11-755/18-797 Machine Learning for Signal Processing

# Fundamentals of Linear Algebra

#### Class 2-3. 6 Sep 2011

#### Instructor: Bhiksha Raj

# Administrivia

#### TA Times:

Anoop Ramakrishna: Thursday 12.30-1.30pm

Manuel Tragut: Friday 11am – 12pm.

#### HW1: On the webpage



- What would we see if the cone to the left were transparent if we looked at it along the normal to the plane
  - The plane goes through the origin
  - Answer: the figure to the right
- How do we get this? Projection



- Consider any plane specified by a set of vectors W<sub>1</sub>, W<sub>2</sub>.
  - Or matrix  $[W_1 W_2 ..]$
  - Any vector can be projected onto this plane
  - The matrix A that rotates and scales the vector so that it becomes its projection is a projection matrix



- Given a set of vectors W1, W2, which form a matrix W = [W1 W2..]
- The projection matrix that transforms any vector X to its projection on the plane is
  - $\square P = W (W^{\mathsf{T}}W)^{-1} W^{\mathsf{T}}$ 
    - We will visit matrix inversion shortly
- Magic any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix
  - $P = V (V^T V)^{-1} V^T$







- Draw any two vectors W1 and W2 that lie on the plane
  - ANY two so long as they have different angles
- Compose a matrix W = [W1 W2]
- Compose the projection matrix P = W (W<sup>T</sup>W)<sup>-1</sup> W<sup>T</sup>
- Multiply every point on the cone by P to get its projection
- View it 🙂
  - I'm missing a step here what is it?



- The projection actually projects it onto the plane, but you're still seeing the plane in 3D
  - The result of the projection is a 3-D vector
  - $P = W (W^T W)^{-1} W^T = 3x3, P^* Vector = 3x1$
  - The image must be rotated till the plane is in the plane of the paper
    - The Z axis in this case will always be zero and can be ignored
    - How will you rotate it? (remember you know W1 and W2)

# Projection matrix properties



- The projection of any vector that is already on the plane is the vector itself
  - Px = x if x is on the plane
  - □ If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection

□ P (Px) = Px

- That is because Px is already on the plane
- Projection matrices are *idempotent* 
  - □ P<sup>2</sup> = P
- <sup>6</sup> Sep 2011 Follows from the above

11-755/18-797

# Perspective





- The picture is the equivalent of "painting" the viewed scenery on a glass window
- Feature: The lines connecting any point in the scenery and its projection on the window merge at a common point
   The eye

# An aside on Perspective..







- Perspective is the result of convergence of the image to a point
- Convergence can be to multiple points
  - Top Left: One-point perspective
  - Top Right: Two-point perspective
  - Right: Three-point perspective







- The positions on the "window" are scaled along the line
- To compute (x,y) position on the window, we need z (distance of window from eye), and (x',y',z') (location being projected)

# Projections: A more physical meaning

- Let W<sub>1</sub>, W<sub>2</sub>. W<sub>k</sub> be "bases"
- We want to explain our data in terms of these "bases"
  - We often cannot do so
  - But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors W<sub>1</sub>, W<sub>2</sub>, ... W<sub>k</sub>, is the projection of the data on the W<sub>1</sub>... W<sub>k</sub> (hyper) plane
  - In our previous example, the "data" were all the points on a cone
  - The interpretation for volumetric data is obvious

# Projection : an example with sounds



The spectrogram (matrix) of a piece of music



- How much of the above music was composed of the above notes
  - I.e. how much can it be explained by the notes

# Projection: one note



Projected Spectrogram = P \* M <sup>11-755/18-797</sup>

#### Projection: one note – cleaned up 8000 7000 6000 5000 M = (ZH) (ynappa)-4000 3000 2000 1000 8 Time The spectrogram (matrix) of a piece of music $\cap$ W =

Floored all matrix values below a threshold to zero

# Projection: multiple notes



The spectrogram (matrix) of a piece of music



- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = P \* M

## Projection: multiple notes, cleaned up



The spectrogram (matrix) of a piece of music



- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = P \* M

# Projection and Least Squares

- Projection actually computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
  - Approximation:  $V_{approx} = a*note1 + b*note2 + c*note3..$



- Error vector  $E = V V_{approx}$
- Squared error energy for V  $e(V) = norm(E)^2$
- Total error = sum\_over\_all\_V { e(V) } =  $\Sigma_V e(V)$
- Projection computes V<sub>approx</sub> for all vectors such that Total error is minimized
  - It does not give you "a", "b", "c".. Though
    - That needs a different operation the inverse / pseudo inverse

