

Sounds - an example

- A sequence of notes

- Chords from the same notes

- A piece of music from the same (and a few additional) notes

$29 \operatorname{Sep} 2011$
Sounds - an example
- A sequence of sounds

- A proper speech utterance from the same sounds


```
Template Sounds Combine to Form a Signal
```

- The individual component sounds "combine" to form the final complex sounds that we perceive
- Notes form music
- Phoneme-like structures combine in utterances
- Component sounds - notes, phonemes - too are complex
- Sound in general is composed of such "building blocks" or themes
- Our definition of a building block: the entire structure occurs repeatedly in the process of forming the signal
- Goal: To learn these building blocks automatically, from analysis of data

29 Scp 2011

Urns and balls

- An urn has many balls
- Each ball has a number marked on it
- Multiple balls may have the same number
- A "picker" draws balls at random.
- This is a multinomial

29 Scp 2011
11755/18797

Signal Separation with the Urn model

- What does the probability of drawing balls from Urns have to do with sounds?
- Or Images?
- We shall see..
${ }^{29} \operatorname{Sep} 2011$
11755/18797

The representation

- We represent signals spectrographically
- Sequence of magnitude spectral vectors estimated from (overlapping) segments of signal
- Computed using the short-time Fourier transform
- Note: Only retaining the magnitude of the STFT for our operations
- We will, however need the phase later for conversion to a signal

$$
{ }^{29} \operatorname{sep} 2011 \quad 11755 / 18797
$$

A more complex model

- A "picker" has multiple urns
- In each draw he first selects an urn, and then a ball from the urn
- Overall probability of drawing f is a mixture multinomial - Since several multinomials (urns) are combined
- Two aspects - the probability with which he selects any urn, and the probability of frequencies with the urns

12

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame - In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram
\qquad 11755/18797 ${ }^{13}$

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame - In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame - In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

29 Sp 2011
11755/18797 15

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram
\qquad

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

29 sep 2011 \qquad

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram
- The number of draws in each frame represents the rms energy in that frame
29 Spp 2011
11755/18797

$$
\begin{aligned}
& \text { Spectral View of Component Multinomials } \\
& \text { - By "learning" the mixture multinomial model for any } \\
& \text { sound source we "discover" these latent spectral } \\
& \text { structures for the source } \\
& \text { - The model can be learnt from spectrograms of a } \\
& \text { small amount of audio from the source using the EM } \\
& \text { algorithm }
\end{aligned}
$$

29 Scp 2011
11755/18797

Spectral View of Component Multinomials

- Each component multinomial (urn) is actually a normalized histogram over frequencies $P(f \mid z)$
- I.e. a spectrum
- Component multinomials represent latent spectral structures (bases) for the given sound source

The spectrum for every analysis frame is explained as an additive combination of these latent spectral structures

29 Sp 2011
11755/18797

EM learning of bases

- Initialize bases
- $P(f \mid z)$ for all z, for all f
- Must decide on the number of urns
- For each frame
- Initialize $\mathrm{P}_{\mathrm{t}}(\mathrm{z})$

29 Scp $2011 \quad 11755 / 18797$

Bag of Frequencies PLCA model

- Bases are simple distributions over frequencies
- Manner of selection of urns/components varies from analysis frame to analysis frame

Bag of Frequencies vs. Bag of
Spectrograms

- The PLCA model described is a "bag of frequencies" model
- Similar to "bag of words"
- Composes spectrogram one frame at a time - Contribution of bases to a frame does not affect other frames
- Random Variables:
- Frequency
- Possibly also the total number of draws in a frame

Bag of Spectrograms PLCA Model

- Compose the entire spectrogram all at once
- Complex "super pots" include two sub pots
- One pot has a distribution over frequencies: these are our bases
- The second has a distribution over time
- Each draw
- Select a superpot
$P(t, f)=\sum P(z) P(t \mid z) P(f \mid z)$
- Draw "F" from frequency pot
- Draw "T" from time pot
- Increment histogram at (T,F)

a Fundamentally equivalent to bag of frequencies model
- With some minor differences in estimation

Estimating the bag of spectrograms

Bag of frequencies vs. bag of spectrograms

- Fundamentally equivalent
- Difference in estimation
- Bag of spectrograms: For a given total N and $P(Z)$, the total "energy" assigned to a basis is determined
- increasing its energy at one time will necessarily decrease its energy elsewhere
- No such constraint for bag of frequencies - More unconstrained
- Can also be used to assign temporal patterns for components
- Bag of frequencies more amenable to imposition of a priori distributions
- Bag of spectrograms a more natural fit for other models

