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Projectionsj

 What would we see if the cone to the left were transparent if we 
looked at it along the normal to the plane
 The plane goes through the origin
 Answer: the figure to the right

 How do we get this?  Projection
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g j
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Projection Matrix
90degrees

j
90degrees

W2

projectionW1

 Consider any plane specified by a set of vectors W1, W2..
 Or matrix [W1 W2 ] Or matrix [W1 W2 ..]
 Any vector can be projected onto this plane
 The matrix A that rotates and scales the vector so that it becomes 

its projection is a projection matrix
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its projection is a projection matrix
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Projection Matrix
90degrees

j
90degrees

W2

projectionW1

 Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]
 The projection matrix that transforms any vector X to its projection on the plane isp j y p j p

 P = W (WTW)-1 WT

 We will visit matrix inversion shortly

 Magic – any set of vectors from the same plane that are expressed as a matrix will give 
you the same projection matrix
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you the same projection matrix
 P = V (VTV)-1 VT
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Projectionsj

 HOW?
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Projectionsj

 Draw any two vectors W1 and W2 that lie on the plane
 ANY two so long as they have different angles

 Compose a matrix W = [W1 W2]
 Compose the projection matrix P = W (WTW)-1 WT

 Multiply every point on the cone by P to get its projection
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 View it 
 I’m missing a step here – what is it?
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Projectionsj

 The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D
 The result of the projection is a 3-D vector
 P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1
 The image must be rotated till the plane is in the plane of the paper

 The Z axis in this case will always be zero and can be ignored
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 How will you rotate it? (remember you know W1 and W2)
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Projection matrix propertiesj

 The projection of any vector that is already on the plane is the vector itself
 Px = x if x is on the plane
 If the object is already on the plane, there is no further projection to be performed

 The projection of a projection is the projection
 P (Px) = Px
 That is because Px is already on the plane
P j ti t i id t t
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 Projection matrices are idempotent
 P2 = P

 Follows from the above6 Sep 2011 65



Perspective

 The picture is the equivalent of “painting” the viewed 
scenery on a glass window

 Feature: The lines connecting any point in the scenery and 
its projection on the window merge at a common point
 The eye
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An aside on Perspective..

 Perspective is the result of convergence of the image to a pointp g g p
 Convergence can be to multiple points

 Top Left: One-point perspective
 Top Right: Two-point perspective Top Right: Two-point perspective
 Right: Three-point perspective
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Central Projectionj
x’,y’,z’

Y
x,y

z
z

X
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 Property of a line through origin 'yy
'xx

'z
z











 The positions on the “window” are scaled along the line
 To compute (x,y) position on the window,  we need z (distance of 

'z'y'x
yy

p ( ,y) p , (
window from eye), and (x’,y’,z’)  (location being projected)
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Projections: A more physical meaningj
 Let W1, W2 .. Wk be “bases”

W t t l i d t i t f th We want to explain our data in terms of these 
“bases”
 We often cannot do so We often cannot do so
 But we can explain a significant portion of it

Th ti f th d t th t b d i The portion of the data that can be expressed in 
terms of our vectors W1, W2, .. Wk,  is the projection 
of the data on the W1 Wk (hyper) planeof the data on the W1 .. Wk (hyper) plane
 In our previous example, the “data” were all the points on a 

cone
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 The interpretation for volumetric data is obvious
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Projection : an example with soundsj

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

 How much of the above music was composed of the 
above notes
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above notes
 I.e. how much can it be explained by the notes
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Projection: one notej

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 M = spectrogram;   W = note
P W (WTW) 1 WT
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 P = W (WTW)-1 WT

 Projected Spectrogram = P * M
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Projection: one note – cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 Floored all matrix values below a threshold to zero
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Projection: multiple notesj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M
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 Projected Spectrogram = P * M
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Projection: multiple notes, cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M
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 Projected Spectrogram = P * M
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Projection and Least Squaresj
 Projection actually computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..pp approx

















 b
a

Vapprox  ot
e1

ot
e2

ot
e3

 Error vector E =  V – Vapprox











 c

app ox n n n
 Squared error energy for V     e(V) = norm(E)2

 Total error = sum_over_all_V { e(V) } = V e(V)
 Projection computes Vapprox for all vectors such that Total error is 

i i i dminimized
 It does not give you “a”, “b”, “c”.. Though

 That needs a different operation – the inverse / pseudo inverse

11-755/18-7976 Sep 2011 75



Orthogonal and Orthonormal matrices
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5.0866.0       0
612.0 354.0      707.0

