Boosting and face detection

September 20, 2012
Imagine this scenario
Imagine this scenario
Instead,
Instead,
Instead,
Instead,
Instead,
Individually, none of them can get off the island but…
Strong and Weak learners

- Strong Learner:
Strong and Weak learners

- Weak Learner:
Strong and Weak learners

- Boosting:

 Combining weak learners
Boosting: An example
Boosting: An example

Blue class

Red class

Blue class

Red class
Boosting: An example
Using voting

Final Decision = majority decision of classifiers
Using confidence measures

Final Decision = weighted majority decision of classifiers
Using confidence measures

Final Decision = weighted majority decision of classifiers

But we really aren’t making the best use of the classifiers !!
Better way, AdaBoost
Better way, AdaBoost

Correctly classified data:
Multiply by α_i

Incorrectly classified data:
Multiply by $1/\alpha_i$

where $\alpha_i < 1$
Better way, AdaBoost

Correctly classified data:
- Multiply by α_1

Incorrectly classified data:
- Multiply by $1/\alpha_1$

Correctly classified data:
- Multiply by α_2

Incorrectly classified data:
- Multiply by $1/\alpha_2$

where $\alpha_i < 1$
Better way, AdaBoost

Correctly classified data: Multiply by α_i

Incorrectly classified data: Multiply by $1/\alpha_i$

Correctly classified data: Multiply by α_2

Incorrectly classified data: Multiply by $1/\alpha_2$

Training Data

Classifier 1

Classifier 2

Classifier 3

Final classifier: $f(x) = \sum \alpha_i h_i(x)$, where $h_i(x)$ is the i’th classifier
Formalizing the concept

- Training data:
 \[(x_i, y_i)\]
 where \(x_i\) is the input to the classifier
 and \(y_i\) is the correct output, either +1 or -1
Formalizing the concept

- Training data:
 \[(x_i, y_i)\]
 where \(x_i\) is the input to the classifier and \(y_i\) is the correct output, either +1 or -1

- Set of classifiers: \(h_1, h_2, h_3, \ldots, h_T\)
 where \(h_i(x_i)\) classifies the input \(x_i\) as +1 or -1
 \(y^*h(x)\) is +1 if correctly classified and -1 if incorrectly classified
Formalizing the concept

- Training data:

 \((x_i, y_i)\)

 where \(x_i\) is the input to the classifier
 and \(y_i\) is the correct output, either \(+1\) or \(-1\)

- Set of classifiers: \(h_1, h_2, h_3, \ldots, h_T\)

 where \(h_i(x_i)\) classifies the input \(x_i\) as \(+1\) or \(-1\)

 \(y^*h(x)\) is \(+1\) if correctly classified and \(-1\) if incorrectly classified

- Devise a function \(f(h_1(x), h_2(x), \ldots, h_T(x))\) such that classification based on \(f()\) is superior to classification by any \(h_i(x)\)
Boosting

- **Voting**
 - $f(x) = \sum_i h_i(x)$
 - Classifier $H(x) = \text{sign}(f(x)) = \text{sign}(\sum_i h_i(x))$
Boosting

- Voting
 - \(f(x) = \sum_i h_i(x) \)
 - Classifier \(H(x) = \text{sign}(f(x)) = \text{sign}(\sum_i h_i(x)) \)

- Using weights:
 - \(f(x) = \sum_i \alpha_i h_i(x) \)
 - Classifier \(H(x) = \text{sign}(f(x)) = \text{sign}(\sum_i \alpha_i h_i(x)) \)
 - The weight \(\alpha_i \) for any \(h_i(x) \) is a measure of our trust in \(h_i(x) \)
AdaBoost

- As before:
 - y_i is either $+1$ or -1
 - $H(x_i)$ is also either $+1$ or -1
As before:

- \(y_i \) is either +1 or -1
- \(H(x_i) \) is also either +1 or -1

Correctly classified: \(y_i \cdot H(x_i) = +1 \)

Incorrectly classified: \(y_i \cdot H(x_i) = -1 \)
As before:
- y_i is either +1 or -1
- $H(x_i)$ is also either +1 or -1

Correctly classified: $y_i \times H(x_i) = +1$

Incorrectly classified: $y_i \times H(x_i) = -1$

Error function: $\frac{1}{2} \times (1 - y_i \times H(x_i))$
- Correct classification: 0
- Incorrect classification: 1
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \{D_t(x_i) \cdot \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\left(1 - \varepsilon_t \right) / \varepsilon_t \right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(- \alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)$
AdaBoost Example: Face detection

Training data:

- 0.3 E1 - 0.6 E2
- 0.5 E1 - 0.5 E2
- 0.7 E1 - 0.1 E2
- 0.6 E1 - 0.4 E2

Image = a*E1 + b*E2 \rightarrow a = \frac{\text{Image}.E1}{|\text{Image}|}

Face detection with Eigen faces

Step 0: Derive top 2 Eigen faces from training data

Step 1: Represent all images in development set with these Eigen faces
Training data

