Eigen Representations: Detecting faces in images

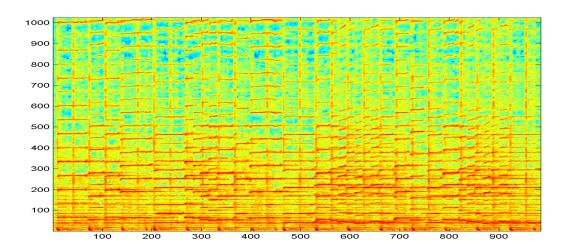
Class 6. 15 Sep 2011

Instructor: Bhiksha Raj

Administrivia

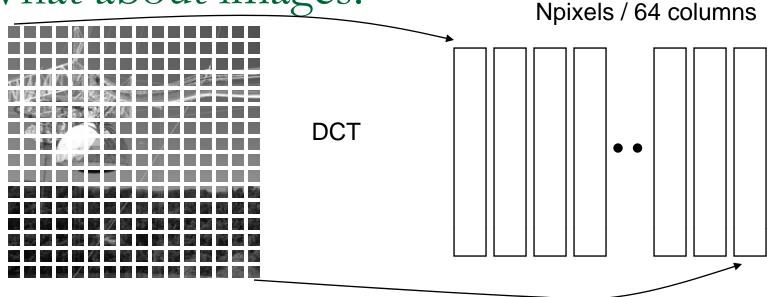
- Project teams?
- Project proposals?
- TAs have updated timings and locations (on webpage)

Last Lecture: Representing Audio



- Basic DFT
- Computing a Spectrogram
- Computing additional features from a spectrogram

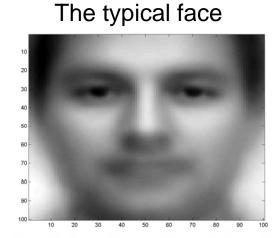
What about images?



- DCT of small segments
 - □ 8x8
 - Each image becomes a matrix of DCT vectors
- DCT of the image
- Haar transform (checkerboard)
- Or data-driven representations..

Returning to Eigen Computation

- A collection of faces
 - All normalized to 100x100 pixels
- What is common among all of them?
 - Do we have a common descriptor?

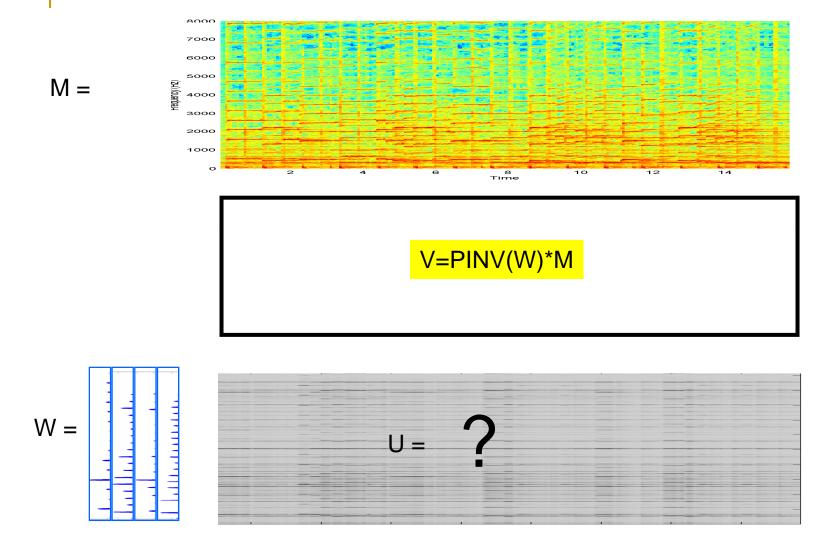


- Can we do better than a blank screen to find the most common portion of faces?
 - □ The first checkerboard; the zeroth frequency component..
- Assumption: There is a "typical" face that captures most of what is common to all faces
 - Every face can be represented by a scaled version of a typical face
 - What is this face?
- Approximate **every** face f as $f = w_f V$
- Estimate V to minimize the squared error
 - How?
 - □ What is V?

