Fundamentals of Linear
 Algebra

Class 2-3. 6 Sep 2011

Instructor: Bhiksha Raj

Administrivia

- TA Times:
- Anoop Ramakrishna: Thursday 12.30-1.30pm
- Manuel Tragut: Friday 11am - 12pm.
- HW1: On the webpage

Projections

- What would we see if the cone to the left were transparent if we looked at it along the normal to the plane
- The plane goes through the origin
- Answer: the figure to the right
- How do we get this? Projection

- Consider any plane specified by a set of vectors W_{1}, W_{2}.
- Or matrix $\left[W_{1} W_{2}\right.$..]
- Any vector can be projected onto this plane
- The matrix A that rotates and scales the vector so that it becomes its projection is a projection matrix

- Given a set of vectors W1, W2, which form a matrix $W=[W 1$ W2..]
- The projection matrix that transforms any vector X to its projection on the plane is
- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- We will visit matrix inversion shortly
- Magic - any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix
- $P=V\left(V^{\top} V\right)^{-1} V^{\top}$

Projections

- HOW?

Projections

- Draw any two vectors W1 and W2 that lie on the plane - ANY two so long as they have different angles
- Compose a matrix $\mathrm{W}=[\mathrm{W} 1 \mathrm{~W} 2]$
- Compose the projection matrix $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Multiply every point on the cone by P to get its projection
- View it ${ }^{-}$
- I'm missing a step here - what is it?

Projections

- The projection actually projects it onto the plane, but you're still seeing the plane in 3D
- The result of the projection is a 3-D vector
- $\mathrm{P}=\mathrm{W}\left(\mathrm{W}^{\top} \mathrm{W}\right)^{-1} \mathrm{~W}^{\top}=3 \times 3, \mathrm{P}^{*}$ Vector $=3 \times 1$
- The image must be rotated till the plane is in the plane of the paper
- The Z axis in this case will always be zero and can be ignored
- How will you rotate it? (remember you know W1 and W2)

Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
- $P x=x$ if x is on the plane
- If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
- $P(P x)=P x$
- That is because $P x$ is already on the plane
- Projection matrices are idempotent
- $P^{2}=P$

6 Sep 2011 Follows from the above

Perspective

- The picture is the equivalent of "painting" the viewed scenery on a glass window
- Feature: The lines connecting any point in the scenery and its projection on the window merge at a common point
- The eye

An aside on Perspective..

- Perspective is the result of convergence of the image to a point
- Convergence can be to multiple points
- Top Left: One-point perspective
- Top Right: Two-point perspective
- Right: Three-point perspective

Central Projection

- The positions on the "window" are scaled along the line
- To compute (x, y) position on the window, we need z (distance of window from eye), and ($x^{\prime}, y^{\prime}, z^{\prime}$) (location being projected)

Projections: A more physical meaning

- Let $\mathrm{W}_{1}, \mathrm{~W}_{2} . . \mathrm{W}_{\mathrm{k}}$ be "bases"
- We want to explain our data in terms of these "bases"
- We often cannot do so
- But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors $W_{1}, W_{2}, . . W_{k}$, is the projection of the data on the $\mathrm{W}_{1} . . \mathrm{W}_{\mathrm{k}}$ (hyper) plane
- In our previous example, the "data" were all the points on a cone
- The interpretation for volumetric data is obvious

Projection : an example with sounds

- The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
- I.e. how much can it be explained by the notes

Projection: one note

- The spectrogram (matrix) of a piece of music

- $\mathrm{M}=$ spectrogram; $\mathrm{W}=$ note
- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Projected Spectrogram = P * M

Projection: one note - cleaned up

 $M=$

- The spectrogram (matrix) of a piece of music

- Floored all matrix values below a threshold to zero

Projection: multiple notes

$M=$

- The spectrogram (matrix) of a piece of music

Projection: multiple notes, cleaned up

- The spectrogram (matrix) of a piece of music

- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Projected Spectrogram = $\mathrm{P}^{*} \mathrm{M}$

