Latent Variable Models and Signal Separation

Class 9. 29 Sep 2011

The Engineer and the Musician

Once upon a time a rich potentate discovered a previously unknown recording of a beautiful piece of music. Unfortunately it was badly damaged.

He greatly wanted to find out what it would sound like if it were not.

So he hired an engineer and a musician to solve the problem..

The Engineer and the Musician

The engineer worked for many years. He spent much money and published many papers.

Finally he had a somewhat scratchy restoration of the music..

The musician listened to the music carefully for a day, transcribed it, broke out his trusty keyboard and replicated the music.

3

The Prize

Who do you think won the princess?

Sounds - an example

- A sequence of notes

- Chords from the same notes

- A piece of music from the same (and a few additional) notes

Sounds - an example

- A sequence of sounds

- A proper speech utterance from the same sounds

Template Sounds Combine to Form a Signal

- The individual component sounds "combine" to form the final complex sounds that we perceive
- Notes form music
- Phoneme-like structures combine in utterances
- Component sounds - notes, phonemes - too are complex
- Sound in general is composed of such "building blocks" or themes
- Our definition of a building block: the entire structure occurs repeatedly in the process of forming the signal
- Goal: To learn these building blocks automatically, from analysis of data

Urns and balls

- An urn has many balls
- Each ball has a number marked on it
- Multiple balls may have the same number
- A "picker" draws balls at random..
- This is a multinomial

Signal Separation with the Urn model

- What does the probability of drawing balls from Urns have to do with sounds?
- Or Images?
- We shall see..

The representation

- We represent signals spectrographically
- Sequence of magnitude spectral vectors estimated from (overlapping) segments of signal
- Computed using the short-time Fourier transform
- Note: Only retaining the magnitude of the STFT for our operations
- We will, however need the phase later for conversion to a signal

A Multinomial Model for Spectra

- A magnitude spectral vector obtained from a DFT represents spectral magnitude against discrete frequencies
- This may be viewed as a histogram of draws from a multinomial

Probability distribution underlying the t-th spectral vector

A more complex model

- A "picker" has multiple urns
- In each draw he first selects an urn, and then a ball from the urn
- Overall probability of drawing f is a mixture multinomial
- Since several multinomials (urns) are combined
- Two aspects - the probability with which he selects any urn, and the probability of frequencies with the urns

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram

The Picker Generates a Spectrogram

- The picker has a fixed set of Urns
- Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
- In which he selects urns according to some probability $P_{0}(z)$
- Then draws the spectrum for the second frame
- In which he selects urns according to some probability $P_{1}(z)$
- And so on, until he has constructed the entire spectrogram
- The number of draws in each frame represents the rms energy in that frame

The Picker Generates a Spectrogram

- The URNS are the same for every frame
- These are the component multinomials or bases for the source that generated the signal
- The only difference between frames is the probability with which he selects the urns
$\begin{aligned} & \text { Frame-specific } \\ & \text { spectral distribution }\end{aligned} P_{t}(f)=\sum_{z} P_{t}(z) P(f \mid z) \longrightarrow \begin{aligned} & \text { SOURCE specific }\end{aligned}$ spectral distribution

Frame(time) specific mixture weight

Spectral View of Component Multinomials

- Each component multinomial (urn) is actually a normalized histogram over frequencies $P(f \mid z)$
- l.e. a spectrum
- Component multinomials represent latent spectral structures (bases) for the given sound source
- The spectrum for every analysis frame is explained as an additive combination of these latent spectral structures

Spectral View of Component Multinomials

- By "learning" the mixture multinomial model for any sound source we "discover" these latent spectral structures for the source
- The model can be learnt from spectrograms of a small amount of audio from the source using the EM algorithm

EM learning of bases

- Initialize bases
- $\mathrm{P}(\mathrm{f} \mid \mathrm{z})$ for all z , for all f

- Must decide on the number of urns
- For each frame
- Initialize $P_{\mathrm{t}}(z)$

Learning the Bases

- Simple EM solution
- Except bases are learned from all frames

Learning Structures

Basis-specific spectrograms
 02

Given Bases Find Composition

- Iterative process:
- Compute a posteriori probability of the $z^{\text {th }}$ topic for each frequency f in the t-th spectrum

$$
P_{t}(z \mid f)=\frac{P_{t}(z) P(f \mid z)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime}\right) P\left(f \mid z^{\prime}\right)}
$$

- Compute mixture weight of $\mathrm{z}^{\text {th }}$ basis

$$
P_{t}(z)=\frac{\sum_{1} P(z \mid f) S_{t}(f)}{\sum_{v} \sum_{1} P\left(z^{\prime} \mid f S_{t}(f)\right.}
$$