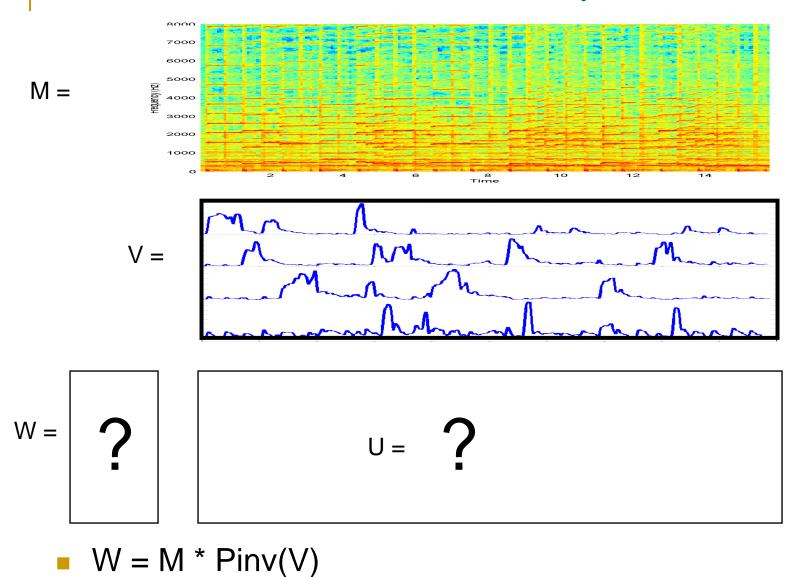
A collection of least squares typical faces

- Assumption: There are a set of K "typical" faces that captures most of all faces
- Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + ... + w_{f,k} V_k$
 - $\hfill\Box \quad V_2$ is used to "correct" errors resulting from using only V_1
 - So the total energy in $w_{\rm f,2}$ (Σ w_{f,2}²) must be lesser than the total energy in $w_{\rm f,1}$ (Σ w_{f,1}²)
 - ullet V_3 corrects errors remaining after correction with V_2
 - $\,\blacksquare\,$ The total energy in $w_{f,3}$ must be lesser than that even in $w_{f,2}$
 - And so on..
- Estimate V to minimize the squared error
 - How?
 - What is V?

A recollection

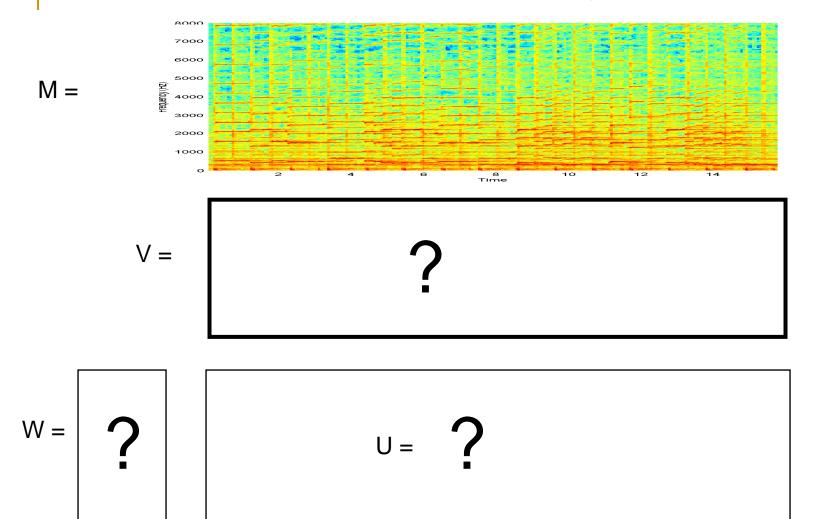


How about the other way?



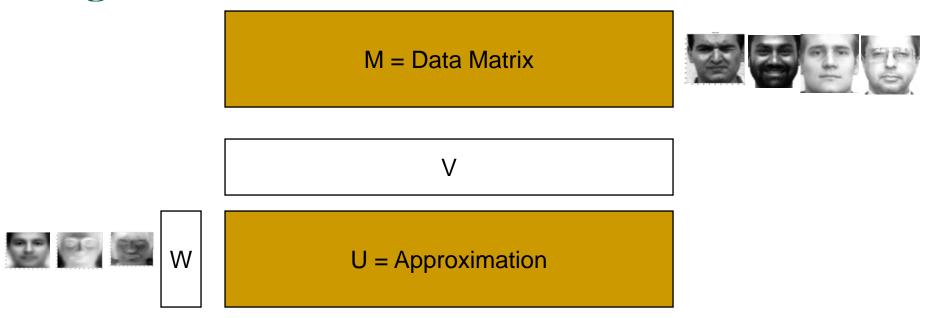
,

How about the other way?