 Orthogonal Matrix  :  AAT = diagonal
 Each row vector lies exactly along the normal to the plane 

specified by the rest of the vectors in the matrix

 Orthonormal Matrix: AAT = ATA = I
 In additional to be orthogonal, each vector has length exactly = 

1.0
 Interesting observation: In a square matrix if the length of the row 
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vectors is 1.0, the length of the column vectors is also 1.0
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Orthogonal and Orthonormal Matrices

 Orthonormal matrices will retain the relative angles 
between transformed vectorsbetween transformed vectors
 Essentially, they are combinations of rotations, reflections 

and permutations
 Rotation matrices and permutation matrices are all 

orthonormal matrices
 The vectors in an orthonormal matrix are at 90degrees to The vectors in an orthonormal matrix are at 90degrees to 

one another.
 Orthogonal matrices are like Orthonormal matrices 

with stretching
 The product of a diagonal matrix and an orthonormal matrix
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Matrix Rank and Rank-Deficient Matrices

P * Cone = 

 Some matrices will eliminate one or more dimensions during g
transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the trasnsformed
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 The rank of the matrix is the dimensionality of the trasnsformed 
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices

 Some matrices will eliminate one or more dimensions 

Rank = 2 Rank = 1

during transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the transformed 
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y
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms

M = 

P W (WTW) 1 WT P j t d S t P * M

W = 

 P = W (WTW)-1 WT ; Projected Spectrogram = P * M
 The original spectrogram can never be recovered

 P is rank deficient
 P explains all vectors in the new spectrogram as a 

mixture of only the 4 vectors in W
 There are only 4 independent bases
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 There are only 4 independent bases
 Rank of P is 4
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Non-square Matrices
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 Non-square matrices add or subtract axes


X = 2D data P = transform PX = 3D, rank 2



Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes

11-755/18-797

 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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Non-square Matrices
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 Non-square matrices add or subtract axes

X = 3D data, rank 3


P = transform PX = 2D, rank 2
 Nzzz ..21

Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes
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 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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The Rank of  a Matrix

 98
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9.1.
9.8.

 The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original spacej g p

 The matrix can never increase dimensions
 Cannot convert a circle to a sphere or a line to a circle
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 The rank of a matrix can never be greater than the lower of its two 
dimensions6 Sep 2011 83



The Rank of Matrix

M = 

 Projected Spectrogram = P * M
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases 
required to describe the outputrequired to describe the output
 E.g. if note no. 4 in P could be expressed as a combination of 

notes 1,2 and 3, it provides no additional information
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 Eliminating note no. 4 would give us the same projection
 The rank of P would be 3!
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Matrix rank is unchanged by transposition

 805090  4201090

















86.044.042.0
9.04.01.0
8.05.09.0

















86.09.08.0
44.04.05.0
42.01.09.0

 If an N-D object is compressed to a K-D 
object by a matrix it will also be compressedobject by a matrix, it will also be compressed 
to a K-D object by the transpose of the matrix
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Matrix Determinant
(r2) (r1+r2)

(r1)

(r2)

The determinant is the “volume” of a matrix

(r1)

 The determinant is the volume  of a matrix
 Actually the volume of a parallelepiped formed from 

its row vectors
 Also the volume of the parallelepiped formed from its 

column vectors
 Standard formula for determinant: in text book

11-755/18-797

 Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective
Volume = V1 Volume = V2

















7.09.0       7.0
8.0  8.0       0.1
7.0     0    8.0

The determinant is the ratio of N volumes The determinant is the ratio of N-volumes
 If V1 is the volume of an N-dimensional object “O” in N-

dimensional space
O i th l t t f i t ti th t if th bj t O is the complete set of points or vertices that specify the object

