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11-755 Machine Learning for Signal Processing

Latent Variable Models and 
Signal Separation

Class 9.  29 Sep 2011
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The Engineer and the Musician

Once upon a time a rich potentate 
discovered a previously unknown 
recording of a beautiful piece of 
music. Unfortunately it was badly 
damaged.  

He greatly wanted to find out what it would sound 
like if it were not.

So he hired an engineer and a 
musician to solve the 
problem..
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The Engineer and the Musician

The engineer worked for many 
years. He spent much money and 
published many papers.

Finally he had a somewhat scratchy y y
restoration of the music..

The musician listened to the music 
carefully for a day, transcribed it,  
broke out his trusty keyboard and 
replicated the music.
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The Prize

Who do you think won the princess?
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Sounds – an example
 A sequence of notes

 Chords from the same notes

5

 A piece of music from the same (and a few additional) notes
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Sounds – an example
 A sequence of sounds

6

 A proper speech utterance from the same 
sounds
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Template Sounds Combine to Form a Signal

 The individual component sounds “combine” to form the 
final complex sounds that we perceive
 Notes form music

 Phoneme-like structures combine in utterances

 Component sounds – notes, phonemes – too are complex

S d i l i d f h “b ildi bl k ”

7

 Sound in general is composed of such “building blocks” 
or themes
 Our definition of a building block: the entire structure occurs 

repeatedly in the process of forming the signal 

 Goal: To learn these building blocks automatically, from 
analysis of data
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 An urn has many balls

 Each ball has a number marked on it
 Multiple balls may have the same number

 A “picker” draws balls at random..

 This is a multinomial
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Signal Separation with the Urn model

 What does the probability of drawing balls 
from Urns have to do with sounds?
 Or Images?

W h ll
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 We shall see..
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The representation

W t i l t hi ll

TIME

AMPL FREQ

TIME
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 We represent signals spectrographically
 Sequence of magnitude spectral vectors estimated from (overlapping) 

segments of signal

 Computed using the short-time Fourier transform

 Note: Only retaining the magnitude of the STFT for our operations

 We will, however need the phase later for conversion to a signal
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 A magnitude spectral vector obtained from a DFT 
represents spectral magnitude against discrete 
frequencies
 This may be viewed as a histogram of draws from a multinomial

FRAME 

HISTOGRAM

A Multinomial Model for Spectra
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FRAME 

t

f

f

HISTOGRAM

P
t
(f )

Probability distribution underlying the t-th spectral vector

Power spectrum of frame t

The balls are
marked with
discrete frequency
indices from the DFT
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 A “picker” has multiple urns

 In each draw he first selects an urn, and then a ball 
from the urn
 Overall probability of drawing f is a mixture multinomial

 Since several multinomials (urns) are combined

A more complex model

11755/18797

 Two aspects – the probability with which he selects any 
urn, and the probability of frequencies with the urns

multiple draws

HISTOGRAM

29 Sep 2011 12
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
E h h diff t b bilit di t ib ti f

11755/18797

 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
E h h diff t b bilit di t ib ti f
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 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
E h h diff t b bilit di t ib ti f
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 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram

29 Sep 2011 15

The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
E h h diff t b bilit di t ib ti f
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 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
E h h diff t b bilit di t ib ti f
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 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
ff
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 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
 The number of draws in each frame represents the rms energy in 

that frame
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The Picker Generates a Spectrogram

 The URNS are the same for every frame

11755/18797

( ) ( ) ( | )t tz
P f P z P f z

y
 These are the component multinomials or bases for the source 

that generated the signal

 The only difference between frames is the probability with which 
he selects the urns

Frame(time) specific mixture weight

SOURCE specific
bases

Frame-specific
spectral distribution
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Spectral View of Component Multinomials

 Each component multinomial (urn) is actually a normalized 
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histogram over frequencies P(f |z)
 I.e. a spectrum

 Component multinomials represent latent spectral structures 
(bases) for the given sound source

 The spectrum for every analysis frame is explained as an 
additive combination of these latent spectral structures
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Spectral View of Component Multinomials
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 By “learning” the mixture multinomial model for any
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 By learning  the mixture multinomial model for any 
sound source we “discover” these latent spectral 
structures for the source

 The model can be learnt from spectrograms of a 
small amount of audio from the source using the EM 
algorithm
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EM learning of bases