W V \approx = M

Eigen Faces!



- Here W, V and U are ALL unknown and must be determined
 - Such that the squared error between U and M is minimum
- Eigen analysis allows you to find W and V such that U = WV has the least squared error with respect to the original data M
- If the original data are a collection of faces, the columns of W represent the space of eigen faces.

11-755 MLSP: Bhiksha Raj

Eigen faces

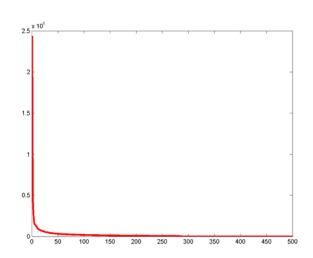
- Lay all faces side by side in vector form to form a matrix
 - □ In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
 - □ The correlation matrix is 10000x10000

Eigen faces

[U,S] = eig(correlation)

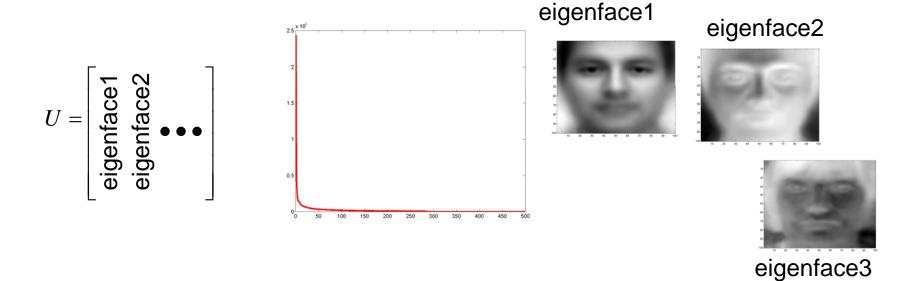
$$S = \begin{bmatrix} \lambda_1 & . & 0 & . & 0 \\ 0 & \lambda_2 & 0 & . & 0 \\ . & . & . & . & . \\ 0 & . & 0 & . & \lambda_{10000} \end{bmatrix} \qquad U = \begin{bmatrix} \lambda_1 & . & 0 & . & 0 \\ 0 & \lambda_2 & 0 & . & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & . & 0 & . & \lambda_{10000} \end{bmatrix}$$

eigenface1 eigenface2
$$\bullet$$



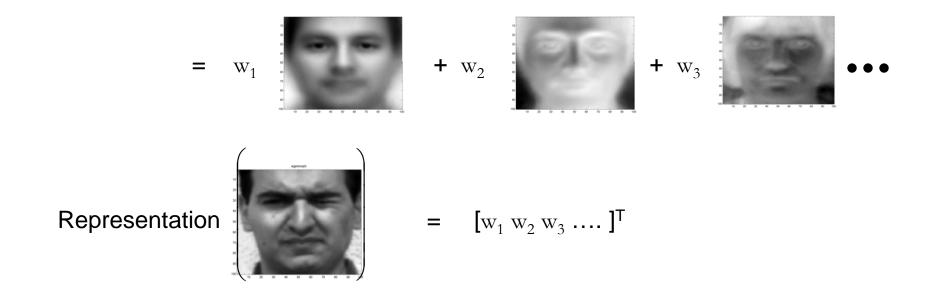
- Compute the eigen vectors
 - Only 300 of the 10000 eigen values are non-zero
 - Why?
- Retain eigen vectors with high eigen values (>0)
 - Could use a higher threshold

Eigen Faces



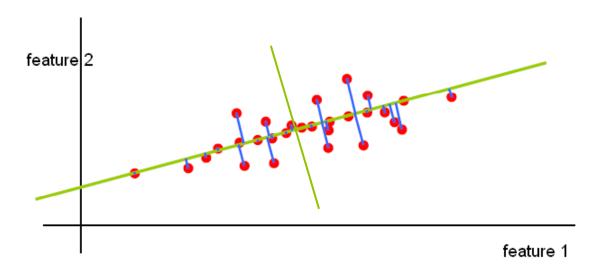
- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- Etc.