 If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space
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 |A| = V2 / V1
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Matrix Determinants
 Matrix determinants are only defined for square matrices

 They characterize volumes in linearly transformed space of the They characterize volumes in linearly transformed space of the 
same dimensionality as the vectors

 Rank deficient matrices have determinant 0Rank deficient matrices have determinant 0
 Since they compress full-volumed N-D objects into zero-volume 

N-D objects
 E g a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume E.g. a 3 D sphere into a 2 D ellipse:  The ellipse has 0 volume 

(although it does have area)

 Conversely, all matrices of determinant 0 are rank deficientConversely, all matrices of determinant 0 are rank deficient
 Since they compress full-volumed N-D objects into zero-volume 

objects
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Multiplication properties
 Properties of vector/matrix products

 Associative Associative

 Distributive

A  (B C)  (A B) C
 Distributive

 NOT commutative!!!

A  (B C)  A B A C
 NOT commutative!!!

 left multiplications ≠ right multiplications
A B  B A

p g p
 Transposition

  TTT ABBA 
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  ABBA
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Determinant properties
 Associative for square matrices CBACBA 

 Scaling volume sequentially by several matrices is equal to 
scaling once by the product of the matrices

 Volume of sum != sum of Volumes

 The volume of the parallelepiped formed by row vectors of the

CBCB  )(

 The volume of the parallelepiped formed by row vectors of the 
sum of two matrices  is not the sum of the volumes of the 
parallelepipeds formed by the original matrices

 Commutative for square matrices!!!
BAABBA 
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 The order in which you scale the volume of an object is irrelevant
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Matrix Inversion








 8.0  8.0       0.1
7.0     0    8.0

T

 A matrix transforms an N-
D object to a different N-






 7.09.0       7.0

D object to a different N-
D object

 What transforms the new 
object back to the 
original?

1

???






 The inverse transformation

 The inverse 
transformation is called

1

???
??? 










 TQ

transformation is called 
the matrix inverse
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Matrix Inversion
T T-1

 The product of a matrix and its inverse is the
T-1T = I

 The product of a matrix and its inverse is the 
identity matrix
 Transforming an object and then inverse Transforming an object, and then inverse 

transforming it gives us back the original object
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Inverting rank-deficient matrices

 001




















75.0433.00
433.025.0

001

 Rank deficient matrices “flatten” objects
 In the process, multiple points in the original object get mapped to the same point in the 

transformed  objectj

 It is not possible to go “back” from the flattened object to the original object
 Because of the many-to-one forward mapping
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 Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares
 Projection computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation: V = a*note1 + b*note2 + c*note3 Approximation:  Vapprox = a note1 + b note2 + c note3..





 1 2 3 



a

 










T
no

te
1

no
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c
bTVapprox

 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Total error = Total error + e(V) Total error = Total error + e(V)
 Projection computes Vapprox for all vectors such that Total error is 

minimized
B t WHAT ARE “ ” “b” d “ ”?
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 But WHAT ARE “a” “b” and “c”?
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The Pseudo Inverse (PINV)

  










 b
a

TVapprox   










 b
a

TV VTPINVb
a

 * )(   










 We are approximating spectral vectors V as the






c 





c c







 We are approximating spectral vectors V as the 
transformation of the vector [a b c]T
 Note – we’re viewing the collection of bases in T as a 

transformation

 The solution is obtained using the pseudo inverse The solution is obtained using the pseudo inverse
 This give us a LEAST SQUARES solution

 If T were square and invertible Pinv(T) = T-1, and V=Vapprox
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Explaining music with one note

M = 

X =PINV(W)*M

W = 

 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

 Approximation:  M = W*X
 The amount of W in each vector = X = PINV(W)*M

W*Pi (W)*M P j t d S t
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 W*Pinv(W)*M = Projected Spectrogram
 W*Pinv(W) = Projection matrix!!

PINV(W) = (WTW)-1WT
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Explanation with multiple notes

M = 

X=PINV(W)M( )

W =W  
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 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M
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How about the other way?