The PLCA Tensor Model

- The bag of spectrograms can be extended to multivariate data
$P(a, b, \ldots c)=\sum_{z} P(z) P(a \mid z) P(b \mid z) \ldots P(c \mid z)$
- EM update rules are essentially identical to bivariate case

How meaningful are these structures

- If bases capture data structure they must
- Allow prediction of data
- Hearing only the low-frequency components of a note, we can still know the note
- Which means we can predict its higher frequencies
- Be resolvable in complex sounds
- Must be able to pull them out of complex mixtures - Denoising - Signal Separation from Monaural Recordings

29 Scp 2011
11755/18797

The musician vs. the signal processor

- - Some badly damaged music is given to a signal processing whiz and a musician
- They must "repair" it. What do they do?
- Signal processing :
- Invents many complex algorithms
- Writes proposals for government grants
- Spends $\$ 1000,000$
- Develops an algorithm that results in less scratchy sounding music
- Musician:
- Listens to the music and transcribes it
- Plays it out on his keyboard/piano

29 Scp 2011
17755/18797

- Problem: A given speech signal only has frequencies in the $300 \mathrm{~Hz}-3.5 \mathrm{Khz}$ range
- Telephone quality speech
- Can we estimate the rest of the frequencies
- The full basis is known
- The presence of the basis is identified from the observation of a part of it
 pattern can be guessed
${ }^{29}$ Sp 2011 17755/8877

Bandwidth Expansion

- The picker has drawn the histograms for every frame in the signal

- However, we are only able to observe the number of draws of some frequencies and not the others
- We must estimate the number of draws of the unseen frequencies

Bandwidth Expansion: Step 2 - Estimation

- Using only the observed frequencies in the bandwidth-reduced data, estimate mixture weights for the bases learned in step 1.

Step 2

- Iterative process:
- Compute a posteriori probability of the $z^{\text {th }}$ urn for the speaker for each f

$$
P_{t}(z \mid f)=\frac{P_{t}(z) P(f \mid z)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime}\right) P\left(f \mid z^{\prime}\right)}
$$

- Compute mixture weight of $\mathrm{z}^{\text {th }}$ urn for each frame t

- $\mathrm{P}(\mathrm{f} \mid \mathrm{z})$ was obtained from training data and will not be reestimated

29 Scp 2011
11755/18797

Step 3 and Step 4

- Compose the complete probability distribution for each frame, using the mixture weights estimated in Step 2

$$
P_{t}(f)=\sum_{z} P_{t}(z) P(f \mid z)
$$

- Note that we are using mixture weights estimated from the reduced set of observed frequencies
- This also gives us estimates of the probabilities of the unobserved frequencies
- Use the complete probability distribution $P_{t}(f)$ to predict the unobserved frequencies!
\qquad 11755/18797

The inverse multinomial

- Given $P(Z)$ for all bases
- Observed $\mathrm{n}_{1}, \mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}}$
- What is $\mathrm{n}_{\mathrm{k}+1}, \mathrm{n}_{\mathrm{k}+2} \ldots$

$$
P\left(n_{k+1}, n_{k+2}, \ldots\right)=\frac{\Gamma\left(N_{o}+\sum_{f>k} n_{f}\right)}{\Gamma\left(N_{o}\right) \Gamma\left(\sum_{f>k} n_{f}\right)} P_{0} \prod_{f>k} P(f)^{n_{f}}
$$

- N_{0} is the total number of observed counts

$$
\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots
$$

- P_{0} is the total probability of observed events - $P\left(f_{1}\right)+P\left(f_{2}\right)+\ldots$

Estimating unobserved frequencies

- Expected value of the number of draws:

- Estimated spectrum in unobserved frequencies
$\hat{S}_{t}(f)=\hat{N}_{t} P_{t}(f)$

29 Sep 201

Overall Solution

- Learn the "urns" for the signal source from broadband training data

- For each frame of the reduced bandwidth test utterance, find mixture weights for the urns
- Ignore (marginalize) the unseen frequencies

- Given the complete mixture multinomial distribution for each frame, estimate spectrum (histogram) at unseen frequencies
$29 \operatorname{Sep} 2011$
11755/18797

Prediction of Audio

- Some frequency components are missing (left panel)

We know the bases $P(f \mid z)$

- But not the mixture weights for any particular spectral frame

We must "fill in" the hole in the image

- To obtain the one to the right
- Easy to do - as explained
${ }^{29}$ Scp $2011 \quad$ 11775/18977

Signal Separation from Monaural
Recordings

- The problem:
- Multiple sources are producing sound simultaneously
- The combined signals are recorded over a single microphone
- The goal is to selectively separate out the signal for a target source in the mixture
- Or at least to enhance the signals from a selected source