Representing a face



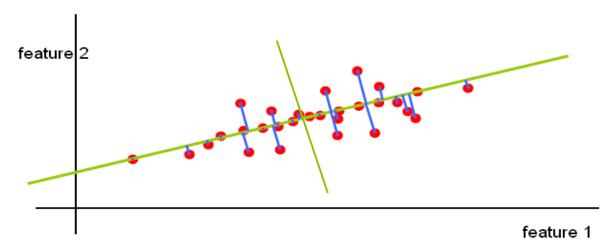
The weights with which the eigen faces must be combined to compose the face are used to represent the face!

Principal Component Analysis



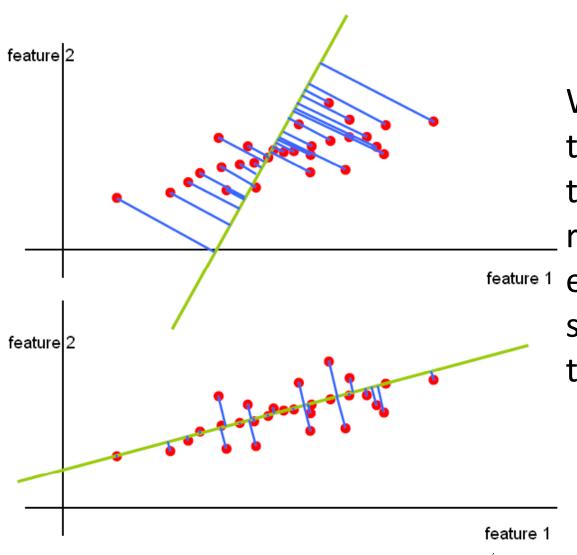
- Eigen analysis: Computing the "Principal" directions of a data
 - What do they mean
 - Why do we care

Principal Components == Eigen Vectors



- Principal Component Analysis is the same as Eigen analysis
- The "Principal Components" are the Eigen Vectors

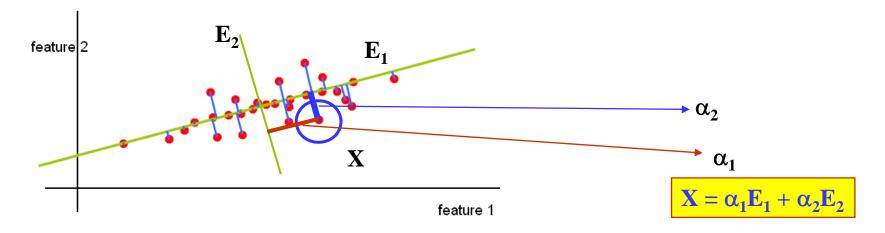
Principal Component Analysis



Which line through the mean leads to the smallest reconstruction

feature 1 error (sum of squared lengths of the blue lines)?

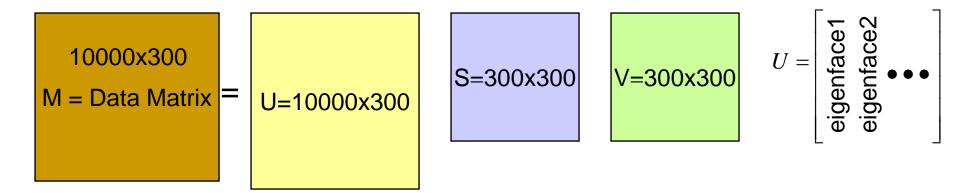
Principal Components



- The first principal component is the first Eigen ("typical") vector

 - The first Eigen face
 - For non-zero-mean data sets, the average of the data
- The second principal component is the second "typical" (or correction) vector