= 0.3 E1 - 0.6 E2
= 0.5 E1 - 0.5 E2
= 0.7 E1 - 0.1 E2
= 0.6 E1 - 0.4 E2

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
</tr>
</tbody>
</table>

Face = +1
Non-face = -1
The AdaBoost Algorithm

- **Initialize** $D_1(x_i) = 1/N$

- **For** $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{(1 - \varepsilon_t) / \varepsilon_t}{\varepsilon_t}\right)$
 - **For** $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution

- **The final classifier is**
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
Initialization

\[\begin{align*}
A &= 0.3 \, E_1 - 0.6 \, E_2 \\
B &= 0.5 \, E_1 - 0.5 \, E_2 \\
C &= 0.7 \, E_1 - 0.1 \, E_2 \\
D &= 0.6 \, E_1 - 0.4 \, E_2 \\
E &= 0.2 \, E_1 + 0.4 \, E_2 \\
F &= -0.8 \, E_1 - 0.1 \, E_2 \\
G &= 0.4 \, E_1 - 0.9 \, E_2 \\
H &= 0.2 \, E_1 + 0.5 \, E_2
\end{align*} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln ((1 - \varepsilon_t)/ \varepsilon_t)$
 - For $i = 1 \ldots N$
 - Set $D_{t+1}(x_i) = D_t(x_i) \exp(- \alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
The E1 “Stump”

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 “Stump”

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 “Stump”

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 “Stump”

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0
face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8
The E1 “Stump”

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Classifier based on E1:
if \((\text{sign} \times \text{wt}(E1) > \text{thresh}) > 0)\)
face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8
The Best E1 “Stump”

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
fce = true

Sign = +1
Threshold = 0.45

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E2 “Stump”

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The Best E2 “Stump”

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
 face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The Best “Stump”

The Best overall classifier based on a single feature is based on E1

If (wt(E1) > 0.45) \(\rightarrow\) Face

Sign = +1, error = 1/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum } \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{(1 - \varepsilon_t)}{\varepsilon_t} \right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
The Best Error

The Error of the classifier is the sum of the weights of the misclassified instances.

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED INSTANCES
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{(1 - \varepsilon_t)}{\varepsilon_t}\right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
Computing Alpha

<table>
<thead>
<tr>
<th>F</th>
<th>E</th>
<th>H</th>
<th>A</th>
<th>G</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.8</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Threshold: 1/8

Sign = +1, error = 1/8

\[\alpha = 0.5 \ln\left(\frac{1 - 1/8}{1/8}\right) = 0.5 \ln(7) = 0.97 \]
The Boosted Classifier Thus Far

\[a = 0.5 \ln \left(\frac{1 - 1/8}{1/8} \right) \]
\[= 0.5 \ln(7) = 0.97 \]

\[h_1(X) = \text{wt}(E_1) > 0.45 \ ? \ +1 : -1 \]

\[H(X) = \text{sign}(0.97 \times h_1(X)) \]

It’s the same as \(h_1(x) \)
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum } \{D_t(x_i) \cdot \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{(1 - \varepsilon_t)}{\varepsilon_t} \right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left((1 - \varepsilon_t)/\varepsilon_t\right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
The Best Error

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8 * 2.63</td>
<td>0.33</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
</tbody>
</table>

\[D' = D / \text{sum}(D) \]
The Best Error

\[D' = \frac{D}{\text{sum}(D)} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, ..., T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{(1 - \varepsilon_t)}{\varepsilon_t}\right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(- \alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
E1 classifier

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0) face = true
sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
E1 classifier

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
The Best E1 classifier

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
The Best E2 classifier

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
face = true

sign = +1 or -1

Sign = -1, error = 0.148
The Best Classifier

Classifier based on E1:
if (wt(E1) > 0.45) face = true

\[\alpha = 0.5 \ln\left(\frac{1 - 0.074}{0.074}\right) = 1.26 \]

Sign = +1, error = 0.074

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
The Boosted Classifier Thus Far

\[
h_1(X) = \begin{cases} +1 & \text{if } \text{wt}(E_1) > 0.45 \\ -1 & \text{otherwise} \end{cases}
\]

\[
h_2(X) = \begin{cases} +1 & \text{if } \text{wt}(E_1) > 0.25 \\ -1 & \text{otherwise} \end{cases}
\]

\[
H(X) = \text{sign}(0.97 \times h_1(X) + 1.26 \times h_2(X))
\]
Reweighting the Data

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48*0.28</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074*3.5</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074*0.28</td>
</tr>
</tbody>
</table>

Sign = +1, error = 0.074

Exp(\alpha) = \exp(1.26) = 3.5
Exp(-\alpha) = \exp(-1.26) = 0.28
Reweighting the Data

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48*0.28</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074*0.28</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074*3.5</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074*0.28</td>
</tr>
</tbody>
</table>

Note: The weight of “G” which was misclassified by the second classifier is now suddenly high.

