

Detecting Faces in Images

- Finding face like patterns
- How do we find if a picture has faces in it
- Where are the faces?
- A simple solution:
- Define a "typical face"
- Find the "typical face" in the image
\qquad

Finding faces in an image

- Picture is larger than the "typical face"
- E.g. typical face is 100×100, picture is 600×800

Finding faces in an image

- Goal .. To find out if and where images that look like the "typical" face occur in the picture
- First convert to greyscale
- $R+G+B$
- Not very useful to work in color
$20 \operatorname{sep} 2011$
11755/18797

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

20 Scp 2011
11755/18797

How to "match"

- What exactly is the "match"
- What is the match "score"
- The DOT Product
- Express the typical face as a vector
- Express the region of the image being evaluated as a vector
- But first histogram equalize the region
- Just the section being evaluated, without considering the rest of the image
- Compute the dot product of the typical face vector and the "region" vector

Finding faces in an image

- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
- These are the spots at which we probably have a face!
\qquad ${ }_{50}$

What do we get

- The right panel shows the dot product a various loctions
- Redder is higher
- The locations of peaks indicate locations of faces!

11755/18797
52

Scaling and Rotation Problems

- Scaling
- Not all faces are the same size
- Some people have bigger faces
- The size of the face on the image changes with perspective
- Our "typical face" only represents one of these sizes
- Rotation
- The head need not always be upright!
- Our typical face image was upright

And even before that - what is classification?

- Given "features" describing an entity, determine the category it belongs to
- Walks on two legs, has no hair. Is this
- A Chimpanizee
- A Human
- Has long hair, is $5^{\prime} 4^{\prime \prime}$ tall, is this
- A man
- A woman
- Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25 , "nose" pattern with score 0.1. Are we looking at
- A face
- Not a face?
$20 \operatorname{scp} 2011$
11755/18797

Face Detection: A Quick Historical Perspective

- Many more complex methods
- Use edge detectors and search for face like patterns
- Find "feature" detectors (noses, ears..) and employ them in complex neural networks.
- The Viola Jones method
- Boosted cascaded classifiers
- But first, what is boosting
${ }^{20}$ Scp $2011 \quad 11755 / 18997$ 56

Classification

- Multi-class classification
- Many possible categories
- E.g. Sounds "AH, IY, UW, EY.."
- E.g. Images "Tree, dog, house, person.."
- Binary classification
- Only two categories
- Man vs. Woman
- Face vs. not a face.
- Face detection: Recast as binary face classification
- For each little square of the image, determine if the square represents a face or not

Introduction to Boosting

- An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier
- Simple classifiers are often called "weak" learners
- The complex classifiers are called "strong" learners
- Each weak learner focuses on instances where the previous classifier failed
- Give greater weight to instances that have been incorrectly classified by previous learners
- Restrictions for weak learners
- Better than 50% correct
- Final classifier is weighted sum of weak classifiers face or not a face
- This is a series of binary classification problems

20 Sep 2011
11755/18797 ${ }^{59}$
${ }^{20} \operatorname{Sep} 2011$
11755/18797

```
Boosting: A very simple idea
- One can come up with many rules to classify
    - E.g. Chimpanzee vs. Human classifier:
    - If arms == long, entity is chimpanzee
    - If height > 5'6" entity is human
    - If lives in house == entity is human
    - If lives in zoo == entity is chimpanzee
- Each of them is a reasonable rule, but makes many mistakes
    a Each rule has an intrinsic error rate
- Combine the predictions of these rules
    - But not equally
    - Rules that are less accurate should be given lesser weight
```

20 Scp $2011 \quad 11755 / 1897$

Boosting as defined by Freund

- A gambler wants to write a program to predict winning horses. His program must encode the expertise of his brilliant winner friend
- The friend has no single, encodable algorithm. Instead he has many rules of thumb
- He uses a different rule of thumb for each set of races
- E.g. "in this set, go with races that have black horses with stars on their foreheads"
- But cannot really enumerate what rules of thumbs go with what sets of races: he simply "knows" when he encounters a set
- A common problem that faces us in many situations
- Problem:
- How best to combine all of the friend's rules of thumb
- What is the best set of races to present to the friend, to extract the various rules of thumb
\qquad

Boosting and the Chimpanzee Problem

- The total confidence in all classifiers that classify the entity as a chimpanzee is