SVD instead of Eigen



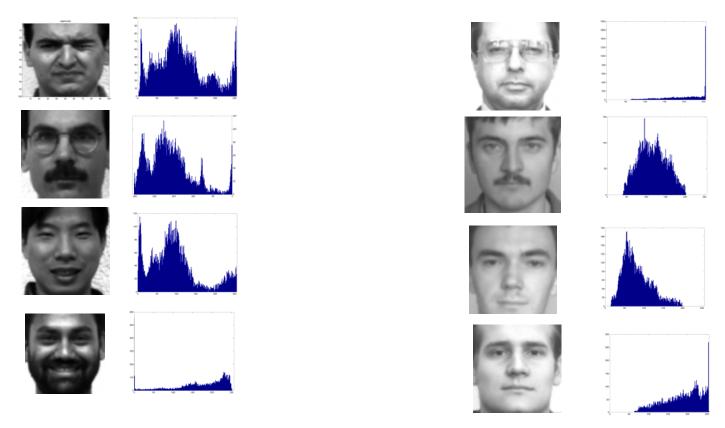
- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
 - Will take a very long time on your laptop
- SVD
 - Only need to perform "Thin" SVD. Very fast
 - U = 10000 x 300
 - □ The columns of U are the eigen faces!
 - □ The Us corresponding to the "zero" eigen values are not computed
 - $S = 300 \times 300$
 - $V = 300 \times 300$

NORMALIZING OUT VARIATIONS

Images: Accounting for variations

- What are the obvious differences in the above images
- How can we capture these differences
 - □ Hint image histograms..

Images -- Variations



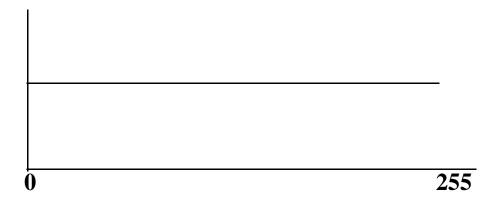
Pixel histograms: what are the differences

Normalizing Image Characteristics

- Normalize the pictures
 - Eliminate lighting/contrast variations
 - All pictures must have "similar" lighting
 - How?
- Lighting and contrast are represented in the image histograms:

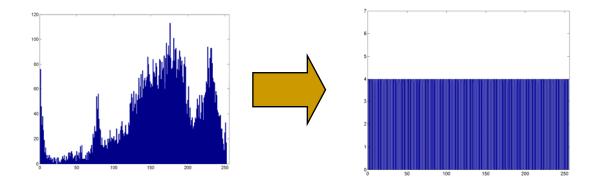
Histogram Equalization

- Normalize histograms of images
 - Maximize the contrast
 - Contrast is defined as the "flatness" of the histogram
 - For maximal contrast, every greyscale must happen as frequently as every other greyscale



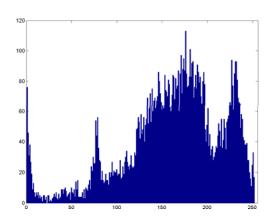
- Maximizing the contrast: Flattening the histogram
 - Doing it for every image ensures that every image has the same constrast
 - I.e. exactly the same histogram of pixel values
 - Which should be flat

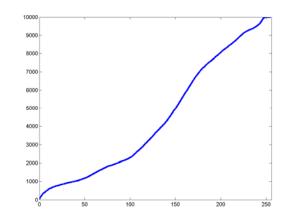
Histogram Equalization



- Modify pixel values such that histogram becomes "flat".
- For each pixel
 - New pixel value = f(old pixel value)
 - What is f()?
- Easy way to compute this function: map cumulative counts

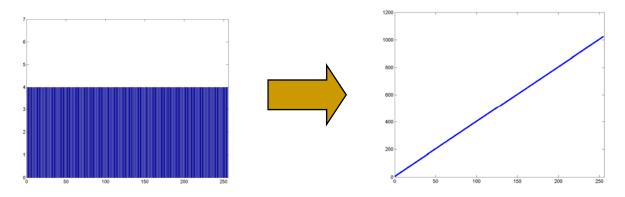
Cumulative Count Function



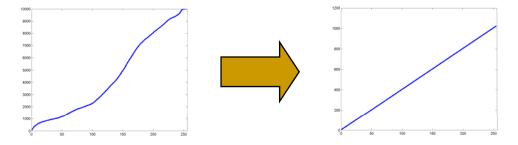


- The histogram (count) of a pixel value X is the number of pixels in the image that have value X
 - E.g. in the above image, the count of pixel value 180 is about 110
- The cumulative count at pixel value X is the total number of pixels that have values in the range 0 <= x <= X</p>
 - \Box CCF(X) = H(1) + H(2) + .. H(X)