M = 

V = 

??W = ?? U = 
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 WV \approx M              W = M * Pinv(V)       U = WV
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Pseudo-inverse (PINV)

 Pinv()  applies to non-square matrices
 Pinv ( Pinv (A))) = A
 A*Pinv(A)= projection matrix!
 Projection onto the columns of A

 If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

 Pinv(A)*A = I  in this case
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Matrix inversion (division)
 The inverse of matrix multiplication

 Not element-wise division!!
Provides a way to “undo” a linear transformation Provides a way to “undo” a linear transformation
 Inverse of the unit matrix is itself
 Inverse of a diagonal is diagonal
 Inverse of a rotation is a (counter)rotation (its transpose!)
 Inverse of a rank deficient matrix does not exist!

 But pseudoinverse exists But pseudoinverse exists
 Pay attention to multiplication side!

A B  C,  A  C B1,  B  A 1 C
 Matrix inverses defined for square matrices only

 If matrix not square use a matrix pseudoinverse:
A B C A C B B A  C
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 MATLAB syntax: inv(a), pinv(a)

A B  C,  A  C B ,   B  A C
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What is the  Matrix   ?
 Duality in terms of the matrix identity

Can be a container of data Can be a container of data
 An image, a set of vectors, a table, etc …

 Can be a linear transformation
 A process by which to transform data in another matrix

 We’ll usually start with the first definition and 
then apply the second one on it
 Very frequent operation

R b ti i fl ti t Room reverberations, mirror reflections, etc …
 Most of signal processing and machine 

learning are a matrix multiplication!
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learning are a matrix multiplication!

6 Sep 2011 101



Eigenanalysis
 If something can go through a process mostly 

unscathed in character it is an eigen-somethingg g
 Sound example:

 A vector that can undergo a matrix multiplication 
and keep pointing the same way is an 
eigenvector
 Its length can change though Its length can change though

 How much its length changes is expressed by its 
corresponding eigenvaluep g g
 Each eigenvector of a matrix has its eigenvalue

 Finding these “eigenthings” is called 
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eigenanalysis
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EigenVectors and EigenValues








 


0170
7.05.1

A
Black 
vectors

 0.17.0
are
eigen 
vectors

 Vectors that do not change angle upon transformation
They may change length They may change length

V i t

VMV 
 V = eigen vector
  = eigen value
 Matlab:  [V, L] = eig(M)

L i di l t i h t i th i l
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 L is a diagonal matrix whose entries are the eigen values
 V is a maxtrix whose columns are the eigen vectors
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Eigen vector example
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Matrix multiplication revisited





 


07.00.1

A 



 2.11.1

 Matrix transformation “transforms” the space Matrix transformation transforms  the space
 Warps the paper so that the normals to the two 

vectors now lie along the axes
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ec o s o e a o g e a es
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A stretching operation
1.4 0.8

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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A stretching operation

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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Physical interpretation of eigen vector

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectorse a es o st etc g/s g a e t e e ge ecto s
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information
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 The EigenVectors and EigenValues convey all the information 
about the matrix
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Physical interpretation of eigen vector

 21 VVV
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0
0
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VLVM

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectors
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information 

b t th t i
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about the matrix
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Eigen Analysis
 Not all square matrices have nice eigen values and 

vectorsvectors
 E.g. consider a rotation matrix

 sincos 
























 


'

cossin
sincos

x
X

y
x

X




R



 This rotates every vector in the plane








'y

X new

 No vector that remains unchanged
 In these cases the Eigen vectors and values are 

complex
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complex
 Some matrices are special however..
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Singular Value Decomposition














2.11.1
07.00.1

A


 Matrix transformations convert circles to ellipses
 Eigen vectors are vectors that do not change direction in 

the processthe process
 There is another key feature of the ellipse to the right that 

carries information about the transform
C id if i ? Can you identify it?
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Singular Value Decomposition














2.11.1
07.00.1

A


 The major and minor axes of the transformed 
ellipse define the ellipse

Th t i ht l They are at right angles
 These are transformations of right-angled 

vectors on the original circle!vectors on the original circle!
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Singular Value Decomposition














2.11.1
07.00.1

A
V V

s1U1

U 

matlab:

A = U S VT

V1 V2s2U1

matlab:
[U,S,V] = svd(A)

