

Administrivia

- Project teams?
- Project proposals?
- TAs have updated timings and locations (on webpage)

Last Lecture: Representing Audio

- Basic DFT
- Computing a Spectrogram
- Computing additional features from a spectrogram

Returning to Eigen Computation

- A collection of faces
- All normalized to 100×100 pixels
- What is common among all of them?
- Do we have a common descriptor?

A least squares typical face

- Can we do better than a blank screen to find the most common portion of faces?
- The first checkerboard; the zeroth frequency component..
- Assumption: There is a "typical" face that captures most of what is common to all faces
Every face can be represented by a scaled version of a typical face
What is this face?
- Approximate every face f as $f=w_{f} V$
- Estimate V to minimize the squared error
- How?
- What is V ?
${ }^{11-755 ~ M L S P: ~ B h i k s h a ~ R a i ~}$

Eigen faces

- Compute the eigen vectors
- Only 300 of the 10000 eigen values are non-zero - Why?
- Retain eigen vectors with high eigen values (>0)
- Could use a higher threshold

Representing a face

- The weights with which the eigen faces must be combined to compose the face are used to represent the face!

Principal Components $==$ Eigen Vectors

- Principal Component Analysis is the same as Eigen analysis
- The "Principal Components" are the Eigen Vectors

Eigen Faces

- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- Etc.

11 -755 MI.SP: Bhiksha Rai

Principal Component Analysis

- Eigen analysis: Computing the "Principal" directions of a data
- What do they mean
- Why do we care

Principal Component Analysis

SVD instead of Eigen

- Do we need to compute a 10000×10000 correlation matrix and then perform Eigen analysis?

SVD

- Only need to perform "Thin" SVD. Very fast - $U=10000 \times 300$
- The columns of U are the eigen faces
- The US corresponding to the "zero" eigen values are not computed
- $\mathrm{S}=300 \times 300$
- $V=300 \times 300 \quad 11$-755 MISP: Bhiksha Rai

Images: Accounting for variations

- What are the obvious differences in the above images
- How can we capture these differences - Hint - image histograms..

Normalizing Image Characteristics

- Normalize the pictures
- Eliminate lighting/contrast variations
- All pictures must have "similar" lighting - How?
- Lighting and contrast are represented in the image histograms:

Histogram Equalization

- Normalize histograms of images
- Maximize the contrast
- Contrast is defined as the "flatness" of the histogram
. For maximal contrast, every greyscale must happen as frequently as every other greyscale

- Maximizing the contrast: Flattening the histogram
- Doing it for every image ensures that every image has the same constrast - I.e. exactly the same histogram of pixel values - Which should be flat

Cumulative Count Function

- The histogram (count) of a pixel value X is the number of pixels in the image that have value X
- E.g. in the above image, the count of pixel value 180 is about 110
- The cumulative count at pixel value X is the total number of pixels that have values in the range $0<=$ $x<=X$
- $\operatorname{CCF}(X)=H(1)+H(2)+. . H(X)$

Histogram Equalization

- Modify pixel values such that histogram becomes "flat".
- For each pixel
- New pixel value $=\mathrm{f}$ (old pixel value)

What is $f($?

- Easy way to compute this function: map cumulative counts

Cumulative Count Function

- The cumulative count function of a uniform histogram is a line

- We must modify the pixel values of the image so that its cumulative count is a line

Mapping CCFs

Move x axis levels around until the plot to the left looks like the plot to the right

- CCF $(f(x))->a^{*} f(x) \quad\left[\right.$ of $a^{*}(f(x)+1)$ if pixels can take value 0]
- $x=$ pixel value
- $f()$ is the function that converts the old pixel value to a new (normalized) pixel value
- $\mathrm{a}=$ (total no. of pixels in image) / (total no. of pixel levels)
- The no. of pixel levels is 256 in our examples
- Total no. of pixels is 10000 in a 100×100 image

Mapping CCFs

- For each pixel value x :
- Find the location on the red line that has the closet Y value to the observed CCF at x

Mapping CCFs

- For each pixel value x:
- Find the location on the red line that has the closet Y value to the observed CCF at x