#### Orthogonal and Orthonormal matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.707 & -0.354 & 0.612 \\ 0.707 & 0.354 & -0.612 \\ 0 & 0.866 & 0.5 \end{bmatrix}$$

- Orthogonal Matrix :  $AA^{T}$  = diagonal
  - Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix
- Orthonormal Matrix:  $AA^T = A^TA = I$ 
  - In additional to be orthogonal, each vector has length exactly = 1.0
  - Interesting observation: In a square matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0

#### Orthogonal and Orthonormal Matrices

- Orthonormal matrices will retain the relative angles between transformed vectors
  - Essentially, they are combinations of rotations, reflections and permutations
  - Rotation matrices and permutation matrices are all orthonormal matrices
  - The vectors in an orthonormal matrix are at 90degrees to one another.
- Orthogonal matrices are like Orthonormal matrices with stretching
  - The product of a diagonal matrix and an orthonormal matrix

#### Matrix Rank and Rank-Deficient Matrices



- Some matrices will eliminate one or more dimensions during transformation
  - These are *rank deficient* matrices
  - The rank of the matrix is the dimensionality of the trasnsformed version of a full-dimensional object

#### Matrix Rank and Rank-Deficient Matrices



- Some matrices will eliminate one or more dimensions during transformation
  - These are *rank deficient* matrices
  - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

#### Projections are often examples of rank-deficient transforms



- $P = W (W^T W)^{-1} W^T$ ; Projected Spectrogram = P \* M
- The original spectrogram can never be recovered
   P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
  - There are only 4 *independent* bases
  - Rank of P is 4



- Non-square matrices add or subtract axes
  - More rows than columns  $\rightarrow$  add axes
    - But does not increase the dimensionality of the data

6 Sep 2011



- Non-square matrices add or subtract axes

  - □ Fewer rows than columns  $\rightarrow$  reduce axes
    - May reduce dimensionality of the data

## The Rank of a Matrix



- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never *increase* dimensions
  - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two
  Sep dimensions
  11-755/18-797

#### The Rank of Matrix



- Projected Spectrogram = P \* M
  - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
  - E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
  - Eliminating note no. 4 would give us the same projection
  - The rank of P would be 3!



If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix



- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
  - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

#### Matrix Determinant: Another Perspective



- The determinant is the ratio of N-volumes
  - If V<sub>1</sub> is the volume of an N-dimensional object "O" in Ndimensional space
    - O is the complete set of points or vertices that specify the object
  - If V<sub>2</sub> is the volume of the N-dimensional object specified by A\*O, where A is a matrix that transforms the space
  - $|A| = V_2 / V_1$

## Matrix Determinants

- Matrix determinants are only defined for square matrices
  - They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
  - Since they compress full-volumed N-D objects into zero-volume N-D objects
    - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
  - Since they compress full-volumed N-D objects into zero-volume objects

Multiplication properties

Properties of vector/matrix products

Associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

Distributive

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

NOT commutative!!!

 $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$ 

■ left multiplications ≠ right multiplications

Transposition

$$(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$$

## Determinant properties

Associative for square matrices

$$|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|$$

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

$$|(\mathbf{B} + \mathbf{C})| \neq |\mathbf{B}| + |\mathbf{C}|$$

- The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices
- Commutative for square matrices!!!  $|\mathbf{A} \cdot \mathbf{P}| = |\mathbf{P} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{I}|$

$$|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

• The order in which you scale the volume of an object is irrelevant

# Matrix Inversion

- A matrix transforms an N-D object to a different N-D object
- What transforms the new object back to the original?
  - □ The *inverse transformation*
- The inverse transformation is called the matrix inverse



# Matrix Inversion



- The product of a matrix and its inverse is the identity matrix
  - Transforming an object, and then inverse transforming it gives us back the original object


- Rank deficient matrices "flatten" objects
  - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
  - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

#### Revisiting Projections and Least Squares

- Projection computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
  - Approximation:  $V_{approx} = a*note1 + b*note2 + c*note3..$



- Error vector  $E = V V_{approx}$
- Squared error energy for V e(V) = norm(E)<sup>2</sup>
- Total error = Total error + e(V)
- Projection computes V<sub>approx</sub> for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?