Bag of Frequencies vs. Bag of
Spectrograms

- The PLCA model described is a "bag of frequencies" model
- Similar to "bag of words"
- Composes spectrogram one frame at a time
- Contribution of bases to a frame does not affect other frames
- Random Variables:
- Frequency
- Possibly also the total number of draws in a frame

Bag of Frequencies PLCA model

 time

- Bases are simple distributions over frequencies
- Manner of selection of urns/components varies from analysis frame to analysis frame

Bag of Spectrograms PLCA Model

- Compose the entire spectrogram all at once
- Complex "super pots" include two sub pots
- One pot has a distribution over frequencies: these are our bases
- The second has a distribution over time
- Each draw:
- Select a superpot
- Draw "F" from frequency pot
- Draw "T" from time pot
- Increment histogram at (T,F)

$$
P(t, f)=\sum_{Z} P(z) P(t \mid z) P(f \mid z)
$$

The bag of spectrograms

- Fundamentally equivalent to bag of frequencies model
- With some minor differences in estimation

Estimating the bag of spectrograms

- Can learn $P(T \mid Z)$ and $P(Z)$ only given $P(f \mid Z)$
- Can learn only P(Z)

Bag of frequencies vs. bag of spectrograms

- Fundamentally equivalent
- Difference in estimation
- Bag of spectrograms: For a given total N and $P(Z)$, the total "energy" assigned to a basis is determined
- increasing its energy at one time will necessarily decrease its energy elsewhere
- No such constraint for bag of frequencies
- More unconstrained
- Can also be used to assign temporal patterns for components
- Bag of frequencies more amenable to imposition of a priori distributions
- Bag of spectrograms a more natural fit for other models

The PLCA Tensor Model

- The bag of spectrograms can be extended to multivariate data

$$
P(a, b, \ldots c)=\sum_{Z} P(z) P(a \mid z) P(b \mid z) \ldots P(c \mid z)
$$

- EM update rules are essentially identical to bivariate case

How meaningful are these structures

- If bases capture data structure they must
- Allow prediction of data
- Hearing only the low-frequency components of a note, we can still know the note
- Which means we can predict its higher frequencies
- Be resolvable in complex sounds
- Must be able to pull them out of complex mixtures
- Denoising
- Signal Separation from Monaural Recordings

The musician vs. the signal processor

- Some badly damaged music is given to a signal processing whiz and a musician
- They must "repair" it. What do they do?
- Signal processing :
- Invents many complex algorithms
- Writes proposals for government grants
- Spends \$1000,000
- Develops an algorithm that results in less scratchy sounding music
- Musician:
- Listens to the music and transcribes it
- Plays it out on his keyboard/piano

Prediction

- Bandwidth Expansion
- Problem: A given speech signal only has frequencies in the $300 \mathrm{~Hz}-3.5 \mathrm{Khz}$ range
- Telephone quality speech
- Can we estimate the rest of the frequencies
- The full basis is known
- The presence of the basis is identified from the observation of a part of it
- The obscured remaining spectral pattern can be guessed

Bandwidth Expansion

- The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

- The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

- The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

- The picker has drawn the histograms for every frame in the signal

Bandwidth Expansion

- The picker has drawn the histograms for every frame in the signal

- However, we are only able to observe the number of draws of some frequencies and not the others
- We must estimate the number of draws of the unseen frequencies

Bandwidth Expansion: Step 1 - Learning

- From a collection of full-bandwidth training data that are similar to the bandwidthreduced data, learn spectral bases
- Using the procedure described earlier

Bandwidth Expansion: Step 2 - Estimation

- Using only the observed frequencies in the bandwidth-reduced data, estimate mixture weights for the bases learned in step 1.

Step 2

- Iterative process:
- Compute a posteriori probability of the $z^{\text {th }}$ urn for the speaker for each f

$$
P_{t}(z \mid f)=\frac{P_{t}(z) P(f \mid z)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime}\right) P\left(f \mid z^{\prime}\right)}
$$

- Compute mixture weight of $z^{\text {th }}$ urn for each frame t
- $P(f \mid z)$ was obtained from training data and will not be reestimated

Step 3 and Step 4

- Compose the complete probability distribution for each frame, using the mixture weights estimated in Step 2

$$
P_{t}(f)=\sum_{z} P_{t}(z) P(f \mid z)
$$

- Note that we are using mixture weights estimated from the reduced set of observed frequencies
- This also gives us estimates of the probabilities of the unobserved frequencies
- Use the complete probability distribution $\boldsymbol{P}_{t}(f)$ to predict the unobserved frequencies!