Doing it Formulaically

- $\mathrm{CCF}_{\text {min }}$ is the smallest non-zero value of $\operatorname{CCF}(x)$ - The value of the CCF at the smallest observed pixel value
- Npixels is the total no. of pixels in the image - 10000 for a 100×100 image
- Max.pixel.value is the highest pixel value
- 255 for 8 -bit pixel representations

Histogram Equalization

- Left column: Original image
- Right column: Equalized image
- All images now have similar contrast levels

Mapping CCFs

Move x axis levels around until the plot to the left looks like the plot to the right

- For each pixel in the image to the left
- The pixel has a value x
- Find the CCF at that pixel value $\operatorname{CCF}(x)$
- Find x^{\prime} such that $\operatorname{CCF}\left(x^{\prime}\right)$ in the function to the right equals $\operatorname{CCF}(\mathrm{x})$
- x' such that CCF_flat(x^{\prime}) $=$ CCF(x)
- Modify the pixel value to x^{\prime}

Or even simpler

- Matlab:
Newimage = histeq(oldimage)

Eigenfaces after Equalization

- Left panel : Without HEQ
- Right panel: With HEQ
- Eigen faces are more face like..
- Need not always be the case

Detecting Faces in Images

- Finding face like patterns
- How do we find if a picture has faces in it
- Where are the faces?
- A simple solution:
- Define a "typical face"
a Find the "typical face" in the image ${ }^{11-755}$ MISP: Bhiksha Rai

Finding faces in an image

- Goal .. To find out if and where images that look like the "typical" face occur in the picture
- E.g. typical face is 100×100, picture is 600×800
- First convert to greyscale
- $R+G+B$
- Not very useful to work in color

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

Finding faces in an image

- Try to "match" the typical face to each location in the picture

How to "match"

- What exactly is the "match"
- What is the match "score"
- The DOT Product
- Express the typical face as a vector
- Express the region of the image being evaluated as a vector
- But first histogram equalize the region
- Just the section being evaluated, without considering the rest of the image
- Compute the dot product of the typical face vector and the "region" vector

- The right panel shows the dot product a various loctions
- Redder is higher
- The locations of peaks indicate locations of faces!

Try to "match" the typical face to each location in the picture

- The "typical face" will explain some spots on the image much better than others
- These are the spots at which we probably have a face!

Finding faces in an image

$11-755$ MISP: Bhiksha Rai

Scaling and Rotation Problems

- Scaling
- Not all faces are the same size
- Some people have bigger faces
- The size of the face on the image changes with perspective
- Our "typical face" only represents
 one of these sizes
- Rotation
- The head need not always be upright!
- Our typical face image was upright loctions
- Redder is higher
- The locations of peaks indicate locations of faces!
- Correctly detects all three faces
- Likes George's face most
- He looks most like the typical face
- Also finds a face where there is none! - A false alarm

Solution

And even before that - what is classification?

- Given "features" describing an entity, determine the category it belongs to
- Walks on two legs, has no hair. Is this
- A Chimpanizee
- A Human
- Has long hair, is $5^{\prime} 4^{\prime \prime}$ tall, is this
- A man
- A woman
- Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25 , "nose" pattern with score 0.1 . Are we looking at
- A face
- Not a face?

Face Detection: A Quick Historical Perspective

- Many more complex methods
- Use edge detectors and search for face like patterns
- Find "feature" detectors (noses, ears..) and employ them in complex neural networks.
- The Viola Jones method
- Boosted cascaded classifiers
- But first, what is boosting

Classification

- Multi-class classification
- Many possible categories
- E.g. Sounds "AH, IY, UW, EY.."
- E.g. Images "Tree, dog, house, person.."
- Binary classification
- Only two categories
- Man vs. Woman
- Face vs. not a face.
- Face detection: Recast as binary face classification
- For each little square of the image, determine if the square represents a face or not

Face Detection as Classification

For each square, run a For each square, run a
classifier to find out if it is a face or not

- Faces can be many sizes
- They can happen anywhere in the image
- For each face size
- For each location
- Classify a rectangular region of the face size, at that location, as a face or not a face
- This is a series of binary classification problems