- The total confidence in all classifiers that classify it as a human is

- If Score chimpanzee $>$ Score $_{\text {human }}$ then the our belief that we have a chimpanzee is greater than the belief that we have a human

Boosting

- The basic idea: Can a "weak" learning algorithm that performs just slightly better than random guessing be boosted into an arbitrarily accurate "strong" learner
- Each of the gambler's rules may be just better than random guessing
- This is a "meta" algorithm, that poses no constraints on the form of the weak learners themselves
- The gambler's rules of thumb can be anything
\qquad

ADA Boost: Adaptive algorithm for learning the weights

- ADA Boost: Not named of ADA Lovelace
- An adaptive algorithm that learns the weights of each classifier sequentially - Learning adapts to the current accuracy
- Iteratively:
- Train a simple classifier from training data
- It will make errors even on training data
- Train a new classifier that focuses on the training data points that have been misclassified

- Third weak learner concentrates on errors made by second strong learner
20 spr 2011

Boosting: An Example

- Voila! Final strong learner: very few errors on the training data
${ }^{20}$ Scp $2011 \quad 11755 / 1897$ ${ }^{75}$

Boosting: An Example

- Third weak learner concentrates on errors made by combination of previous weak learners
- Continue adding weak learners until....

Boosting: An Example

- The final strong learner has learnt a complicated decision boundary 11755/18797

Overall Learning Pattern

- Strong learner increasingly accurate with increasing number of weak learners
- Residual errors increasingly difficult to correct Additional weak learners less and less effective

ADABoost

- Cannot just add new classifiers that work well only the the previously misclassified data
- Problem: The new classifier will make errors on the points that the earlier classifiers got right
- Not good
- On test data we have no way of knowing which points were correctly classified by the first classifier
- Solution: Weight the data when training the second classifier
- Use all the data but assign them weights
- Data that are already correctly classified have less weight - Data that are currently incorrectly classified have more weight 20 Sep 2011 11755/18797

ADA Boost

- The red and blue points (correctly classified) will have a weight $\alpha<1$
- Black points (incorrectly classified) will have a weight $\beta(=1 / \alpha)>1$
- To compute the optimal second classifier, we minimize the total weighted error
- Each data point contributes α or β to the total count of correctly and incorrectly classified points
- E.g. if one of the red points is misclassified by the new classifier, the total error of the new classifier goes up by α

20 Scp 2011
11755/18977
${ }^{80}$

Formalizing the Boosting Concept

- Given a set of instances $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)$
- x_{i} is the set of attributes of the $i^{\text {th }}$ instance
- y_{1} is the class for the $i^{\text {th }}$ instance
- y_{1} can be 1 or -1 (binary classification only)
- Given a set of classifiers $h_{1}, h_{2}, \ldots, h_{T}$
- h_{i} classifies an instance with attributes x as $h_{i}(x)$
- $h_{i}(x)$ is either -1 or +1 (for a binary classifier)

ㅁ $y^{*} h(x)$ is 1 for all correctly classified points and -1 for incorrectly classified points

- Devise a function $f\left(h_{1}(x), h_{2}(x), \ldots, h_{T}(x)\right)$ such that classification based on $f()$ is superior to classification by any $h_{i}(x)$
- The function is succinctly represented as $f(x)$

20 Scp 2011
11755/18997

Adaptive Boosting

- As before:
a y is either -1 or +1
. $H(x)$ is +1 or -1
\square If the instance is correctly classified, both y and $H(x)$ will have the same sign
- The product $\mathrm{y} \cdot \mathrm{H}(\mathrm{x})$ is 1
- For incorrectly classified instances the product is -1
- Define the error for $x: 1 / 2(1-y H(x))$
- For a correctly classified instance, this is 0
- For an incorrectly classified instance, this is 1
$20 \operatorname{sep} 2011$
11755/18797
${ }^{84}$

The ADABoost Algorithm

- Given: a set $\left(x_{1}, y_{1}\right), \ldots\left(x_{N}, y_{N}\right)$ of training instances
- x_{i} is the set of attributes for the $i^{\text {th }}$ instance $\square y_{i}$ is the class for the $i^{\text {th }}$ instance and can be either +1 or -1

First, some example data

Image $=\mathbf{a * E} 1+\mathbf{b}^{*} \mathbf{E} 2 \rightarrow \mathbf{a}=$ Image.E1/|Image \mid