Projection and Least Squares

- Projection actually computes a least squared error estimate
- For each vector V in the music spectrogram matrix
- Approximation: $V_{\text {approx }}=a^{*}$ note1 $+b^{*}$ note2 $+c^{*}$ note3..
- Error vector $\mathrm{E}=\mathrm{V}-\mathrm{V}_{\text {approx }}$
- Squared error energy for $\mathrm{V} \quad e(V)=$ norm $(E)^{2}$
- Total error = sum_over_all_V $\{\mathrm{e}(\mathrm{V})\}=\Sigma_{\mathrm{V}} \mathrm{e}(\mathrm{V})$
- Projection computes $\mathrm{V}_{\text {approx }}$ for all vectors such that Total error is minimized
- It does not give you "a", "b", "c".. Though
- That needs a different operation - the inverse / pseudo inverse

Orthogonal and Orthonormal matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{crc}
0.707 & -0.354 & 0.612 \\
0.707 & 0.354 & -0.612 \\
0 & 0.866 & 0.5
\end{array}\right]
$$

- Orthogonal Matrix : $\mathrm{AA}^{\top}=$ diagonal
- Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix
- Orthonormal Matrix: $\mathrm{AA}^{\top}=\mathrm{A}^{\top} \mathrm{A}=1$
- In additional to be orthogonal, each vector has length exactly = 1.0
- Interesting observation: In a square matrix if the length of the row vectors is 1.0 , the length of the column vectors is also 1.0

Orthogonal and Orthonormal Matrices

- Orthonormal matrices will retain the relative angles between transformed vectors
- Essentially, they are combinations of rotations, reflections and permutations
- Rotation matrices and permutation matrices are all orthonormal matrices
- The vectors in an orthonormal matrix are at 90degrees to one another.
- Orthogonal matrices are like Orthonormal matrices with stretching
- The product of a diagonal matrix and an orthonormal matrix

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the trasnsformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

$\mathrm{P}=$

- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms

- $\mathrm{P}=\mathrm{W}\left(\mathrm{W}^{\top} \mathrm{W}\right)^{-1} \mathrm{~W}^{\top}$; Projected Spectrogram = $\mathrm{P}^{*} \mathrm{M}$
- The original spectrogram can never be recovered
- P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
- There are only 4 independent bases
- Rank of P is 4

Non-square Matrices

$$
\begin{array}{cc}
{\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N}
\end{array}\right]} & {\left[\begin{array}{cc}
.0 & .0 \\
.1 & .9 \\
.6 & 0
\end{array}\right]} \\
& \mathrm{X}=2 \mathrm{D} \text { data }
\end{array} \quad \mathrm{P}=\text { transform } .
$$

$$
\begin{gathered}
{\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N} \\
z_{1} & z_{2} & \cdot & \cdot & z_{N}
\end{array}\right]} \\
\text { PX = 3D, rank } 2
\end{gathered}
$$

- Non-square matrices add or subtract axes
- More rows than columns \rightarrow add axes
- But does not increase the dimensionality of the data

Non-square Matrices

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N} \\
z_{1} & z_{2} & \cdot & \cdot & z_{N}
\end{array}\right]} \\
& \mathrm{X}=3 \mathrm{D} \text { data, rank } 3
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right]} \\
& \mathrm{P}=\text { transform }
\end{aligned}
$$

$$
\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N}
\end{array}\right]
$$

$$
P X=2 D, \text { rank } 2
$$

- Non-square matrices add or subtract axes
- Fewer rows than columns \rightarrow reduce axes
- May reduce dimensionality of the data

The Rank of a Matrix

$$
\left[\begin{array}{ccc}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
.8 & .9 \\
.1 & .9 \\
.6 & 0
\end{array}\right]
$$

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never increase dimensions
- Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two

The Rank of Matrix

- Projected Spectrogram = P * M
- Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
- E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3 , it provides no additional information
- Eliminating note no. 4 would give us the same projection
- The rank of P would be 3 !