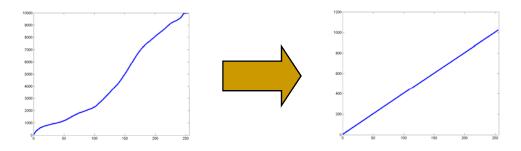
Cumulative Count Function



 The cumulative count function of a uniform histogram is a line

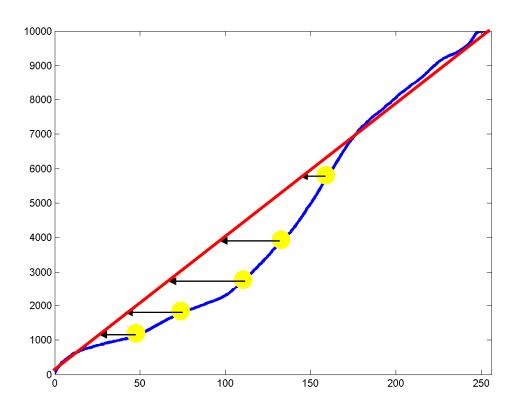


 We must modify the pixel values of the image so that its cumulative count is a line

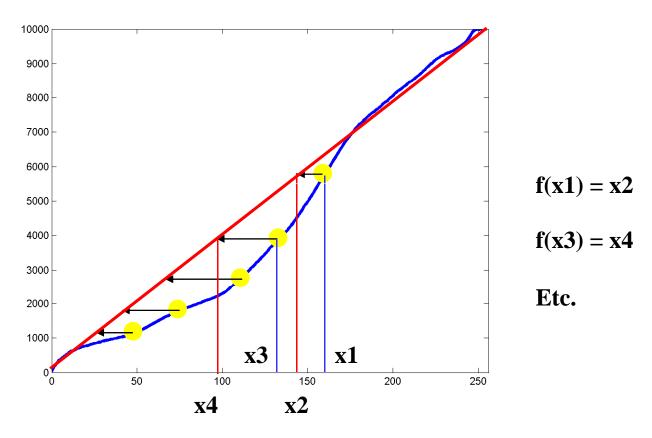


Move x axis levels around until the plot to the left looks like the plot to the right

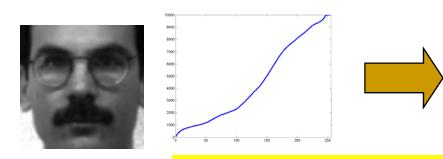
- CCF(f(x)) -> a*f(x) [of a*(f(x)+1) if pixels can take value 0]
 - \Box x = pixel value
 - f() is the function that converts the old pixel value to a new (normalized) pixel value
 - □ a = (total no. of pixels in image) / (total no. of pixel levels)
 - The no. of pixel levels is 256 in our examples
 - Total no. of pixels is 10000 in a 100x100 image

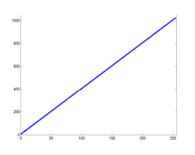


- For each pixel value x:
 - Find the location on the red line that has the closet Y value to the observed CCF at x



- For each pixel value x:
 - Find the location on the red line that has the closet Y value to the observed CCF at x

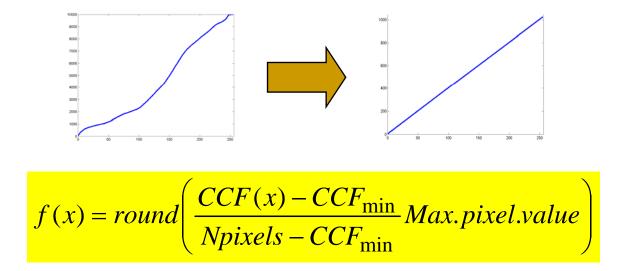




Move x axis levels around until the plot to the left looks like the plot to the right

