Eigen Representations:
 Detecting faces in images

Class 6. 15 Sep 2011

Instructor: Bhiksha Raj

Administrivia

- Project teams?
- Project proposals?
- TAs have updated timings and locations (on webpage)

Last Lecture: Representing Audio

- Basic DFT
- Computing a Spectrogram
- Computing additional features from a spectrogram

What about images?

Npixels / 64 columns

- DCT of small segments
- 8×8
- Each image becomes a matrix of DCT vectors
- DCT of the image
- Haar transform (checkerboard)
- Or data-driven representations..

Returning to Eigen Computation

- A collection of faces
- All normalized to 100x100 pixels
- What is common among all of them?
- Do we have a common descriptor?

A least squares typical face

The typical face

- Can we do better than a blank screen to find the most common portion of faces?
- The first checkerboard; the zeroth frequency component..
- Assumption: There is a "typical" face that captures most of what is common to all faces
- Every face can be represented by a scaled version of a typical face
- What is this face?
- Approximate every face f as $f=w_{f} V$
- Estimate V to minimize the squared error
- How?
- What is V ?

A collection of least squares typical faces

- Assumption: There are a set of K "typical" faces that captures most of all faces
- Approximate every face f as $\mathrm{f}=\mathrm{w}_{\mathrm{f}, 1} \mathrm{~V}_{1}+\mathrm{w}_{\mathrm{f}, 2} \mathrm{~V}_{2}+\mathrm{w}_{\mathrm{f}, 3} \mathrm{~V}_{3}+. .+\mathrm{w}_{\mathrm{f}, \mathrm{k}} \mathrm{V}_{\mathrm{k}}$
- V_{2} is used to "correct" errors resulting from using only V_{1}
- So the total energy in $\mathrm{w}_{\mathrm{f}, 2}\left(\Sigma \mathrm{w}_{\mathrm{f}, 2}{ }^{2}\right)$ must be lesser than the total energy in $\mathrm{w}_{\mathrm{f}, 1}\left(\Sigma \mathrm{w}_{\mathrm{f}, 1}{ }^{2}\right)$
- V_{3} corrects errors remaining after correction with V_{2}
- The total energy in $\mathrm{w}_{\mathrm{f}, 3}$ must be lesser than that even in $\mathrm{w}_{\mathrm{f}, 2}$
- And so on..
- $\quad V=\left[V_{1} V_{2} V_{3}\right]$
- Estimate V to minimize the squared error
- How?
- What is V ?

A recollection

11-755 MLSP: Bhiksha Raj

How about the other way?
$M=$

- $\mathrm{W}=\mathrm{M}$ * $\operatorname{Pinv}(\mathrm{V})$

How about the other way?

- W V lapprox = M

Eigen Faces!

\square

- Here W, V and U are ALL unknown and must be determined
- Such that the squared error between U and M is minimum
- Eigen analysis allows you to find W and V such that $\mathrm{U}=\mathrm{WV}$ has the least squared error with respect to the original data M
- If the original data are a collection of faces, the columns of W represent the space of eigen faces.

11-755 MLSP: Bhiksha Raj

Eigen faces

10000×300

- Lay all faces side by side in vector form to form a matrix
- In my example: 300 faces. So the matrix is 10000×300
- Multiply the matrix by its transpose
- The correlation matrix is 10000×10000

Eigen faces

[U,S] = eig(correlation)

$$
S=\left[\begin{array}{ccccc}
\lambda_{1} & \cdot & 0 & . & 0 \\
0 & \lambda_{2} & 0 & . & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & 0 & . & \lambda_{10000}
\end{array}\right]
$$

- Compute the eigen vectors
- Only 300 of the 10000 eigen values are non-zero
- Why?
- Retain eigen vectors with high eigen values (>0)
- Could use a higher threshold

Eigen Faces

- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- Etc.

Representing a face

- The weights with which the eigen faces must be combined to compose the face are used to represent the face!