Matrix rank is unchanged by transposition

- If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix

Matrix Determinant

$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left(\begin{array}{l}(\mathrm{r} 1) \\ (\mathrm{r} 2)\end{array}\right.$

- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
- Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective

- The determinant is the ratio of N -volumes
- If V_{1} is the volume of an N -dimensional object " O " in N dimensional space
- O is the complete set of points or vertices that specify the object
- If V_{2} is the volume of the N -dimensional object specified by $\mathrm{A}^{*} \mathrm{O}$, where A is a matrix that transforms the space
- $|A|=V_{2} / V_{1}$

Matrix Determinants

- Matrix determinants are only defined for square matrices
- They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
- Since they compress full-volumed N-D objects into zero-volume N-D objects
- E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
- Since they compress full-volumed N-D objects into zero-volume objects

Multiplication properties

- Properties of vector/matrix products
- Associative

$$
\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})=(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}
$$

- Distributive

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}
$$

- NOT commutative!!!

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

- left multiplications \neq right multiplications
- Transposition

$$
(\mathbf{A} \cdot \mathbf{B})^{T}=\mathbf{B}^{T} \cdot \mathbf{A}^{T}
$$

Determinant properties

- Associative for square matrices $|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}|=|\mathbf{A}| \cdot|\mathbf{B}| \cdot|\mathbf{C}|$
- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes $\quad|(\mathbf{B}+\mathbf{C})| \neq|\mathbf{B}|+|\mathbf{C}|$
- The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices
- Commutative for square matrices!!!

$$
|\mathbf{A} \cdot \mathbf{B}|=|\mathbf{B} \cdot \mathbf{A}|=|\mathbf{A}| \cdot|\mathbf{B}|
$$

- The order in which you scale the volume of an object is irrelevant

Matrix Inversion

$$
T=\left[\begin{array}{llc}
0.8 & 0 & 0.7 \\
1.0 & 0.8 & 0.8 \\
0.7 & 0.9 & 0.7
\end{array}\right]
$$

- A matrix transforms an N D object to a different N D object
- What transforms the new object back to the original?
- The inverse transformation
- The inverse transformation is called the matrix inverse

Matrix Inversion

- The product of a matrix and its inverse is the identity matrix
- Transforming an object, and then inverse transforming it gives us back the original object

Inverting rank-deficient matrices

- Rank deficient matrices "flatten" objects
- In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
- Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Revisiting Projections and Least Squares

- Projection computes a least squared error estimate
- For each vector V in the music spectrogram matrix
- Approximation: $V_{\text {approx }}=a^{*}$ note $1+b^{*}$ note2 $+c^{*}$ note3..

$$
V_{\text {approx }}=T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- Error vector $\mathrm{E}=\mathrm{V}-\mathrm{V}_{\text {approx }}$
- Squared error energy for $V \quad e(V)=\operatorname{norm}(E)^{2}$
- Total error $=$ Total error $+e(V)$
- Projection computes $\mathrm{V}_{\text {approx }}$ for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?

The Pseudo Inverse (PINV)

$$
V_{\text {approx }}=T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad \square V \approx T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \Rightarrow\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\operatorname{PINV}(T) * V
$$

- We are approximating spectral vectors V as the transformation of the vector $[\mathrm{abc}]^{\top}$
- Note - we're viewing the collection of bases in T as a transformation
- The solution is obtained using the pseudo inverse
- This give us a LEAST SQUARES solution
- If T were square and invertible $\operatorname{Pinv}(\mathrm{T})=\mathrm{T}^{-1}$, and $\mathrm{V}=\mathrm{V}_{\text {approx }}$

Explaining music with one note

- Approximation: $\mathrm{M}=\mathrm{W}$ *X
- The amount of W in each vector $=X=\operatorname{PINV}(\mathrm{W})^{*} \mathrm{M}$
- W*Pinv(W)*M = Projected Spectrogram
- W^{*} Pinv $(\mathrm{W})=$ Projection matrix!!

$$
\operatorname{PINV}(W)=\left(W^{\top} W\right)^{-1} W^{\top}
$$

Explanation with multiple notes

- $X=\operatorname{Pinv}(W) * M$; Projected matrix $=W^{*} X=W * \operatorname{Pinv}(W) * M$

How about the other way?

u= ?