Sign = +1, error = 0.074

Threshold
The AdaBoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $\varepsilon_t = \text{Sum} \left\{ D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i)) \right\}$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{(1 - \varepsilon_t)}{\varepsilon_t} \right)$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution

- The final classifier is
 - $H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)$
• The final classifier is
 • $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
The final classifier is
\[H(x) = \text{sign}(\sum_t \alpha_t h_t(x)) \]

Not all classifiers need to use \(E_1 \)

It is often a good idea to keep adding classifiers even after the training accuracy reaches 100%
Face Detection: History

- Historically, tried complex models that tried to find eyes, nose, ears, etc…

Figure 1: The basic algorithm used for face detection.
Face Detection: History

Historically, tried complex models that tried to find eyes, nose, ears, etc.

Viola-Jones burst onto the scene with boosted cascade classifiers
The problem of face detection

1. Defining Features
 - Should we be searching for noses, eyes, eyebrows etc.?
 - Nice, but expensive
 - Or something simpler

2. Selecting Features
 - Of all the possible features we can think of, which ones make sense

3. Classification: Combining evidence
 - How does one combine the evidence from the different features?
Viola Jones Method

- Very simple features
- Modified AdaBoost algorithm
- Cascading classifiers
Features
“Integral” Features

- Each checkerboard has the following parameters
 - Length
 - Width
 - Type (specifies type of the pattern)

- Viola and Jones only used the above 4 patterns.
Dot products

- Compute dot products between the checkerboard patterns and the images

Feature = (sum of pixels in light region) – (sum of pixels in dark region)
Integral images

- Summed area tables

- For each pixel store the sum of ALL pixels to the left of and above it.
Fast computation of Integral sums

Figure 3: The sum of the pixels within rectangle D can be computed with four array references. The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is $A + B$, at location 3 is $A + C$, and at location 4 is $A + B + C + D$. The sum within D can be computed as $4 + 1 - (2 + 3)$.
A Fast Way to Compute the Feature

- Store pixel table for every pixel in the image
 - The sum of all pixel values to the left of and above the pixel
- Let A, B, C, D, E, F be the pixel table values at the locations shown
 - Total pixel value of black area = D + A – B – C
 - Total pixel value of white area = F + C – D – E
 - Feature value = (F + C – D – E) – (D + A – B – C)
How many features?

- Each checker board of width P and height H can start at
 - (0,0), (0,1),(0,2), … (0, N-P)
 - (1,0), (1,1),(1,2), … (1, N-P)
 - ..
 - (M-H,0), (M-H,1), (M-H,2), … (M-H, N-P)

- (M-H)*(N-P) possible starting locations
 - Each is a unique checker feature
 - E.g. at one location it may measure the forehead, at another the chin
How many features?

- Each feature can have many sizes
 - Width from (min) to (max) pixels
 - Height from (min ht) to (max ht) pixels
- At each size, there can be many starting locations
 - Total number of possible checkerboards of one type:
 No. of possible sizes x No. of possible locations
- There are four types of checkerboards
 - Total no. of possible checkerboards: VERY VERY LARGE!
Each possible checkerboard gives us one feature
A total of up to 180000 features derived from a 24x24 image!
Every 24x24 image is now represented by a set of 180000 numbers
 • This is the set of features we will use for classifying if it is a face or not!
AdaBoost

Training Data → Classifier 1

Pick best feature and threshold
AdaBoost

Correctly classified data: Multiply by α_1

Incorrectly classified data: Multiply by $1/\alpha_1$

Pick best feature and threshold
AdaBoost

Training Data

Classifier 1
Correctly classified data: Multiply by α_1
Incorrectly classified data: Multiply by $1/\alpha_1$

Classifier 2
Correctly classified data: Multiply by α_2
Incorrectly classified data: Multiply by $1/\alpha_2$

Classifier 3
Pick best feature and threshold
AdaBoost: The weak learner

Threshold

then

Face detected!
Problems

- This only classifies images as face/non-face
- There can be multiple faces in an image
- Faces can be bigger than 24×24
Fixing the multiple face problem
Fixing the size problem
But this is still too slow 😞
Not all classifiers are equally fast

All animals are equal. Some animals are more equal than others

- George Orwell’s Animal Farm
Basic Idea

Training Data

Simple Classifier 1

face

More complex Classifier 2

face

not face

not face
Modifying the classifier

- The normal AdaBoost trained classifier tries to optimize for accuracy
- We want it to err on the side of never missing a face
Modifying the classifier

- False rejection: Failing to detect a face
- False detection: Detecting a face where there is none
Modifying the classifier

- False rejection: Failing to detect a face
- False detection: Detecting a face where there is none

Classifier:
- Standard boosted classifier: $H(x) = \text{sign}(\sum_t \alpha_t h_t(x))$
- Modified classifier $H(x) = \text{sign}(\sum_t \alpha_t h_t(x) + \gamma)$
Basic Idea

Retrain the system using AdaBoost with the system this way
38 classifiers in sequence with over 6000 features

15x times faster than best systems at that time !!!
Sample results using the Viola-Jones Detector

- Notice detection at multiple scales
Sometimes, the weak can beat the strong
Sometimes, the weak can beat the strong