Predicting from $\mathrm{P}_{\mathrm{f}}(\mathrm{f})$: Simplified Example

- A single Urn with only red and blue balls
- Given that out an unknown number of draws, exactly m were red, how many were blue?
- One Simple solution:
- Total number of draws $N=m / P($ red $)$
- The number of tails drawn $=\mathrm{N} * \mathrm{P}$ (blue)
- Actual multinomial solution is only slightly more complex

The inverse multinomial

- Given $P(Z)$ for all bases
- Observed $\mathrm{n}_{1}, \mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}}$
- What is $n_{k+1}, n_{k+2} \ldots$
- N_{o} is the total number of observed counts
- $\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots$
- P_{0} is the total probability of observed events
- $P\left(f_{1}\right)+P\left(f_{2}\right)+\ldots$

Estimating unobserved frequencies

- Expected value of the number of draws:

$$
\hat{N}_{t}=\frac{\sum_{f \in \text { (observed frequencies) }}^{\sum S_{t}(f)}}{\sum_{f \in \text { (observed frequencies) }} P_{t}(f)}
$$

- Estimated spectrum in unobserved frequencies

$$
\hat{S}_{t}(f)=\hat{N}_{t} P_{t}(f)
$$

Overall Solution

- Learn the "urns" for the signal source from broadband training data

- For each frame of the reduced bandwidth test utterance, find mixture weights for the urns
- Ignore (marginalize) the unseen frequencies

- Given the complete mixture multinomial distribution for each frame, estimate spectrum (histogram) at unseen frequencies

Prediction of Audio

- Some frequency components are missing (left panel)
- We know the bases $P(f \mid z)$
- But not the mixture weights for any particular spectral frame
- We must "fill in" the hole in the image
- To obtain the one to the right
- Easy to do - as explained

A more fun example

-Reduced BW data

-Bases learned from this

-Bandwidth expanded version

Signal Separation from Monaural

Recordings

- The problem:
- Multiple sources are producing sound simultaneously
- The combined signals are recorded over a single microphone
- The goal is to selectively separate out the signal for a target source in the mixture
- Or at least to enhance the signals from a selected source

Problem Specification

- The mixed signal contains components from multiple sources
- Each source has its own "bases"
- In each frame
- Each source draws from its own collection of bases to compose a spectrum
- Bases are selected with a frame specific mixture weight
- The overall spectrum is a mixture
 of the spectra of individual sources
- I.e. a histogram combining draws from both sources
- Underlying model: Spectra are histograms over frequencies

Ball-and-urn model for a mixed signal The caller!!

- Each sound source is represented by its own picker and urns
- Urns represent the distinctive spectral structures for that source
- Assumed to be known beforehand (learned from some separate training data)
- The caller selects a picker at random
- The picker selects an urn randomly and draws a ball
- The caller calls out the frequency on the ball
- A spectrum is a histogram of frequencies called out
- The total number of draws of any frequency includes contributions from both sources

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
- The individual distributions are mixture multinomials
- And the urns are known

$$
P_{t}(f)=P_{t}\left(s_{1}\right) P_{t}\left(f \mid s_{1}\right)+P_{t}\left(s_{2}\right) P_{t}\left(f \mid s_{2}\right)
$$

$$
P_{t}(f)=P_{t}\left(s_{1}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{1}\right)+P_{t}\left(s_{2}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{2}\right) \underbrace{}_{54}
$$

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
- The individual distributions are mixture multinomials
- And the urns are known

$$
P_{t}(f)=P_{t}\left(s_{1}\right) P_{t}\left(f \mid s_{1}\right)+P_{t}\left(s_{2}\right) P_{t}\left(f \mid s_{2}\right)
$$

$$
P_{t}(f)=P_{t}\left(s_{1}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z, s_{1}\right)+P_{t}\left(s_{2}\right) \sum_{z} P_{t}\left(z \mid s_{1}\right) P\left(f \mid z / 118797 s_{2}\right)
$$

Separating the sources

- Goal: Estimate number of draws from each source
- The probability distribution for the mixed signal is a linear combination of the distribution of the individual sources
- The individual distributions are mixture multinomials
- And the urns are known
- Estimate remaining terms using EM

Algorithm

- For each frame:
- Initialize $P_{t}(s)$
- The fraction of balls obtained from source s
- Alternately, the fraction of energy in that frame from source s
- Initialize $P_{\mathrm{t}}(\mathrm{z} \mid \mathrm{s})$
- The mixture weights of the urns in frame t for source s
- Reestimate the above two iteratively
- Note: $P(f \mid z, s)$ is not frame dependent
- It is also not re-estimated
- Since it is assumed to have been learned from separately obtained unmixed training data for the source