- WV lapprox M

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
$-\operatorname{Pinv}(\operatorname{Pinv}(A)))=A$
- $A^{*} \operatorname{Pinv}(A)=$ projection matrix!
- Projection onto the columns of A
- If $\mathrm{A}=\mathrm{K} \times \mathrm{N}$ matrix and $\mathrm{K}>\mathrm{N}, \mathrm{A}$ projects $\mathrm{N}-\mathrm{D}$ vectors into a higher-dimensional K-D space
- $\operatorname{Pinv}(A)^{*} A=1$ in this case

Matrix inversion (division)

- The inverse of matrix multiplication
- Not element-wise division!!
- Provides a way to "undo" a linear transformation
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist!
- But pseudoinverse exists
- Pay attention to multiplication side!

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{-1}, \quad \mathbf{B}=\mathbf{A}^{-1} \cdot \mathbf{C}
$$

- Matrix inverses defined for square matrices only
- If matrix not square use a matrix pseudoinverse:

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{+}, \quad \mathbf{B}=\mathbf{A}^{+} \cdot \mathbf{C}
$$

${ }_{6 \text { Sep } 2011}^{\square}$ MATLAB syntax: inv (a) $\underset{11-755 / 18-797}{ } \mathrm{pinv}(\mathrm{a})$

What is the Matrix ? MATRIX

- Duality in terms of the matrix identity
- Can be a container of data
- An image, a set of vectors, a table, etc ...
- Can be a linear transformation
- A process by which to transform data in another matrix
- We'll usually start with the first definition and then apply the second one on it
- Very frequent operation
- Room reverberations, mirror reflections, etc ...
- Most of signal processing and machine learning are a matrix multiplication!

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something
- Sound example:

0

- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
- Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
- Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

Black vectors are eigen vectors

- Vectors that do not change angle upon transformation
- They may change length

$M V=\lambda V$

- $\mathrm{V}=$ eigen vector
- $\lambda=$ eigen value
- Matlab: [V, L] = ei g(M)
- L is a diagonal matrix whose entries are the eigen values
- V is a maxtrix whose columns are the eigen vectors

Eigen vector example

Matrix multiplication revisited

- Matrix transformation "transforms" the space
- Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_{1} and λ_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_{1} and λ_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

$$
\begin{aligned}
& V=\left[\begin{array}{cc}
V_{1} & V_{2}
\end{array}\right] \\
& L=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \\
& M=V L V^{-1}
\end{aligned}
$$

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
- E.g. consider a rotation matrix

$$
\begin{gathered}
\mathbf{R}_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
X_{\text {new }}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
\end{gathered}
$$

- This rotates every vector in the plane
- No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Some matrices are special however..

Singular Value Decomposition

- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the right that carries information about the transform
- Can you identify it?

Singular Value Decomposition

- The major and minor axes of the transformed ellipse define the ellipse
- They are at right angles
- These are transformations of right-angled vectors on the original circle!