- For each pixel in the image to the left
 - The pixel has a value x
 - Find the CCF at that pixel value CCF(x)
 - Find x' such that CCF(x') in the function to the right equals CCF(x)
 - x' such that CCF_flat(x') = CCF(x)
 - Modify the pixel value to x'

Doing it Formulaically



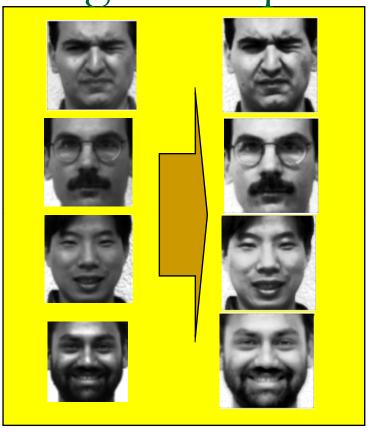
- CCF_{min} is the smallest non-zero value of CCF(x)
 - The value of the CCF at the smallest observed pixel value
- Npixels is the total no. of pixels in the image
 - 10000 for a 100x100 image
- Max.pixel.value is the highest pixel value
 - 255 for 8-bit pixel representations

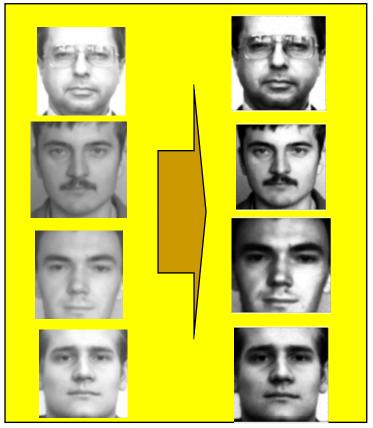
Or even simpler

Matlab:

Newimage = histeq(oldimage)

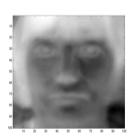
Histogram Equalization

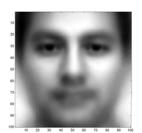




- Left column: Original image
- Right column: Equalized image
- All images now have similar contrast levels

Eigenfaces after Equalization

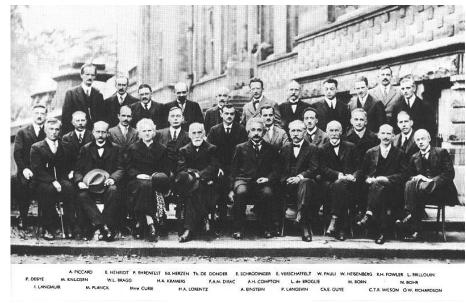




- Left panel : Without HEQ
- Right panel: With HEQ
 - Eigen faces are more face like..
 - Need not always be the case

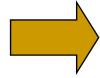
Detecting Faces in Images

Detecting Faces in Images

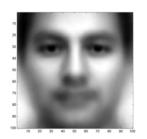


- Finding face like patterns
 - How do we find if a picture has faces in it
 - Where are the faces?
- A simple solution:
 - Define a "typical face"
 - Find the "typical face" in the image

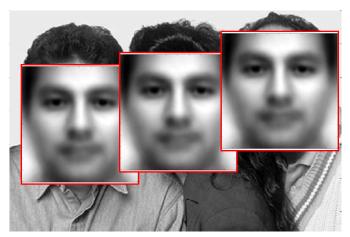
11-755 MLSP: Bhiksha Raj



- Picture is larger than the "typical face"
 - E.g. typical face is 100x100, picture is 600x800
- First convert to greyscale
 - \square R + G + B
 - Not very useful to work in color



Goal .. To find out if and where images that look like the "typical" face occur in the picture

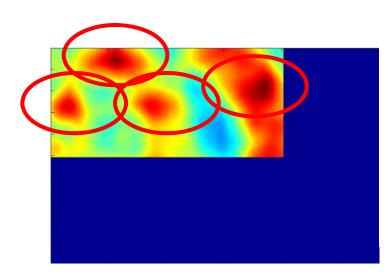


- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
 - These are the spots at which we probably have a face!