Principal Component Analysis

- Eigen analysis: Computing the "Principal" directions of a data
- What do they mean
- Why do we care

Principal Components $==$ Eigen Vectors

- Principal Component Analysis is the same as Eigen analysis
- The "Principal Components" are the Eigen Vectors

Principal Component Analysis

Principal Components

- The first principal component is the first Eigen ("typical") vector
- $X=\alpha_{1}(X) E_{1}$
- The first Eigen face
- For non-zero-mean data sets, the average of the data
- The second principal component is the second "typical" (or correction) vector
- $X=\alpha_{1}(X) E_{1}+\alpha_{2}(X) E_{2}$

SVD instead of Eigen

10000×300
M = Data Matrix

- Do we need to compute a 10000×10000 correlation matrix and then perform Eigen analysis?
- Will take a very long time on your laptop
- SVD
- Only need to perform "Thin" SVD. Very fast
- $U=10000 \times 300$
- The columns of U are the eigen faces!
- The Us corresponding to the "zero" eigen values are not computed
- $S=300 \times 300$
- $V=300 \times 300$

NORMALIZING OUT VARIATIONS

Images: Accounting for variations

- What are the obvious differences in the above images
- How can we capture these differences
- Hint - image histograms..

Images -- Variations

- Pixel histograms: what are the differences

Normalizing Image Characteristics

- Normalize the pictures
- Eliminate lighting/contrast variations
- All pictures must have "similar" lighting
- How?
- Lighting and contrast are represented in the image histograms:

Histogram Equalization

- Normalize histograms of images
- Maximize the contrast
- Contrast is defined as the "flatness" of the histogram
- For maximal contrast, every greyscale must happen as frequently as every other greyscale

- Maximizing the contrast: Flattening the histogram
- Doing it for every image ensures that every image has the same constrast
- I.e. exactly the same histogram of pixel values
- Which should be flat

Histogram Equalization

- Modify pixel values such that histogram becomes "flat".
- For each pixel
- New pixel value = f(old pixel value)
- What is $f()$?
- Easy way to compute this function: map cumulative counts

Cumulative Count Function

- The histogram (count) of a pixel value X is the number of pixels in the image that have value X
- E.g. in the above image, the count of pixel value 180 is about 110
- The cumulative count at pixel value X is the total number of pixels that have values in the range $0<=$ $x<=X$
- $\operatorname{CCF}(X)=H(1)+H(2)+. . H(X)$

Cumulative Count Function

- The cumulative count function of a uniform histogram is a line

- We must modify the pixel values of the image so that its cumulative count is a line

Mapping CCFs

Move x axis levels around until the plot to the left looks like the plot to the right

- CCF $(f(x))$-> $a * f(x)$ [of $a^{*}(f(x)+1)$ if pixels can take value 0]
- $x=$ pixel value
- $f()$ is the function that converts the old pixel value to a new (normalized) pixel value
- a = (total no. of pixels in image) / (total no. of pixel levels)
- The no. of pixel levels is 256 in our examples
- Total no. of pixels is 10000 in a 100×100 image

Mapping CCFs

- For each pixel value x :
- Find the location on the red line that has the closet Y value to the observed CCF at x

Mapping CCFs

- For each pixel value x :
- Find the location on the red line that has the closet Y value to the observed CCF at x

Mapping CCFs

Move x axis levels around until the plot to the left looks like the plot to the right

- For each pixel in the image to the left
- The pixel has a value x
- Find the CCF at that pixel value $\operatorname{CCF}(x)$
- Find x^{\prime} such that $\operatorname{CCF}\left(x^{\prime}\right)$ in the function to the right equals $\operatorname{CCF}(x)$
- x^{\prime} such that CCF_flat(x^{\prime}) $=\operatorname{CCF}(x)$
- Modify the pixel value to x^{\prime}

Doing it Formulaically

$$
f(x)=\text { round }\left(\frac{C C F(x)-C C F_{\min }}{\text { Npixels }-C C F_{\min }} \text { Max.pixel.value }\right)
$$

- CCF $_{\text {min }}$ is the smallest non-zero value of $\operatorname{CCF}(x)$
- The value of the CCF at the smallest observed pixel value
- Npixels is the total no. of pixels in the image
- 10000 for a 100x100 image
- Max.pixel.value is the highest pixel value
- 255 for 8-bit pixel representations

