

Finding faces in an image Finding faces in an i

- Combine the predictions of these rules
 But not equally
 Rules that are less accurate should be given less
 - Rules that are less accurate should be given lesser weight

11755/18797

Boosting as defined by Freund

- A gambler wants to write a program to predict winning horses. His program must encode the expertise of his brilliant winner friend
- The friend has no single, encodable algorithm. Instead he has many rules of thumb
 - He uses a different rule of thumb for each set of races
 E.g. "in this set, go with races that have black horses with stars on their foreheads"
 - But cannot really enumerate what rules of thumbs go with what sets of races: he simply "knows" when he encounters a set
 - A common problem that faces us in many situations
- Problem:

20 Sep 2011

- Bow best to combine all of the friend's rules of thumb
- $\hfill\square$ What is the best set of races to present to the friend, to
 - extract the various rules of thumb

The basic idea: Can a "weak" learning algorithm that performs just slightly better than random guessing be *boosted* into an arbitrarily accurate "strong" learner

Boosting

20 Sep 2011

- Each of the gambler's rules may be just better than random guessing
- This is a "meta" algorithm, that poses no constraints on the form of the weak learners themselves
 - The gambler's rules of thumb can be anything

Boosting: A Voting Perspective Boosting can be considered a form of voting

- Let a number of different classifiers classify the dataGo with the majority
- Intuition says that as the number of classifiers increases, the dependability of the majority vote increases
- The corresponding algorithms were called Boosting by majority
 - A (weighted) majority vote taken over all the classifiers

11755/18797

- How do we compute weights for the classifiers?
- How do we actually train the classifiers

20 Sep 2011

65

ADA Boost: Adaptive algorithm for learning the weights

- ADA Boost: Not named of ADA Lovelace
- An *adaptive* algorithm that learns the weights of each classifier sequentially
 - Learning adapts to the current accuracy
- Iteratively:

20 Sep 2011

- □ Train a simple classifier from training data
 - It will make errors even on training data
- Train a new classifier that focuses on the training data points that have been misclassified

11755/18797

11755/18797

20 Sep 2011

1/8	E H 80.20.2 81/81/8	A G 0.3 0.4 1/8 1/8 shold error = 1	B C 0.5 0.6 1/8 1/8 /8	D if 0.7	assifier based on E1: (sign*wt(E1) > thresh) > face = true gn = +1 or -1	0)
	ID	E1	E2.	Class	Weight	
	Α	0.3	-0.6	+1	1/6	
	в	0.3 0.5	-0.6 -0.5	+1 +1	1/8 1/8	
	B	0.5	-0.5 -0.1		1/8 1/8	
	B C D	0.5 0.7 0.6	-0.5 -0.1 -0.4	+1 +1 +1	1/8 1/8 1/8	
	B C D E	0.5 0.7 0.6 0.2	-0.5 -0.1 -0.4 0.4	+1 +1 +1 +1 +1 -1	1/8 1/8 1/8 1/8	
	B C D E F	0.5 0.7 0.6 0.2 -0.8	-0.5 -0.1 -0.4 0.4 -0.1	+1 +1 +1 +1 -1 -1	1/8 1/8 1/8 1/8 1/8	
	B C D E F G	0.5 0.7 0.6 0.2 -0.8 0.4	-0.5 -0.1 -0.4 0.4 -0.1 -0.9	+ + + + + - - - - - -	1/8 1/8 1/8 1/8 1/8 1/8 1/8	
	B C D E F	0.5 0.7 0.6 0.2 -0.8	-0.5 -0.1 -0.4 0.4 -0.1	+1 +1 +1 +1 -1 -1	1/8 1/8 1/8 1/8 1/8	

-0.8	E H 0.2 0.2 1/8 1/8	A G 0.3 0.4	B C 0.5 0.6 1/8 1/8 1	D Cl 0.7 if 1/8 Si	assifier based on E1: (sign*wt(E1) > thresh) > 0) face = true ign = +1 irreshold = 0.45
	ID	E1	E2.	Class	Weight
	Α	0.3	-0.6	+1	1/8
	В	0.5	-0.5	+1	1/8
	С	0.7	-0.1	+1	1/8
	D	0.6	-0.4	+1	1/8
1	E	0.2	0.4	-1	1/8
	F	-0.8	-0.1	-1	1/8
	G	0.4	-0.9	-1	1/8
	н	0.2	0.5	-1	1/8
20 Sep 2011			11755	/18797	98

l	e ADABoost Algorithm
Ini 🛛	itialize $D_1(x_i) = 1/N$
- Fo	or $t = 1,, T$
	Train a weak classifier h_t using distribution D_t
	Compute total error on training data
	• ε_t = Average { $\frac{1}{2}$ (1 - $y_i h_t(x_i)$)}
	$1 \operatorname{Set} \alpha_t = \frac{1}{2} \ln \left((1 - \varepsilon_t) / \varepsilon_t \right)$
	For <i>i</i> = 1 N
	• set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
	Normalize D_{t+1} to make it a distribution
Th	ne final classifier is
	$H(x) = \operatorname{sign}(\Sigma_t \alpha_t h_t(x))$

G A B D C F E H Classifier based on E2: if (sign*wt(E2) > thresh) > 0) face = true .074 .48 .074 .074 .074 .074 .074 0.74 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074 .074 .074 .58 .074 .074 .074 .074 .074 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074 .074 .58 .074 .074 .074 .074 .074 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074 .074 .58 .074 .074 .074 .074 .074 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074 .074 .074 .074 .074 .074 .074 .074 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074 .074 .074 .074 .074 .074 .074 .074 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074 .074 .074 .074 .074 .074 .074 .074 .0.1 0.1 0.4 0.5 .074 .48 .074 .074 .074						
	ID	E1	E2.	Class	Weight	
	Α	0.3	-0.6	+1	0.48	
	в	0.5	-0.5	+1	0.074	
	С	0.7	-0.1	+1	0.074	
	D	0.6	-0.4	+1	0.074	
	E	0.2	0.4	-1	0.074	
	F	-0.8	-0.1	-1	0.074	
	G	0.4	-0.9	-1	0.074	
	н	0.2	0.5	-1	0.074	
20 Sep 2011				11755/18797	116	

The Viola Jones Classifier

• ...

20 Sep 2011

- A boosted threshold-based classifier
- First weak learner: Find the best feature, and its optimal threshold
 - Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner)
 - Third weak learner: Find the best feature for the weighted data and its optimal threshold (weighting from two weak learners)
 - Fourth weak learner: Find the best feature for the weighted data and its optimal threhsold (weighting from three weak learners)

11755/18797

139