Problem Specification

- The mixed signal contains components from multiple sources
Each source has its own "bases"
- In each frame
- Each source draws from its own collection of bases to compose a spectrum
Bases are selected with a frame specific mixture weight
- The overall spectrum is a mixture
 of the spectra of individual sources
I.e. a histogram combining draws
from both sources
- Underlying model: Spectra are histograms over frequencies

29 scp 2011

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
- The individual distributions are mixture multinomials
- And the urns are known

$$
\begin{gathered}
P_{t}(f)=P_{t}\left(s_{1}\right) P_{t}\left(f \mid s_{1}\right)+P_{t}\left(s_{2}\right) P_{t}\left(f \mid s_{2}\right) \\
P_{t}(f)=P_{t}\left(s_{1}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{1}\right)+P_{t}\left(s_{2}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{2}\right)
\end{gathered}
$$

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
- The individual distributions are mixture multinomials
- And the urns are known

Algorithm

- For each frame:
- Initialize $P_{\mathrm{t}}(\mathrm{s})$
- The fraction of balls obtained from source s
- Alternately, the fraction of energy in that frame from source s
- Initialize $P_{t}(z \mid s)$
- The mixture weights of the urns in frame t for source s
- Reestimate the above two iteratively
- Note: $P(f \mid z, s)$ is not frame dependent
- It is also not re-estimated
- Since it is assumed to have been learned from separately obtained unmixed training data for the source
${ }^{9} 9$ Sp 2011
11755/18997

What is $\mathrm{P}_{\mathrm{t}}(\mathrm{s}, \mathrm{z} \mid \mathrm{f})$

- Compute how each ball (frequency) is split between the urns of the various sources
- The ball is first split between the sources

$$
P_{t}(s \mid f)=\frac{P_{t}(s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right)}
$$

- The fraction of the ball attributed to any source s is split between its urns

$$
P_{t}(z \mid s, f)=\frac{P_{t}(z \mid s) P(f \mid z, s)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s\right) P\left(f \mid z^{\prime}, s\right)}
$$

- The portion attributed to any urn of any source is a product of the two

-

11755/18797

Reestimation

- The reestimate of source weights is simply the proportion of all balls that was attributed to the sources
- The reestimate of mixture weights is the proportion of all balls attributed to each urn

${ }^{9} \operatorname{scp} 2011$

$$
P_{t}(s)=\frac{\sum_{z} \sum_{t} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linea combination of the distribution of the individual sources
The individual distributions are mixture multinomials
And the urns are known
Estimate remaining terms using EM

Iterative algorithm

- Iterative process:
- Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for each speaker for each f

- Compute the a priori weight of speaker s
$P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}$
- Compute mixture weight of $z^{\text {th }}$ urn for speaker s
$P_{t}(z \mid s)=\frac{\sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}$

Separating the Sources

- For each frame:
- Given
- $S_{t}(f)$ - The spectrum at frequency f of the mixed signal
- Estimate
- $\mathrm{S}_{\mathrm{t}, \mathrm{i}}(\mathrm{f})$ - The spectrum of the separated signal for the i-th source at frequency f
- A simple maximum a posteriori estimator

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

${ }^{29}$ Sp 201

Partial information: bases for one source unknown

- $P(f \mid z, s)$ must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
- From the mixed signal itself
- The final separation is done as before
${ }^{29} \operatorname{sep} 2011 \quad 11755 / 1879$ ${ }^{64}$

Partial information: bases for one source unknown

- $P(f \mid z, s)$ must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
- From the mixed signal itself
- The final separation is done as before

29 Scp 2011
11755/18797

Where it works

- When the spectral structures of the two sound sources are distinct
- Don't look much like one another
- E.g. Vocals and music
- E.g. Lead guitar and music
- Not as effective when the sources are similar - Voice on voice

How about non-speech data

Separate overlapping speech

- Bases for both speakers learnt from 5 second recordings of individual speakers
- Shows improvement of about 5dB in Speaker-toSpeaker ratio for both speakers
- Improvements are worse for same-gender mixtures
${ }^{29} \operatorname{scp} 2011 \quad 11755 / 18797$
19×19 images $=361$ dimensional vectors

- We can use the same model to represent other data
- Images:
- Every face in a collection is a histogram
- Each histogram is composed from a mixture of a fixed number of multinomials
All faces are composed from the same multinomials, but the manner in which the multinomials are selected differs from face to face
- Each component multinomial is also an image
- Component multinomials are observed to be parts of faces

17755/18977