 U and V are orthonormal matrices
 Columns are orthonormal vectors

 S is a diagonal matrix

 The right singular vectors of V are transformed to the left singular 
vectors in U
 And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition
 The left and right singular vectors are not the same

 If A is not a square matrix the left and right singular vectors will If A is not a square matrix, the left and right singular vectors will 
be of different dimensions

 The singular values are always real The singular values are always real

 The largest singular value is the largest amount by which a 
t i l d b Avector is scaled by A

 Max (|Ax| / |x|) = smax

 The smallest singular value is the smallest amount by g y
which a vector is scaled by A
 Min (|Ax| / |x|) = smin

 This can be 0 (for low-rank or non-square matrices) This can be 0 (for low-rank or non-square matrices)
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The Singular Values
s1U1

Us2U1

S t i Th d t f th i l l i th d t i t f th Square matrices: The product of the singular values is the determinant of  the 
matrix
 This is also the product of the eigen values
 I.e. there are two different sets of axes whose products give you the area of an ellipse

 For any “broad” rectangular matrix A, the largest singular value of any square 
submatrix B cannot be larger than the largest singular value of A
 An analogous rule applies to the smallest singluar valueg pp g
 This property is utilized in various problems, such as compressive sensing
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Symmetric Matrices





  7.05.1





 17.0

 Matrices that do not change on transposition Matrices that do not change on transposition
 Row and column vectors are identical

 The left and right singular vectors are identical
 U = V
 A = U S UT

 They are identical to the eigen vectors of the matrix
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 They are identical to the eigen vectors of the matrix

6 Sep 2011 116



Symmetric Matrices





  7.05.1





 17.0

 Matrices that do not change on transposition Matrices that do not change on transposition
 Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values 
are always real

 Eigen vectors are always orthogonal
At 90 degrees to one another
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 At 90 degrees to one another
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Symmetric Matrices











17.0

7.05.1

 Eigen vectors point in the direction of the Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid 
resulting from the transformation of aresulting from the transformation of a 
spheroid
 The eigen values are the lengths of the axes

11-755/18-797

g g
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Symmetric matrices
 Eigen vectors Vi are orthonormal

 Vi
TVi = 1

 Vi
TVj = 0, i != j

 Listing all eigen vectors in matrix form V
VT V 1 VT = V-1

 VT V = I
 V VT= I

 C Vi = Vi

 In matrix form  :  C V  = V L
 L is a diagonal matrix with all eigen values

 C = V L VT
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 C  V L V
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The Correlation and Covariance Matrices
A AT

ia1,i2

=
CN

iak,iak,
j

 Consider a set of column vectors represented as a DxN matrix M
 The correlation matrix is

C (1/N) MMT C = (1/N) MMT

 If the average value (mean) of the vectors in M is 0, C is called the covariance
matrix

 covariance = correlation + mean * meanT

 Diagonal elements represent average value of the squared value of 
each dimension
 Off diagonal elements represent how two components are related
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 How much knowing one lets us guess the value of the other
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Correlation / Covariance Matrix

VLVC
T

T

VLSqrtVVLSqrtVCSqrtCSqrt
VLSqrtVCSqrt

TT

TT

T




).(.).(.)().(
).(.)(

 The correlation / covariance matrix is symmetric

CVLVVLSqrtLSqrtV TT  )().(.

y
 Has orthonormal eigen vectors and real, non-negative eigen 

values
 The square root of a correlation or covariance matrix is easily The square root of a correlation or covariance matrix is easily 

derived from the eigen vectors and eigen values
 The eigen values of the square root of the covariance matrix are 

the square roots of the eigen values of the covariance matrix
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the square roots of the eigen values of the covariance matrix
 These are also the “singular values” of the data set
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Square root of the Covariance Matrix

C

 The square root of the covariance matrix 
represents the elliptical scatter of the datarepresents the elliptical scatter of the data

 The eigenvectors of the matrix represent the 
major and minor axes
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major and minor axes
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The Covariance Matrix
Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + ..