- Face detection with multiple Eigen faces
- Step 0: Derived top 2 Eigen faces from eigen face training data
- Step 1: On a (different) set of examples, express each image as a linear combination of Eigen faces
- Examples include both faces and non faces
- Even the non-face images will are explained in terms of the eigen faces

20 Scp $2011 \quad$ 11755/18797

The ADABoost Algorithm

```
- Initialize D D ( }\mp@subsup{x}{i}{})=1/
```

- For $t=1, \ldots, \mathrm{~T}$
 - Train a weak classifier h_{t} using distribution D_{t}
 - Compute total error on training data
$=\varepsilon_{t}=\operatorname{Sum}\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
 - Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
 - For $i=1 \ldots \mathrm{~N}$
 - set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

Training Data

- Compute total error on training data
$-\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
- For $i=1 \ldots \mathrm{~N}$
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is

```
The ADABoost Algorithm
- Initialize }\mp@subsup{D}{1}{}(\mp@subsup{x}{i}{})=1/
|For t=1, .., T
        Train a weak classifier }\mp@subsup{h}{t}{}\mathrm{ using distribution }\mp@subsup{D}{t}{
        Compute total error on training data
            - - }\mp@subsup{\varepsilon}{t}{}=\operatorname{Sum}{\mp@subsup{D}{t}{}(\mp@subsup{x}{i}{}\mp@subsup{)}{}{1/2}(1-\mp@subsup{y}{i}{}\mp@subsup{h}{t}{}(\mp@subsup{x}{i}{}))
        \square Set }\mp@subsup{\alpha}{t}{}=1/2 \n (\mp@subsup{\varepsilon}{t}{}/(1-\mp@subsup{\varepsilon}{t}{})
        \squareFori=1...N
```



```
        ~ Normalize D D+1
- The final classifier is
    \square H(x) = sign (\Sigma
```


F
 $\begin{array}{llllllll}8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8\end{array}$ threshold
Sign $=+1$, error $=1 / 8$
Sign $=-1$, error $=7 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	118
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$11 /$
\mathbf{H}	0.2	0.5	-1	$1 / 8$

$20 \operatorname{Scp} 2011$
11755/18797

The Best E2"Stump"

${ }^{20} \operatorname{Scp} 2011$
11755/18797

$$
100
$$

The ADABoost Algorithm

$$
\begin{array}{|l}
- \text { Initialize } D_{1}\left(x_{i}\right)=1 / N \\
=\text { For } t=1, \ldots, T \\
\text { Train a weak classifier } h_{t} \text { using distribution } D_{t} \\
\text { Compute total error on training data } \\
=\varepsilon_{t}=\operatorname{sum}\left\{D_{t}\left(x_{i}\right) / 1 /\left(1-y_{i} h_{t}\left(x_{i}\right)\right\}\right. \\
\text { Set } \alpha_{t}=1 / 2 \ln \left(\varepsilon_{t} /\left(1-\varepsilon_{t}\right)\right) \\
\text { For } i=1 \ldots N \\
\text { set } D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right) \\
\text { Normalize } D_{t+1} \text { to make it a distribution } \\
\text { The final classifier is } \\
-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)
\end{array}
$$

The Best Error

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED INSTANCES
\qquad

The ADABoost Algorithm

```
- Initialize }\mp@subsup{D}{1}{}(\mp@subsup{x}{i}{})=1/\textrm{N
```

- For $t=1, \ldots, \mathrm{~T}$
 - Train a weak classifier h_{t} using distribution D_{t}
 - Compute total error on training data
$=\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
 - Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
 - For $i=1$... N
$=\operatorname{set} D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

The Boosted Classifier Thus Far


```
The ADABoost Algorithm
- Initialize D D ( }\mp@subsup{x}{i}{})=1/
-For t=1, \ldots, T
    - Train a weak classifier }\mp@subsup{h}{t}{}\mathrm{ using distribution D}\mp@subsup{D}{t}{
    - Compute total error on training data
```



```
    ~ Set }\mp@subsup{\alpha}{t}{}=1/2\operatorname{ln}((1-\mp@subsup{\varepsilon}{t}{})/\mp@subsup{\varepsilon}{t}{}
    \squareFori=1...N
        ~ set D}\mp@subsup{D}{t+1}{}(\mp@subsup{x}{i}{\prime})=\mp@subsup{D}{t}{\prime}(\mp@subsup{x}{i}{\prime})\operatorname{exp}(-\mp@subsup{\alpha}{t}{}\mp@subsup{y}{i}{}\mp@subsup{h}{t}{\prime}(\mp@subsup{x}{i}{\prime})
    ~ Normalize D Dt+1 to make it a distribution
```