Singular Value Decomposition

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1.0 & -0.07 \\
-1.1 & 1.2
\end{array}\right] \\
& \mathrm{A}=\mathrm{U} \mathrm{~S} \mathrm{~V}
\end{aligned}{ }^{\top} \quad \begin{aligned}
& \text { matlab: } \\
& {[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A})}
\end{aligned}
$$

- U and V are orthonormal matrices
- Columns are orthonormal vectors
- S is a diagonal matrix
- The right singular vectors of V are transformed to the left singular vectors in U
- And scaled by the singular values that are the diagonal entries of S

Singular Value Decomposition

- The left and right singular vectors are not the same
- If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
- $\operatorname{Max}(|A x| /|x|)=s_{\text {max }}$
- The smallest singular value is the smallest amount by which a vector is scaled by A
- $\operatorname{Min}(|A x| /|x|)=s_{\text {min }}$
- This can be 0 (for low-rank or non-square matrices)

The Singular Values

- Square matrices: The product of the singular values is the determinant of the matrix
- This is also the product of the eigen values
- I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
- An analogous rule applies to the smallest singluar value
- This property is utilized in various problems, such as compressive sensing

Symmetric Matrices

$$
\left[\begin{array}{cc}
1.5 & -0.7 \\
-0.7 & 1
\end{array}\right]
$$

- Matrices that do not change on transposition
- Row and column vectors are identical
- The left and right singular vectors are identical
- U = V
- $A=U S U^{\top}$
- They are identical to the eigen vectors of the matrix

Symmetric Matrices

$$
\left[\begin{array}{cc}
1.5 & -0.7 \\
-0.7 & 1
\end{array}\right]
$$

- Matrices that do not change on transposition
- Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
- At 90 degrees to one another

Symmetric Matrices

- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
- The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors V_{i} are orthonormal
- $V_{i}^{\top} V_{i}=1$
- $V_{i}^{\top} V_{j}=0, i!=j$
- Listing all eigen vectors in matrix form V
- $\mathrm{V}^{\mathrm{T}}=\mathrm{V}^{-1}$
- $V^{\top} V=1$
- $V^{\top} V^{\top}=1$
- $C V_{i}=\lambda V_{i}$
- In matrix form : C V = V L
- L is a diagonal matrix with all eigen values
- $\mathrm{C}=\mathrm{V} \mathrm{LV}^{\top}$

The Correlation and Covariance Matrices

- Consider a set of column vectors represented as a DxN matrix M
- The correlation matrix is
- $C=(1 / N) M M^{\top}$
- If the average value (mean) of the vectors in M is $0, \mathrm{C}$ is called the covariance matrix
- covariance $=$ correlation + mean * mean ${ }^{\top}$
- Diagonal elements represent average value of the squared value of each dimension
- Off diagonal elements represent how two components are related
- How much knowing one lets us guess the value of the other

Correlation / Covariance Matrix

$$
\begin{gathered}
C=V L V^{T} \\
\frac{\operatorname{Sqrt}(C)=V \cdot \operatorname{Sqrt}(L) \cdot V^{T}}{} \\
\operatorname{Sqrt}(C) \cdot \operatorname{Sqrt}(C)=V \cdot \operatorname{Sqrt}(L) \cdot V^{T} V \cdot \operatorname{Sqrt}(L) \cdot V^{T} \\
=V \cdot \operatorname{Sqrt}(L) \cdot \operatorname{Sqrt}(L) V^{T}=V L V^{T}=C
\end{gathered}
$$

- The correlation / covariance matrix is symmetric
- Has orthonormal eigen vectors and real, non-negative eigen values
- The square root of a correlation or covariance matrix is easily derived from the eigen vectors and eigen values
- The eigen values of the square root of the covariance matrix are the square roots of the eigen values of the covariance matrix
- These are also the "singular values" of the data set

Square root of the Covariance Matrix

- The square root of the covariance matrix represents the elliptical scatter of the data
- The eigenvectors of the matrix represent the major and minor axes

The Covariance Matrix

Any vector $\mathrm{V}=\mathrm{a}_{\mathrm{v}, 1}{ }^{*}$ eigenvec $1+\mathrm{a}_{\mathrm{V}, 2}$ *eigenvec $2+\ldots$

$$
\Sigma_{\mathrm{V}} \mathrm{a}_{\mathrm{V}, \mathrm{i}}=\text { eigenvalue(i) }
$$