Iterative algorithm

- Iterative process:
- Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for each speaker for each f

$$
P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)}
$$

- Compute the a priori weight of speaker s

$$
P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

- Compute mixture weight of $z^{\text {th }}$ urn for speaker s

$$
P_{t}(z \mid s)=\frac{\sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

What is $P_{t}(s, z \mid f)$

- Compute how each ball (frequency) is split between the urns of the various sources
- The ball is first split between the sources

$$
P_{t}(s \mid f)=\frac{P_{t}(s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right)}
$$

- The fraction of the ball attributed to any source s is split between its urns:

$$
P_{t}(z \mid s, f)=\frac{P_{t}(z \mid s) P(f \mid z, s)}{\sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s\right) P\left(f \mid z^{\prime}, s\right)}
$$

- The portion attributed to any urn of any source is a product of the two

$$
P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)}
$$

Reestimation

- The reestimate of source weights is simply the proportion of all balls that was attributed to the sources

$$
P_{t}(s)=\frac{\sum_{i} \sum_{t} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{t} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

- The reestimate of mixture weights is the proportion of all balls attributed to each urn

$$
P_{t}(z \mid s)=\frac{\sum_{1} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

Separating the Sources

- For each frame:
- Given
- $S_{t}(f)$ - The spectrum at frequency f of the mixed signal
- Estimate
$\square \mathrm{S}_{\mathrm{t}, \mathrm{f}}(\mathrm{f})$ - The spectrum of the separated signal for the i-th source at frequency f
- A simple maximum a posteriori estimator

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

If we have only have bases for one source?

- Only the bases for one of the two sources is given
- Or, more generally, for $\mathrm{N}-1$ of N sources

If we have only have bases for one source?

- Only the bases for one of the two sources is given
- Or, more generally, for $\mathrm{N}-1$ of N sources
- The unknown bases for the remaining source must also be estimated!

Partial information: bases for one source unknown

- $\mathrm{P}(\mathrm{f} \mid \mathrm{z}, \mathrm{s})$ must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
- From the mixed signal itself
- The final separation is done as before

Iterative algorithm

- Iterative process:
- Compute a posteriori probability of the combination of speaker s and the $z^{\text {th }}$ urn for the speaker for each f

$$
P_{t}(s, z \mid f)=\frac{P_{t}(s) P_{t}(z \mid s) P(f \mid z, s)}{\sum_{s^{\prime}} P_{t}\left(s^{\prime}\right) \sum_{z^{\prime}} P_{t}\left(z^{\prime} \mid s^{\prime}\right) P\left(f \mid z^{\prime}, s^{\prime}\right)}
$$

- Compute the a priori weight of speaker s and mixture

$$
P_{t}(s)=\frac{\sum_{z} \sum_{f} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{s^{\prime}} \sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

$$
P_{t}(z \mid s)=\frac{\sum_{t} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{z^{\prime}} \sum_{f} P_{t}\left(s^{\prime}, z^{\prime} \mid f\right) S_{t}(f)}
$$

- Compute unknown bases

$$
P(f \mid z, s)=\frac{\sum_{t} P_{t}(s, z \mid f) S_{t}(f)}{\sum_{f^{\prime}} \sum_{t} P_{t}\left(s, z \mid f^{\prime}\right) S_{t}\left(f^{\prime}\right)}
$$

Partial information: bases for one source

 unknown- $\mathrm{P}(\mathrm{f} \mid \mathrm{z}, \mathrm{s})$ must be initialized for the additional source
- Estimation procedure now estimates bases along with mixture weights and source probabilities
- From the mixed signal itself
- The final separation is done as before

$$
\hat{S}_{t, i}(f)=S_{t}(f) \sum_{z} P_{t}(z, s \mid f)
$$

Separating Mixed Signals: Examples

- "Raise my rent" by David Gilmour
- Background music "bases" learnt from 5 -seconds of music-only segments within the song
- Lead guitar "bases" bases learnt from the rest of the song

Where it works

- When the spectral structures of the two sound sources are distinct
- Don't look much like one another
- E.g. Vocals and music
- E.g. Lead guitar and music
- Not as effective when the sources are similar
- Voice on voice

Separate overlapping speech

- Bases for both speakers learnt from 5 second recordings of individual speakers
- Shows improvement of about 5dB in Speaker-toSpeaker ratio for both speakers
- Improvements are worse for same-gender mixtures

How about non-speech data

19×19 images $=361$ dimensional vectors

- We can use the same model to represent other data
- Images:
- Every face in a collection is a histogram
- Each histogram is composed from a mixture of a fixed number of multinomials
- All faces are composed from the same multinomials, but the manner in which the multinomials are selected differs from face to face
- Each component multinomial is also an image
- And can be learned from a collection of faces
- Component multinomials are observed to be parts of faces