-The final classifier is
- $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$
20 Sep $2011 \quad 11755 / 1897 \quad 107$
20 Spe 2011
11755/18797

The Best Error

The ADABoost Algorithm

The Best Error
$\begin{array}{lllllllll}\mathbf{F} & \mathbf{E} & \mathbf{H} & \text { A } & \text { G } & \mathbf{B} & \mathbf{C} & \mathbf{D}\end{array}$
$\begin{array}{llllllllllll}0.8 & 0.2 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & D^{\prime}=D / \operatorname{sum}(D)\end{array}$
$\begin{array}{lllllllll}1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8\end{array}$
threshold

ID	E1	E2.	Class	Weight	Weight	Weight
A	0.3	${ }^{-0.6}$	+1	$1 / 8 \cdot 2.63$	0.33	0.48
B	0.5	${ }^{-0.5}$	+1	$18^{* 0.38}$	0.05	0.074
c	0.7	-0.1	+1	$1 / 8 * 0.38$	0.05	0.074
D	0.6	${ }^{-0.4}$	+1	$1 / 8 \times 0.38$	0.05	0.074
E	0.2	0.4	${ }^{1}$	$1 / 8 \times 0.38$	0.05	0.074
F	-0.8	0.1	${ }^{-1}$	$1 / 8 * 0.38$	0.05	0.074
G	0.4	-0.9	${ }^{-1}$	$1 / 8 \times 0.38$	0.05	0.074
H	0.2	0.5	${ }^{-1}$	$1 / 8^{* 0.38}$	0.05	0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

20 Scp 2011
11755/18797

- Initialize $D_{1}\left(x_{i}\right)=1 / \mathrm{N}$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
$-\varepsilon_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\varepsilon_{t} /\left(1-\varepsilon_{t}\right)\right)$
- For $i=1 \ldots \mathrm{~N}$
$=$ set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
-The final classifier is
- $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

E1 classifier | F | E | H | A | G | B | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.8 | D | | | | | |
| 0.8 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
| .074 | .074 | .074 | .48 | .074 | .074 | .074 |

Classifier based on E1
if (sign*wt(E1) > thresh $)>0$) face $=$ true
sign $=+1$ or -1

20 Scp 2011
11755/18797
114

The Best E2 classifier Classifier based on E2: | G | A | B | D | C | F | E | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.3 | -0.6 | -0.5 | -0.4 | -0.1 | -0.1 | 0.4 | 0.5 |

threshold
$\operatorname{Sign}=-1$, error $=0.148$

20 Scp 2011 116

The Best Classifier

The Boosted Classifier Thus Far $\begin{array}{llllllll}\text { F } & \text { E } & \text { H } & \text { A } & \text { G } & \text { B } & \text { C } & \text { D }\end{array}$ | 0.8 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

threshold threshold	$h 1(X)=w t(E 1)>0.45 ?+1:-1$
	$h 2(X)=w t(E 1)>0.25 ?+1:-1$

11755/18797
${ }^{118}$

AdaBoost

- In this example both of our first two classifiers were based on E1
- Additional classifiers may switch to E2
- In general, the reweighting of the data will result in a different feature being picked for each classifier
- This also automatically gives us a feature selection strategy
- In this data the wt(E1) is the most important feature

20 Scp 2011
11755/18797

AdaBoost

- NOT required to go with the best classifier so far
- For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier
- So long as its right more than 50\% of the time
- We can continue to add classifiers even after we get 100% classification of the training data
- Because the weights of the data keep changing
- Adding new classifiers beyond this point is often a good thing to do
$20 \operatorname{scp} 2011$
11755/18997

Boosting and Face Detection

- Boosting forms the basis of the most common technique for face detection today: The Viola-Jones algorithm.
- The final classifier is
- $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$
- The output is 1 if the total weight of all weak learners that classify x as 1 is greater than the total weight of all weak learners that classify it as -1

The problem of face detection

- 1. Defining Features
- Should we be searching for noses, eyes, eyebrows etc.?
- Nice, but expensive
- Or something simpler
- 2. Selecting Features
- Of all the possible features we can think of, which ones make sense
- 3. Classification: Combining evidence
- How does one combine the evidence from the different features?