- Projections along the N eigen vectors with the largest eigen values represent the N greatest "energy-carrying" components of the matrix
- Conversely, N "bases" that result in the least square error are the N best eigen vectors

An audio example

The spectrogram has 974 vectors of dimension 1025

- The covariance matrix is size 1025×1025 There are 1025 eigenvectors

Eigen Reduction

$$
M=\text { spectrogram } \quad 1025 \times 1000
$$

$$
C=M \cdot M^{T} \quad 1025 \times 1025
$$

$$
\begin{array}{cll}
\mathrm{V}=1025 \times 1025 & {[V, L]=\operatorname{eig}(C)} & \\
V_{\text {reduced }}=\left[V_{1} . \cdot\right. & \left.\cdot V_{25}\right] & 1025 \times 25 \\
M_{\text {lowdim }}=\operatorname{Pinv}\left(V_{\text {reduced }}\right) M & 25 \times 1000 \\
M_{\text {reconstructed }}=V_{\text {reduced }} M_{\text {lowdim }} & 1025 \times 1000
\end{array}
$$

- Compute the Covariance/Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram - compute the projection on the 25 eigen vectors

Eigenvalues and Eigenvectors

- Left panel: Matrix with 1025 eigen vectors
$M=$ spectrogram
- Right panel: Corresponding eigen values
- Most eigen values are close to zero
- The corresponding eigenvectors are "unimportant"

$$
C=M \cdot M^{T}
$$

$[V, L]=\operatorname{eig}(C)$

Eigenvalues and Eigenvectors

$$
\text { Vec }=a 1 \text { *eigenvec } 1+\mathrm{a} 2 \text { * eigenvec2 }+\mathrm{a} 3 \text { * eigenvec3 } \ldots
$$

- The vectors in the spectrogram are linear combinations of all 1025 eigen vectors
- The eigen vectors with low eigen values contribute very little
- The average value of a_{i} is proportional to the square root of the eigenvalue
- Ignoring these will not affect the composition of the spectrogram

An audio example

$$
\begin{aligned}
V_{\text {reduced }} & =\left[\begin{array}{lll}
V_{1} & . & . \\
V_{25}
\end{array}\right] \\
M_{\text {lowdim }} & =\operatorname{Pinv}\left(V_{\text {reduced }}\right) M
\end{aligned}
$$

- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
- Only the 25-dimensional weights are shown
- The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

An audio example

- The same spectrogram constructed from only the 25 eigen vectors with the highest eigen values
- Looks similar
- With 100 eigenvectors, it would be indistinguishable from the original
- Sounds pretty close
- But now sufficient to store 25 numbers per vector (instead of 1024)

With only 5 eigenvectors

The same spectrogram constructed from only the 5 eigen vectors with the highest eigen values

- Highly recognizable

Eigenvectors, Eigenvalues and

Covariances

- The eigenvectors and eigenvalues (singular values) derived from the correlation matrix are important
- Do we need to actually compute the correlation matrix?
\square No
- Direct computation using Singular Value Decomposition

SVD vs. Eigen decomposition

- Singluar value decomposition is analogous to the eigen decomposition of the correlation matrix of the data
- The "right" singluar vectors are the eigen vectors of the correlation matrix
- Show the directions of greatest importance
- The corresponding singular values are the square roots of the eigen values of the correlation matrix
- Show the importance of the eigen vector

Thin SVD, compact SVD, reduced SVD

- Thin SVD: Only compute the first N columns of U
- All that is required if $\mathrm{N}<\mathrm{M}$
- Compact SVD: Only the left and right eigen vectors corresponding to non-zero singular values are computed
- Reduced SVD: Only compute the columns of U corresponding to the K highest singular values

Why bother with eigens/SVD

- Can provide a unique insight into data
- Strong statistical grounding
- Can display complex interactions between the data
- Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
- A set of elements to compactly describe our data
- Indispensable for performing compression and classification
- Used over and over and still perform amazingly well

Eigenfaces
Using a linear transform of the above "eigenvectors" we can compose various faces