 Initialize bases
 P(f|z) for all z, for all f

 Must decide on the number of urns 

 For each frame
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 For each frame
 Initialize Pt(z)
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Learning the Bases

 Simple EM solution
 Except bases are learned from all frames
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ICASSP 2011 Tutorial: Applications of  Topic 
Models for Signal Processing – Smaragdis, 
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Speech Signal bases Basis-specific spectrograms
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P(f|z)

Pt(z)

From Bach’s Fugue in Gm
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Given Bases Find Composition

 Iterative process:
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 Iterative process:
 Compute a posteriori probability of the zth topic for 

each frequency f in the t-th spectrum

 Compute mixture weight of zth basis
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Bag of Frequencies vs. Bag of 
Spectrograms
 The PLCA model described is a “bag of frequencies” 

model
 Similar to “bag of words”

 Composes spectrogram one frame at a time
 Contribution of bases to a frame does not affect other frames

 Random Variables: 
 Frequency
 Possibly also the total number of draws in a frame

Z f

Pt(Z)

Nt

Bag of Frequencies PLCA model
time

T=0: P0(Z) T=1: P1(Z) T=k: Pk(Z)

 Bases are simple distributions over frequencies
 Manner of selection of urns/components varies 

from analysis frame to analysis frame
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P(f|z)
Z=0 Z=1 Z=2 Z=M

Bag of Spectrograms PLCA Model

C th ti t ll t

Z=1 Z=2 Z=M

P(T|Z) P(F|Z) P(T|Z) P(F|Z) P(T|Z) P(F|Z)

 Compose the entire spectrogram all at once

 Complex “super pots” include two sub pots
 One pot has a distribution over frequencies: these are our bases

 The second has a distribution over time

 Each draw:
 Select a superpot

 Draw “F” from frequency pot

 Draw “T” from time pot

 Increment histogram at (T,F)
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The bag of spectrograms

Z=1 Z=2 Z=M

P(T|Z) P(F|Z) P(T|Z) P(F|Z) P(T|Z) P(F|Z)
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P(T|Z) P(F|Z)

T F

DRAW
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 Drawing procedure
 Fundamentally equivalent to bag of frequencies model 

 With some minor differences in estimation
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Estimating the bag of spectrograms

Z=1 Z=2 Z=M

P(T|Z) P(F|Z) P(T|Z) P(F|Z) P(T|Z) P(F|Z)

?
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 EM update rules
 Can learn all parameters
 Can learn P(T|Z) and P(Z) only given P(f|Z)
 Can learn only P(Z)

t
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Bag of frequencies vs. bag of spectrograms
 Fundamentally equivalent

 Difference in estimation
 Bag of spectrograms: For a given total  N and P(Z), the 

total “energy” assigned to a basis is determined
 increasing its energy at one time will necessarily decrease its 

energy elsewhere

 No such constraint for bag of frequencies
 More unconstrained

 Can also be used to assign temporal patterns for 
components

 Bag of frequencies more amenable to imposition of 
a priori distributions

 Bag of spectrograms a more natural fit for other 
models

The PLCA Tensor Model

Z

P(A|Z) P(B|Z) P(C|Z)

Z

P(A|Z) P(B|Z) P(C|Z)

 The bag of spectrograms can be extended to 
multivariate data

 EM update rules are essentially identical to 
bivariate case

)|(...)|()|()(),...,( zcPzbPzaPzPcbaP
Z


How meaningful are these structures

 If bases capture data structure they must
 Allow prediction of data

 Hearing only the low-frequency components of a 
note, we can still know the note

 Which means we can predict its higher frequencies

11755/18797

 Be resolvable in complex sounds
 Must be able to pull them out of complex mixtures

 Denoising

 Signal Separation from Monaural Recordings

29 Sep 2011 33

The musician vs. the signal processor

 Some badly damaged music is given to a signal processing whiz 
and a musician
 They must “repair” it.  What do they do?