Features: The Viola Jones Method

$$
\text { Image } \approx w_{1} B_{1}+w_{2} B_{2}+w_{3} B_{3}+\ldots
$$

- Integral Features!
- Like the Checkerboard
- The same principle as we used to decompose images in terms of checkerboards:
- The image of any object has changes at various scales
- These can be represented coarsely by a checkerboard pattern
- The checkerboard patterns must however now be localized
- Stay within the region of the face

20 Scp 2011
11755/18797

Features

- Checkerboard Patterns to represent facial features
- The white areas are subtracted from the black ones.
- Each checkerboard explains a localized portion of the image
- Four types of checkerboard patterns (only)

"Integral" features

- Each checkerboard has the following characteristics
- Length
- Width
- Type
- Specifies the number and arrangement of bands
- The four checkerboards above are the four used by Viola and Jones
$20 \operatorname{sep} 2011$
11755/18797

Explaining a portion of the face with a checker..

- How much is the difference in average intensity of the image in the black and white regions
- Sum(pixel values in white region) - Sum(pixel values in black region)
- This is actually the dot product of the region of the face covered by the rectangle and the checkered pattern itself
- White $=1$, Black $=-1$

20 Scp $2011 \quad 11755 / 1897$ 128

Integral images

- Summed area tables

- For each pixel store the sum of ALL pixels to the left of and above it.

20 Sp 2011 17755/18977 ${ }^{130}$

Fast Computation of Pixel Sums

 at losaticn 3 is $A+C$, and ax location 4 is $A+B-C+D$. The sun within D can be ccmputed as
$+1+(2+3)$. $+1+1-(2+3)$.

A Fast Way to Compute the Feature

- Store pixel table for every pixel in the image
- The sum of all pixel values to the left of and above the pixel
- Let A, B, C, D, E, F be the pixel table values at the locations shown
- Total pixel value of black area $=\mathrm{D}+\mathrm{A}-\mathrm{B}-\mathrm{C}$
- Total pixel value of white area $=F+C-D-E$
- Feature value $=(F+C-D-E)-(D+A-B-C)$

20 Scp 2011
11755/18797

Learning: No. of features

- Analysis performed on images of 24×24 pixels only
- Reduces the no. of possible features to about 180000
- Restrict checkerboard size
- Minimum of 8 pixels wide
- Minimum of 8 pixels high
- Other limits, e.g. 4 pixels may be used too
\square Reduces no. of checkerboards to about 50000

20 Scp 2011
11755/18797

How many features

- Each feature can have many sizes
- Width from (min) to (max) pixels
- Height from (min ht) to (maxht) pixels
- At each size, there can be many starting locations
- Total number of possible checkerboards of one type: No. of possible sizes \times No. of possible locations
- There are four types of checkerboards
- Total no. of possible checkerboards: VERY VERY LARGE!

20 Scp 2011
11755/18997
134

No. of features

- Each possible checkerboard gives us one feature
- A total of up to 180000 features derived from a 24×24 image!
- Every 24×24 image is now represented by a set of 180000 numbers
- This is the set of features we will use for classifying if it is a face or not!

The Weak Learner

- Training (for each weak learner):
- For each feature f (of all 180000 features)
- Find a threshold $\theta(\mathrm{f})$ and polarity $p(\mathrm{f})(p(\mathrm{f})=-1$ or $p(\mathrm{f})=1$) such that (f $\left.>p(\mathrm{f})^{*} \theta(\mathrm{f})\right)$ performs the best classification of faces
- Lowest overall error in classifying all training data

Error counted over weighted samples

- Let the optimal overall error for f be $\operatorname{error}(f)$
- Find the feature f^{\prime} such that error(f^{\prime}) is lowest
- The weak learner is the test $\left(f^{\prime}>p\left(f^{\prime}\right)^{*} \theta\left(f^{\prime}\right)\right)=>$ face
- Note that the procedure for learning weak learners also identifies the most useful features for face recognition
- The classification rule is of the kind
- If feature > threshold, face (or if feature < threshold, face)
- The optimal value of "threshold" must also be determined.