- We are approximating spectral vectors V as the transformation of the vector [a b c]<sup>T</sup>
  - Note we're viewing the collection of bases in T as a transformation
- The solution is obtained using the *pseudo inverse* 
  - □ This give us a *LEAST* SQUARES solution
    - If T were square and invertible  $Pinv(T) = T^{-1}$ , and  $V = V_{approx}$



#### Approximation: M = W\*X

- The amount of W in each vector = X = PINV(W)\*M
- W\*Pinv(W)\*M = Projected Spectrogram
  - W\*Pinv(W) = Projection matrix!!

```
\mathsf{PINV}(\mathsf{W}) = (\mathsf{W}^\mathsf{T}\mathsf{W})^{-1}\mathsf{W}^\mathsf{T}
```

## Explanation with multiple notes



#### X = Pinv(W) \* M; Projected matrix = W\*X = W\*Pinv(W)\*M

## How about the other way?



WV \approx M

$$W = M * Pinv(V)$$
  $U = WV$ 

6 Sep 2011

## Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv ( Pinv (A))) = A
- A\*Pinv(A)= projection matrix!
  - Projection onto the columns of A
- If A = K x N matrix and K > N, A projects N-D vectors into a higher-dimensional K-D space
  Pinv(A)\*A = I in this case

## Matrix inversion (division)

- The inverse of matrix multiplication
  - Not element-wise division!!
- Provides a way to "undo" a linear transformation
  - Inverse of the unit matrix is itself
  - Inverse of a diagonal is diagonal
  - Inverse of a rotation is a (counter)rotation (its transpose!)
  - Inverse of a rank deficient matrix does not exist!
    - But pseudoinverse exists
- Pay attention to multiplication side!

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$ 

- Matrix inverses defined for square matrices only
  - If matrix not square use a matrix pseudoinverse:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^+, \ \mathbf{B} = \mathbf{A}^+ \cdot \mathbf{C}$$

MATLAB syntax: inv (a), pinv (a)

# What is the Matrix ? MATRIX

#### Duality in terms of the matrix identity

- Can be a container of data
  - An image, a set of vectors, a table, etc ...
- Can be a <u>linear</u> transformation
  - A process by which to transform data in another matrix
- We'll usually start with the first definition and then apply the second one on it
  - Very frequent operation
  - Room reverberations, mirror reflections, etc …
- Most of signal processing and machine learning are a matrix multiplication!

## Eigenanalysis

- If something can go through a process mostly unscathed in character it is an *eigen*-something
  - Sound example:
     Sound example:
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
  - Its length can change though
- How much its length changes is expressed by its corresponding *eigenvalue*
  - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis



- Vectors that do not change angle upon transformation
  - They may change length

 $MV = \lambda V$ 

- $\Box$  V = eigen vector
- $\Box \quad \lambda = eigen value$
- Matlab: [V, L] = eig(M)
  - L is a diagonal matrix whose entries are the eigen values
  - V is a maxtrix whose columns are the eigen vectors

# Eigen vector example



### Matrix multiplication revisited



Matrix transformation "transforms" the space
 Warps the paper so that the normals to the two vectors now lie along the axes



- Draw two lines
- Stretch / shrink the paper along these lines by factors  $\lambda_1$  and  $\lambda_2$ 
  - □ The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation



- Draw two lines
- Stretch / shrink the paper along these lines by factors  $\lambda_1$  and  $\lambda_2$ 
  - □ The factors could be negative implies flipping the paper
- The result is a transformation of the space

## Physical interpretation of eigen vector



- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
  - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

## Physical interpretation of eigen vector



- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
  - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

# Eigen Analysis

- Not all square matrices have nice eigen values and vectors
  - E.g. consider a rotation matrix



- □ This rotates every vector in the plane
  - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Some matrices are special however..



- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the right that carries information about the transform
  - Can you identify it?



- The major and minor axes of the transformed ellipse define the ellipse
  - They are at right angles
- These are transformations of right-angled vectors on the original circle!





- U and V are orthonormal matrices
  - Columns are orthonormal vectors
- S is a diagonal matrix
- The right singular vectors of V are transformed to the left singular vectors in U
  - And scaled by the *singular values* that are the diagonal entries of S

- The left and right singular vectors are not the same
  - If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
  - $\Box Max (|Ax| / |x|) = s_{max}$
- The smallest singular value is the smallest amount by which a vector is scaled by A
  - $\Box \quad Min (|Ax| / |x|) = s_{min}$
  - □ This can be 0 (for low-rank or non-square matrices)

## The Singular Values



- Square matrices: The product of the singular values is the determinant of the matrix
  - This is also the product of the *eigen* values
  - □ I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
  - An analogous rule applies to the smallest singluar value
  - This property is utilized in various problems, such as compressive sensing



- Matrices that do not change on transposition
  - Row and column vectors are identical
- The left and right singular vectors are identical
   U = V
  - $A = U S U^T$
- They are identical to the eigen vectors of the matrix



- Matrices that do not change on transposition
  - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
  - □ At 90 degrees to one another



- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
  - □ The eigen values are the lengths of the axes