 Signal processing :
 Invents many complex algorithms

W it l f t t Writes proposals for government grants

 Spends $1000,000 

 Develops an algorithm that results in less scratchy sounding music

 Musician:
 Listens to the music and transcribes it

 Plays it out on his keyboard/piano

11755/1879729 Sep 2011 34

Prediction
 Bandwidth Expansion

 Problem: A given speech signal only has frequencies in the 
300Hz-3.5Khz range
 Telephone quality speech

 Can we estimate the rest of the frequencies

11755/18797

 The full basis is known

 The presence of the basis is 
identified from the observation
of a part of it

 The obscured remaining spectral
pattern can be guessed

29 Sep 2011 35

Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal

11755/1879729 Sep 2011 36
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every 

frame in the signal

11755/18797

 However, we are only able to observe the number 
of draws of some frequencies and not the others

 We must estimate the number of draws of the 
unseen frequencies 40

Bandwidth Expansion: Step 1 – Learning

 From a collection of full-bandwidth training 
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g
data that are similar to the bandwidth-
reduced data, learn spectral bases
 Using the procedure described earlier
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Bandwidth Expansion: Step 2 – Estimation

P1(z) P2(z) Pt(z)

11755/18797

 Using only the observed frequencies in the 
bandwidth-reduced data, estimate mixture 
weights for the bases learned in step 1.
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Step 2
 Iterative process:
 Compute a posteriori probability of the zth urn for 

the speaker for each f

C t i t i ht f th f h f t
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 Compute mixture weight of zth urn for each frame t

 P(f|z) was obtained from training data and will not 
be reestimated
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Step 3 and Step 4
 Compose the complete probability distribution for each 

frame, using the mixture weights estimated in Step 2


z

tt zfPzPfP )|()()(
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 Note that we are using mixture weights estimated from 
the reduced set of observed frequencies
 This also gives us estimates of the probabilities of the 

unobserved frequencies

 Use the complete probability distribution Pt (f  ) to predict 
the unobserved frequencies!
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Predicting from Pt(f ): Simplified Example

 A single Urn with only red and blue balls

11755/18797

 Given that out an unknown number of draws, 
exactly m were red, how many were blue?

 One Simple solution:
 Total number of draws N = m / P(red)
 The number of tails drawn = N*P(blue)
 Actual multinomial solution is only slightly more complex
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The inverse multinomial
• Given P(Z) for all bases

• Observed n1, n2 .. nk

• What is nk+1, nk+2…















nkf
fo

f)f(PP

nN

)(P

 No is the total number of observed counts
 n1 + n2 + …

 Po is the total probability of observed events
 P(f1) + P(f2) + …
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Estimating unobserved frequencies

 Expected value of the number of draws: 
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 s)frequencie(observed  f

 Estimated spectrum in unobserved 
frequencies

)(ˆ)(ˆ fPNfS ttt 
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Overall Solution
 Learn the “urns” for the signal source 

from broadband training data

 For each frame of the reduced 
bandwidth test utterance, find mixture 
weights for the urns 
 Ignore (marginalize) the unseen 

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

Pt(z)

11755/18797

g ( g )
frequencies

 Given the complete mixture multinomial 
distribution for each frame, estimate 
spectrum (histogram) at unseen 
frequencies
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t( )
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Pt(z)
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Prediction of Audio

 Some frequency components are missing (left panel)

 We know the bases P(f|z)
 But not the mixture weights for any particular spectral frame

 We must “fill in” the hole in the image
 To obtain the one to the right

 Easy to do – as explained

29 Sep 2011 4911755/18797

A more fun example

•Bases learned from this

•Reduced BW data

50

•Bandwidth expanded version
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Signal Separation from Monaural 
Recordings
 The problem:
 Multiple sources are producing sound 

simultaneously

 The combined signals are recorded over a single 

11755/18797

microphone

 The goal is to selectively separate out the signal 
for a target source in the mixture
 Or at least to enhance the signals from a selected 

source
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Problem Specification
 The mixed signal contains 

components from multiple 
sources

 Each source has its own “bases”

 In each frame
 Each source draws from its own 

collection of bases to compose a 

+ =a b

11755/18797

p
spectrum
 Bases are selected with a frame 

specific mixture weight

 The overall spectrum is a mixture 
of the spectra of individual 
sources
 I.e. a histogram combining draws 

from both sources

 Underlying model: Spectra are 
histograms over frequencies

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502
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Ball-and-urn model for a mixed signal
The caller!!
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 Each sound source is represented by its own picker and urns
 Urns represent the distinctive spectral structures for that source
 Assumed to be known beforehand (learned from some separate training data)