The Viola Jones Classifier

- A boosted threshold-based classifier
- First weak learner: Find the best feature, and its optimal threshold
- Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner)
- Third weak learner: Find the best feature for the weighted data and its optimal threshold (weighting from two weak learners)
- Fourth weak learner: Find the best feature for the weighted data and its optimal threhsold (weighting from three weak learners)

20 Sp 201

During tests:

- Given any new 24×24 image
- $R=\Sigma_{f} \alpha_{f}\left(f>p_{f} \theta(f)\right)$
- Only a small number of features ($\mathrm{f}<100$) typically used
- Problems:
- Only classifies 24×24 images entirely as faces or non-faces
- Typical pictures are much larger
- They may contain many faces
- Faces in pictures can be much larger or smaller
- Not accurate enough
${ }^{20} \operatorname{scp} 2011$
11755/18797

To Train

- Collect a large number of histogram equalized facial images
- Resize all of them to 24×24
- These are our "face" training set
- Collect a much much much larger set of 24×24 non-face images of all kinds
- Each of them is histogram equalized
- These are our "non-face" training set
- Train a boosted classifier
\qquad
17555/18797

Multiple faces in the picture

- Scan the image
- Classify each 24×24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform ($\mathrm{N}-24)^{\star}(\mathrm{M}-24)$ classifications
- If overlapping 24×24 rectangles are found to have faces, merge them

Multiple faces in the picture

- Scan the image
- Classify each 24×24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform ($\mathrm{N}-24)^{\star}(\mathrm{M}-24)$ classifications
- If overlapping 24×24 rectangles are found to have faces, merge them

Multiple faces in the picture

- Scan the image
- Classify each 24×24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform ($\mathrm{N}-24)^{\star}(\mathrm{M}-24)$ classifications
- If overlapping 24×24 rectangles are found to have faces, merge them

Multiple faces in the picture

- Scan the image
- Classify each 24×24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform ($\mathrm{N}-24)^{\star}(\mathrm{M}-24)$ classifications
- If overlapping 24×24 rectangles are found to have faces, merge them

Overall solution

- Scan the picture with classifiers of size 24×24
- Scale the classifier to $26 x 26$ and scan
- Scale to 28×28 and scan etc.
- Faces of different sizes will be found at different scales
$20 \operatorname{sep} 2011$
11755/18797

ROC

- Ideally false rejection will be 0\%, false detection will also be 0\%
- As Y increaases, we reject faces less and less - But accept increasing amounts of garbage as faces
- Can set Y so that we rarely miss a face

Picture size solution

- We already have a classifier
- That uses weak learners
- Scale each classifier
- Every weak learner
- Scale its size up by factor α. Scale the threshold up to $\alpha \theta$.
- Do this for many scaling factors

20 Scp 2011

False Rejection vs. False detection

- False Rejection: There's a face in the image, but the classifier misses it
- Rejects the hypothesis that there's a face
- False detection: Recognizes a face when there is none.
- Classifier:
- Standard boosted classifier: $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$
- Modified classifier $H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)+Y\right)$
- $\Sigma_{t} \alpha_{t} h_{t}(x)$ is a measure of certainty
- The higher it is, the more certain we are that we found a face
- If Y is large, then we assume the presence of a face even when we are not sure
- By increasing Y , we can reduce false rejection, while increasing false detection

Problem: Not accurate enough, too slow

- If we set Y high enough, we will never miss a face
- But will classify a lot of junk as faces
- Solution: Classify the output of the first classifier with a second classifier
\square And so on.

20 Sep 2011
11755/18797

Problem: Not accurate enough, too slow

- If we set Y high enough, we will never miss a face
- But will classify a lot of junk as faces
- Solution: Classify the output of the first classifier with a second classifier
- And so on.

20 Scp 2011
11755/18797

Detection in Real Images

- Basic classifier operates on 24×24 subwindows
- Scaling:
- Scale the detector (rather than the images)
- Features can easily be evaluated at any scale
- Scale by factors of 1.25
- Location:
- Move detector around the image (e.g., 1 pixel increments)
- Final Detections
- A real face may result in multiple nearby detections
- Postprocess detected subwindows to combine overlapping detections into a single detection
$20 \operatorname{sep} 2011$
11755/18797

[^0]
[^0]: Practical implementation

 - Details discussed in Viola-Jones paper
 - Training time $=$ weeks (with 5 k faces and 9.5 k nonfaces)
 - Final detector has 38 layers in the cascade, 6060 features
 - 700 Mhz processor:
 - Can process a 384×288 image in 0.067 seconds (in 2003 when paper was written)
 $20 \operatorname{Scp} 2011 \quad 11755 / 18797$ 158