11-755 MLSP: Bhiksha Raj

Or even simpler

- Matlab:
- Newimage $=$ histeq(oldimage)

Histogram Equalization

- Left column: Original image
- Right column: Equalized image
- All images now have similar contrast levels

Eigenfaces after Equalization

- Left panel : Without HEQ
- Right panel: With HEQ
- Eigen faces are more face like..
- Need not always be the case

Detecting Faces in Images

Detecting Faces in Images

- Finding face like patterns
- How do we find if a picture has faces in it
- Where are the faces?
- A simple solution:
- Define a "typical face"
- Find the "typical face" in the image

11-755 MLSP: Bhiksha Raj

Finding faces in an image

- Picture is larger than the "typical face"
- E.g. typical face is 100×100, picture is 600×800
- First convert to greyscale
- $R+G+B$
- Not very useful to work in color

Finding faces in an image

- Goal .. To find out if and where images that look like the "typical" face occur in the picture

Finding faces in an image

Try to "match" the typical face to each location in the picture

Finding faces in an image

Try to "match" the typical face to each location in the picture

Finding faces in an image

Try to "match" the typical face to each location in the picture

Finding faces in an image

Try to "match" the typical face to each location in the picture

Finding faces in an image

Try to "match" the typical face to each location in the picture

Finding faces in an image

Try to "match" the typical face to each
location in the picture

Finding faces in an image

Try to "match" the typical face to each
location in the picture

Finding faces in an image

Try to "match" the typical face to each
location in the picture

Finding faces in an image

Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
- These are the spots at which we probably have a face!

How to "match"

- What exactly is the "match"
- What is the match "score"
- The DOT Product
- Express the typical face as a vector
- Express the region of the image being evaluated as a vector
- But first histogram equalize the region
- Just the section being evaluated, without considering the rest of the image
- Compute the dot product of the typical face vector and the "region" vector

- The right panel shows the dot product a various loctions
- Redder is higher
- The locations of peaks indicate locations of faces!

- The right panel shows the dot product a various loctions
- Redder is higher
- The locations of peaks indicate locations of faces!
- Correctly detects all three faces
- Likes George's face most
- He looks most like the typical face
- Also finds a face where there is none!
- A false alarm

Scaling and Rotation Problems

- Scaling
- Not all faces are the same size
- Some people have bigger faces
- The size of the face on the image changes with perspective
- Our "typical face" only represents one of these sizes
- Rotation
- The head need not always be upright!
- Our typical face image was upright

Solution

- Create many "typical faces"
- One for each scaling factor
- One for each rotation
- How will we do this?
- Match them all
- Does this work
- Kind of .. Not well enough at all
- We need more sophisticated models

Face Detection: A Quick Historical Perspective

Figure 1: The basic algorithm used for face detection.

- Many more complex methods
- Use edge detectors and search for face like patterns
- Find "feature" detectors (noses, ears..) and employ them in complex neural networks..
- The Viola Jones method
- Boosted cascaded classifiers
- But first, what is boosting

And even before that - what is classification?

- Given "features" describing an entity, determine the category it belongs to
- Walks on two legs, has no hair. Is this
- A Chimpanizee
- A Human
- Has long hair, is $5^{\prime} 4^{\prime \prime}$ tall, is this
- A man
- A woman
- Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25 , "nose" pattern with score 0.1. Are we looking at
- A face
- Not a face?

Classification

- Multi-class classification
- Many possible categories
- E.g. Sounds "AH, IY, UW, EY.."
- E.g. Images "Tree, dog, house, person.."
- Binary classification
- Only two categories
- Man vs. Woman
- Face vs. not a face..
- Face detection: Recast as binary face classification
- For each little square of the image, determine if the square represents a face or not

Face Detection as Classification

For each square, run a classifier to find out if it is a face or not

- Faces can be many sizes
- They can happen anywhere in the image
- For each face size
- For each location
- Classify a rectangular region of the face size, at that location, as a face or not a face
- This is a series of binary classification problems

