagonal elements represent average value of the squared value of each dimension
- Off diagonal elements represent how two components are related
- How much knowing one lets us guess the value of the other
${ }^{6} \operatorname{Sep} 2011$



## An audio example



- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size $1025 \times 1025$
- There are 1025 eigenvectors

> Eigen Reduction
> $M=$ spectrogram $\quad 1025 \times 1000$ $C=M \cdot M^{T} 1025 \times 1025$
> $\mathrm{~V}=1025 \times 1025 \quad[V, L]=\operatorname{eig}(C)$
> $V_{\text {reduced }}=\left[\begin{array}{llll}V_{1} & . & V_{25}\end{array}\right] \quad 1025 \times 25$
> $M_{\text {lowdim }}=\operatorname{Pinv}\left(V_{\text {reduced }}\right) M \quad 25 \times 1000$
> $M_{\text {reconstructed }}=V_{\text {reduced }} M_{\text {lowdim }} \quad 1025 \times 1000$

- Compute the Covariance/Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram - compute the projection on the 25 eigen vectors

Eigenvalues and Eigenvectors



- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values $\quad C=M . M^{T}$
$M=$ spectrogram
- Most eigen values are close to zero
- The corresponding eigenvectors are "unimportant" $\quad[V, L]=\operatorname{eig}(C)$
${ }^{6}$ Scp 2011
11-755/18797


## Eigenvalues and Eigenvectors



$$
\mathrm{Vec}=\mathrm{a} 1 \text { *eigenvec } 1+\mathrm{a} 2 \text { * eigenvec2 }+\mathrm{a} 3 \text { * eigenvec3 } \ldots
$$

- The vectors in the spectrogram are linear combinations of all 1025 eigen vectors
- The eigen vectors with low eigen values contribute very little
- The average value of $a_{i}$ is proportional to the square root of the eigenvalue
- Ignoring these will not affect the composition of the spectrogram

11-755/18797
127

An audio example


- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values

> Only the 25-dimensional weights are shown

- The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram
${ }^{6}$ Scp 2011
11-755/18-797
128



## Eigenvectors, Eigenvalues and <br> Covariances

- The eigenvectors and eigenvalues (singular values) derived from the correlation matrix are important
- Do we need to actually compute the correlation matrix?
- No
- Direct computation using Singular Value Decomposition
${ }^{6}$ Scp 201
1-755/18-797

Thin SVD, compact SVD, reduced SVD


- Thin SVD: Only compute the first N columns of U All that is required if $\mathrm{N}<\mathrm{M}$
- Compact SVD: Only the left and right eigen vectors corresponding to non-zero singular values are computed
- Reduced SVD: Only compute the columns of $U$ corresponding to the K highest singular values

With only 5 eigenvectors


- The same spectrogram constructed from only the 5 eigen vectors with the highest eigen values
- Highly recognizable
${ }^{6}$ Scp 201
11-755/18-797


## SVD vs. Eigen decomposition

- Singluar value decomposition is analogous to the eigen decomposition of the correlation matrix of the data
- The "right" singluar vectors are the eigen vectors of the correlation matrix
- Show the directions of greatest importance
- The corresponding singular values are the square roots of the eigen values of the correlation matrix - Show the importance of the eigen vector

Why bother with eigens/SVD

- Can provide a unique insight into data
- Strong statistical grounding
- Can display complex interactions between the data
- Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
- A set of elements to compactly describe our data
Indispensable for performing compression and classification
- Used over and over and still perform amazingly well


Eigenfaces
Using a linear transform of he above "eigenvectors" we can compose various faces