V aV,i = eigenvalue(i)

 Projections along the N eigen vectors with the 
largest eigen values represent the N greatest g g p g
“energy-carrying” components of the matrix

 Conversely, N “bases” that result in the least square 
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error are the N best eigen vectors
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An audio example

 The spectrogram has 974 vectors of 
dimension 1025

 The covariance matrix is size 1025 x 1025
 There are 1025 eigenvectors
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Eigen Reduction
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V = 1025x1025

 Compute the Covariance/Correlation

dimlowreducedtedreconstruc MVM  1025x1000

 Compute the Covariance/Correlation
 Compute Eigen vectors and values
 Create matrix from the 25 Eigen vectors corresponding to 25 highest 

Eigen valuesEigen values
 Compute the weights of the 25 eigenvectors
 To reconstruct the spectrogram – compute the projection on the 25 

eigen vectors
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eigen vectors 
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Eigenvalues and Eigenvectors

 Left panel: Matrix with 1025 eigen vectors mspectrograM p g
 Right panel: Corresponding eigen values

 Most eigen values are close to zero
 The corresponding eigenvectors are “unimportant”
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 The corresponding eigenvectors are unimportant
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Eigenvalues and Eigenvectors

The vectors in the spectrogram are linear combinations of all

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 …

 The vectors in the spectrogram are linear combinations of all 
1025 eigen vectors

 The eigen vectors with low eigen values contribute very little
 The average value of ai is proportional to the square root of the 

eigenvalue
 Ignoring these will not affect the composition of the spectrogram
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An audio example VVVreduced ]..[ 251
MVPinvM reducedlow )(dim 

 The same spectrogram projected down to the 25 
eigen vectors with the highest eigen values
 Only the 25 dimensional weights are shown Only the 25-dimensional weights are shown

 The weights with which the 25 eigen vectors must be added to 
compose a least squares approximation to the spectrogram
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An audio example

Th t t t d f l th 25 i

dimlowreducedtedreconstruc MVM 

 The same spectrogram constructed from only the 25 eigen 
vectors with the highest eigen values
 Looks similar

With 100 eigen ectors it o ld be indisting ishable from the original With 100 eigenvectors, it would be indistinguishable from the original
 Sounds pretty close
 But now sufficient to store 25 numbers per vector (instead of 

1024)

11-755/18-797

1024)
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With only 5 eigenvectors

 The same spectrogram constructed from only 
the 5 eigen vectors with the highest eigen 

lvalues
 Highly recognizable
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Eigenvectors, Eigenvalues and 
Covariances
 The eigenvectors and eigenvalues (singular The eigenvectors and eigenvalues (singular 

values) derived from the correlation matrix 
are importantare important

 Do we need to actually compute the 
correlation matrix?correlation matrix?
 No

 Direct computation using Singular Value Direct computation using Singular Value 
Decomposition
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SVD vs. Eigen decomposition
 Singluar value decomposition is analogous to the 

eigen decomposition of the correlation matrix of theeigen decomposition of the correlation matrix of the 
data

 The “right” singluar vectors are the eigen vectors of g g g
the correlation matrix
 Show the directions of greatest importance

 The corresponding singular values are the square 
roots of the eigen values of the correlation matrixroots of the eigen values of the correlation matrix
 Show the importance of the eigen vector
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Thin SVD, compact SVD, reduced SVD

A U VT
NxM

NxN MxM

. .
=

NxM

 Thin SVD:  Only compute the first N columns of U
 All that is required if N < M

 Compact SVD: Only the left and right eigen vectors Compact SVD: Only the left and right eigen vectors 
corresponding to non-zero singular values are computed

 Reduced SVD: Only compute the columns of U corresponding to 
the K highest singular values
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the K highest singular values
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Why bother with eigens/SVD
 Can provide a unique insight into 

data
 Strong statistical grounding 
 Can display complex interactions 

between the data
 Can uncover irrelevant parts of 

the data we can throw out
 Can provide basis functions

f A set of elements to compactly 
describe our data

 Indispensable for performing 
compression and classification Eigenfacescompression and classification

 Used over and over and still 
perform amazingly well

Eigenfaces
Using a linear transform of 

the above “eigenvectors” we 
can compose various faces
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