How to "match"

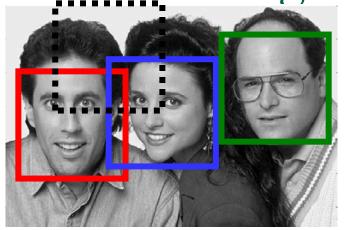
- What exactly is the "match"
 - What is the match "score"
- The DOT Product
 - Express the typical face as a vector
 - Express the region of the image being evaluated as a vector
 - But first histogram equalize the region
 - Just the section being evaluated, without considering the rest of the image
 - Compute the dot product of the typical face vector and the "region" vector

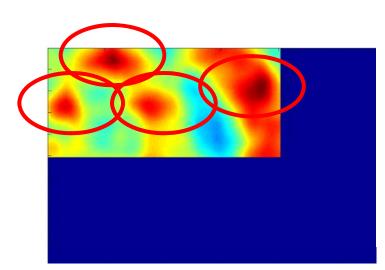
What do we get



- The right panel shows the dot product a various loctions
 - Redder is higher
 - The locations of peaks indicate locations of faces!

What do we get





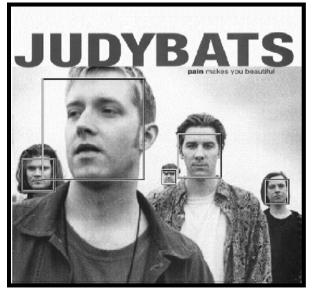
- The right panel shows the dot product a various loctions
 - Redder is higher
 - The locations of peaks indicate locations of faces!
- Correctly detects all three faces
 - Likes George's face most
 - He looks most like the typical face
- Also finds a face where there is none!
 - A false alarm

Scaling and Rotation Problems

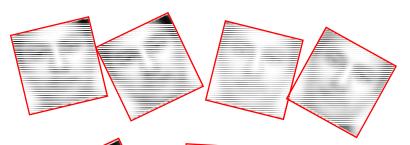
Scaling

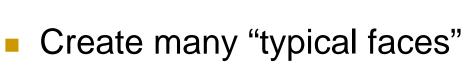
- Not all faces are the same size
- Some people have bigger faces
- The size of the face on the image changes with perspective
- Our "typical face" only represents one of these sizes

- The head need not always be upright!
 - Our typical face image was upright



Solution





- One for each scaling factor
- One for each rotation
 - How will we do this?
- Match them all



- Kind of .. Not well enough at all
- We need more sophisticated models

Face Detection: A Quick Historical Perspective

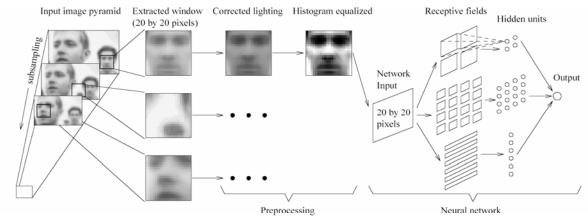


Figure 1: The basic algorithm used for face detection.

- Many more complex methods
 - Use edge detectors and search for face like patterns
 - Find "feature" detectors (noses, ears..) and employ them in complex neural networks..
- The Viola Jones method
 - Boosted cascaded classifiers
- But first, what is boosting

And even before that – what is classification?

- Given "features" describing an entity, determine the category it belongs to
 - Walks on two legs, has no hair. Is this
 - A Chimpanizee
 - A Human
 - Has long hair, is 5'4" tall, is this
 - A man
 - A woman
 - Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25, "nose" pattern with score 0.1. Are we looking at
 - A face
 - Not a face?

Classification

- Multi-class classification
 - Many possible categories
 - E.g. Sounds "AH, IY, UW, EY.."
 - E.g. Images "Tree, dog, house, person.."
- Binary classification
 - Only two categories
 - Man vs. Woman
 - Face vs. not a face..
- Face detection: Recast as binary face classification
 - For each little square of the image, determine if the square represents a face or not

Face Detection as Classification

For each square, run a classifier to find out if it is a face or not

- Faces can be many sizes
- They can happen anywhere in the image
- For each face size
 - For each location
 - Classify a rectangular region of the face size, at that location, as a face or not a face
- This is a series of binary classification problems