## Symmetric matrices

Eigen vectors V<sub>i</sub> are orthonormal

$$V_i'V_i = 1 V_i^TV_j = 0, i != j$$

Listing all eigen vectors in matrix form V

$$\Box V^{\mathsf{T}} = V^{-1}$$

$$\Box \quad V^{\mathsf{T}} V = \mathsf{I}$$

V V<sup>T</sup>= I

• 
$$C V_i = \lambda V_i$$

In matrix form : C V = V L

L is a diagonal matrix with all eigen values

C = V L V<sup>T</sup>

#### The Correlation and Covariance Matrices



- Consider a set of column vectors represented as a DxN matrix M
- The correlation matrix is
  - $\Box \quad C = (1/N) \ MM^{T}$ 
    - If the average value (mean) of the vectors in M is 0, C is called the *covariance* matrix
    - covariance = correlation + mean \* mean<sup>T</sup>
- Diagonal elements represent average value of the squared value of each dimension
  - Off diagonal elements represent how two components are related
    - How much knowing one lets us guess the value of the other

### Correlation / Covariance Matrix

$$C = VLV^{T}$$

$$Sqrt(C) = V.Sqrt(L).V^{T}$$

$$Sqrt(C).Sqrt(C) = V.Sqrt(L).V^{T}V.Sqrt(L).V^{T}$$

$$= V.Sqrt(L).Sqrt(L)V^{T} = VLV^{T} = C$$

- The correlation / covariance matrix is symmetric
  - Has orthonormal eigen vectors and real, non-negative eigen values
- The square root of a correlation or covariance matrix is easily derived from the eigen vectors and eigen values
  - The eigen values of the square root of the covariance matrix are the square roots of the eigen values of the covariance matrix
  - These are also the "singular values" of the data set



- The square root of the covariance matrix represents the elliptical scatter of the data
- The eigenvectors of the matrix represent the major and minor axes

## The Covariance Matrix

Any vector V =  $a_{V,1}$  \* eigenvec1 +  $a_{V,2}$  \*eigenvec2 + ...

 $\Sigma_{V} a_{V,i}$  = eigenvalue(i)



- Projections along the N eigen vectors with the largest eigen values represent the N greatest "energy-carrying" components of the matrix
- Conversely, N "bases" that result in the least square error are the N best eigen vectors

## An audio example



- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors



- Compute the Covariance/Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram compute the projection on the 25 eigen vectors

## Eigenvalues and Eigenvectors



Left panel: Matrix with 1025 eigen vectors
 Right panel: Corresponding eigen values
 Most eigen values are close to zero
 The corresponding eigenvectors are "unimportant"

M = spectrogram $C = M . M^{T}$ [V, L] = eig(C)





Vec = a1 \*eigenvec1 + a2 \* eigenvec2 + a3 \* eigenvec3 ...

- The vectors in the spectrogram are linear combinations of all 1025 eigen vectors
- The eigen vectors with low eigen values contribute very little
  - The average value of a<sub>i</sub> is proportional to the square root of the eigenvalue
  - Ignoring these will not affect the composition of the spectrogram



- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
  - Only the 25-dimensional weights are shown
    - The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram


- The same spectrogram constructed from only the 25 eigen vectors with the highest eigen values
  - Looks similar
    - With 100 eigenvectors, it would be indistinguishable from the original
  - Sounds pretty close
  - But now sufficient to store 25 numbers per vector (instead of 1024)

## With only 5 eigenvectors



- The same spectrogram constructed from only the 5 eigen vectors with the highest eigen values
  - Highly recognizable

#### Eigenvectors, Eigenvalues and Covariances

- The eigenvectors and eigenvalues (singular values) derived from the correlation matrix are important
- Do we need to actually compute the correlation matrix?

No

 Direct computation using Singular Value Decomposition

## SVD vs. Eigen decomposition

- Singluar value decomposition is analogous to the eigen decomposition of the correlation matrix of the data
- The "right" singluar vectors are the eigen vectors of the correlation matrix
  - Show the directions of greatest importance
- The corresponding singular values are the square roots of the eigen values of the correlation matrix
  - Show the importance of the eigen vector

#### Thin SVD, compact SVD, reduced SVD



- Thin SVD: Only compute the first N columns of U
  - All that is required if N < M</p>
- Compact SVD: Only the left and right eigen vectors corresponding to non-zero singular values are computed
- Reduced SVD: Only compute the columns of U corresponding to the K highest singular values

# Why bother with eigens/SVD

- Can provide a unique insight into data
  - Strong statistical grounding
  - Can display complex interactions between the data
  - Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
  - A set of elements to compactly describe our data
  - Indispensable for performing compression and classification
- Used over and over and still perform amazingly well



*Eigenfaces* Using a linear transform of the above "eigenvectors" we can compose various faces