 The caller selects a picker at random
 The picker selects an urn randomly and draws a ball
 The caller calls out the frequency on the ball

 A spectrum is a histogram of frequencies called out
 The total number of draws of any frequency includes contributions from both sources
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

 The individual distributions are mixture multinomials

 And the urns are known

Separating the sources

11755/18797
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

 The individual distributions are mixture multinomials

 And the urns are known

Separating the sources

11755/18797
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources
 The individual distributions are mixture multinomials
 And the urns are known
 Estimate remaining terms using EM

Separating the sources

11755/18797

 
z

tt

z

ttt szfPszPsPszfPszPsPfP ),|()|()(),|()|()()( 212111

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 

29 Sep 2011 56

Algorithm
 For each frame:

 Initialize Pt(s)
 The fraction of balls obtained from source s

 Alternately, the fraction of energy in that frame from source s

 Initialize Pt(z|s)
 The mixture weights of the urns in frame t for source s

11755/18797

 The mixture weights of the urns in frame t for source s

 Reestimate the above two iteratively

 Note:  P(f|z,s) is not frame dependent
 It is also not re-estimated

 Since it is assumed to have been learned from separately 
obtained unmixed training data for the source

29 Sep 2011 57

Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each f

 Compute the a priori weight of speaker s
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 Compute mixture weight of zth urn for speaker s 
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What is Pt(s,z|f)
 Compute how each ball (frequency) is split between the urns of 

the various sources

 The ball is first split between the sources

 The fraction of the ball attributed to any source s is split between
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11755/18797

 The fraction of the ball attributed to any source s is split between 
its urns:

 The portion attributed to any urn of any source is a product of the 
two
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Reestimation
 The reestimate of source weights is simply 

the proportion of all balls that was attributed 
to the sources
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 The reestimate of mixture weights is the 
proportion of all balls attributed to each urn
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Separating the Sources

 For each frame:

 Given
 St(f) – The spectrum at frequency f of the mixed 

signal

E ti t

11755/18797

 Estimate
 St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f

 A simple maximum a posteriori estimator
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If we have only have bases for one source?

 Only the bases for one of the two sources is 
given
 Or, more generally, for N-1 of N sources

11755/18797
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If we have only have bases for one source?

 Only the bases for one of the two sources is given
 Or, more generally, for N-1 of N sources

 The unknown bases for the remaining source must also be 
estimated!

11755/18797
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Partial information: bases for one source 
unknown

 P(f|z,s) must be initialized for the additional 
source

 Estimation procedure now estimates bases 
along with mixture weights and source
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along with mixture weights and source 
probabilities
 From the mixed signal itself

 The final separation is done as before
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each f

 Compute the a priori weight of speaker s and mixture
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 Compute the a priori weight of speaker s and mixture 
weights

 Compute unknown bases
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Partial information: bases for one source 
unknown

 P(f|z,s) must be initialized for the additional 
source

 Estimation procedure now estimates bases 
along with mixture weights and source
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along with mixture weights and source 
probabilities
 From the mixed signal itself

 The final separation is done as before
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Separating Mixed Signals: Examples
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 “Raise my rent” by David 
Gilmour

 Background music “bases” 
learnt from 5-seconds of 
music-only segments within 
the song

 Lead guitar “bases” bases 
learnt from the rest of the song

 Norah Jones singing “Sunrise”

 A more difficult problem:
 Original audio clipped!

 Background music bases 
learnt from 5 seconds of 
music-only segments
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Where it works

 When the spectral structures of the two 
sound sources are distinct
 Don’t look much like one another

 E.g. Vocals and music

E L d it d i
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 E.g. Lead guitar and music

 Not as effective when the sources are similar
 Voice on voice

29 Sep 2011 68

Separate overlapping speech
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 Bases for both speakers learnt from 5 second 
recordings of individual speakers

 Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers
 Improvements are worse for same-gender mixtures
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How about non-speech data

 We can use the same model to represent other data

19x19 images = 361 dimensional vectors
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p

 Images: 
 Every face in a collection is a histogram

 Each histogram is composed from a mixture of a fixed number of 
multinomials
 All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face

 Each component multinomial is also an image
 And can be learned from a collection of faces

 Component multinomials are observed to be parts of faces
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