Regression and Prediction

Class 15. 23 Oct 2012

Instructor: Bhiksha Raj
Matrix Identities

\[f(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \]

\[df(\mathbf{x}) = \begin{bmatrix} \frac{df}{dx_1} \\ \frac{df}{dx_2} \\ \vdots \\ \frac{df}{dx_D} \end{bmatrix} \]

- The derivative of a scalar function w.r.t. a vector is a vector
- The derivative w.r.t. a matrix is a matrix
Matrix Identities

\[
f(x) = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1D} \\
 x_{21} & x_{22} & \cdots & x_{2D} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{D1} & x_{D2} & \cdots & x_{DD}
\end{bmatrix}
\]

\[
\frac{df}{dx_1} = \begin{bmatrix}
 \frac{df}{dx_{11}} & \frac{df}{dx_{12}} & \cdots & \frac{df}{dx_{1D}} \\
 \frac{df}{dx_{21}} & \frac{df}{dx_{22}} & \cdots & \frac{df}{dx_{2D}} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{df}{dx_{D1}} & \frac{df}{dx_{D2}} & \cdots & \frac{df}{dx_{DD}}
\end{bmatrix}
\]

- The derivative of a scalar function w.r.t. a vector is a vector.
- The derivative w.r.t. a matrix is a matrix.
Matrix Identities

\[\mathbf{F}(\mathbf{x}) = \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_N \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \]

\[\begin{bmatrix} \frac{dF_1}{dx_1} & \frac{dF_1}{dx_2} & \frac{dF_1}{dx_D} \\ \frac{dF_2}{dx_1} & \frac{dF_2}{dx_2} & \frac{dF_2}{dx_D} \\ \vdots & \vdots & \vdots \\ \frac{dF_N}{dx_1} & \frac{dF_N}{dx_2} & \frac{dF_N}{dx_D} \end{bmatrix} \]

- The derivative of a vector function w.r.t. a vector is a matrix
- Note transposition of order
Derivatives

- In general: Differentiating an MxN function by a UxV argument results in an MxNxUxV tensor derivative

23 Oct 2012
Matrix derivative identities

\[d(Xa) = Xda \quad d(a^T X) = X^T da \]

\[d(AX) = (dA)X \quad d(XA) = X(dA) \]

\[d(a^T Xa) = a^T (X + X^T) da \]

\[d(\text{trace}(A^T XA)) = d(\text{trace}(XAA^T)) = d(\text{trace}(AA^TX)) = (X^T + X)dA \]

- Some basic linear and quadratic identities

\[X \] is a matrix, \(a \) is a vector.
Solution may also be \(X^T \)

\(A \) is a matrix
A Common Problem

Can you spot the glitches?
How to fix this problem?

- “Glitches” in audio
 - Must be detected
 - How?

- Then what?

- Glitches must be “fixed”
 - Delete the glitch
 - Results in a “hole”
 - Fill in the hole
 - How?
Interpolation

- "Extend" the curve on the left to "predict" the values in the "blank" region
 - *Forward* prediction
- Extend the blue curve on the right leftwards to predict the blank region
 - *Backward* prediction
- How?
 - Regression analysis..
Detecting the Glitch

- Regression-based reconstruction can be done anywhere
- Reconstructed value will not match actual value
- Large error of reconstruction identifies glitches
What is a regression

- Analyzing relationship between variables
- Expressed in many forms
- Wikipedia
 - Linear regression, Simple regression, Ordinary least squares, Polynomial regression, General linear model, Generalized linear model, Discrete choice, Logistic regression, Multinomial logit, Mixed logit, Probit, Multinomial probit, ...

- Generally a tool to predict variables
Regressions for prediction

- \(y = f(x; \Theta) + e \)

Different possibilities

- \(y \) is a scalar
 - \(Y \) is real
 - \(Y \) is categorical (classification)

- \(y \) is a vector

- \(x \) is a vector
 - \(x \) is a set of real valued variables
 - \(x \) is a set of categorical variables
 - \(x \) is a combination of the two

- \(f(\cdot) \) is a linear or affine function

- \(f(\cdot) \) is a non-linear function

- \(f(\cdot) \) is a *time-series* model
A **linear regression**

- Assumption: relationship between variables is linear
 - A linear *trend* may be found relating x and y
 - $y = \textit{dependent}$ variable
 - $x = \textit{explanatory}$ variable
 - Given x, y can be predicted as an affine function of x
An imaginary regression..

- Check this shit out (Fig. 1).
 That's bonafide, 100%-real data, my friends. I took it myself over the course of two weeks. And this was not a leisurely two weeks, either; I busted my ass day and night in order to provide you with nothing but the best data possible. Now, let's look a bit more closely at this data, remembering that it is absolutely first-rate. Do you see the exponential dependence? I sure don't. I see a bunch of crap.
 Christ, this was such a waste of my time.
 Banking on my hopes that whoever grades this will just look at the pictures, I drew an exponential through my noise. I believe the apparent legitimacy is enhanced by the fact that I used a complicated computer program to make the fit. I understand this is the same process by which the top quark was discovered.
Linear Regressions

- \(y = Ax + b + e \)
 - \(e \) = prediction error

- Given a “training” set of \(\{x, y\} \) values: estimate \(A \) and \(b \)
 - \(y_1 = Ax_1 + b + e_1 \)
 - \(y_2 = Ax_2 + b + e_2 \)
 - \(y_3 = Ax_3 + b + e_3 \)
 - ...

- If \(A \) and \(b \) are well estimated, prediction error will be small
Linear Regression to a scalar

\[y_1 = a^T x_1 + b + e_1 \]
\[y_2 = a^T x_2 + b + e_2 \]
\[y_3 = a^T x_3 + b + e_3 \]

- Define:
 \[y = [y_1 \ y_2 \ y_3 \ldots] \]
 \[X = \begin{bmatrix} x_1 & x_2 & x_3 & \ldots \end{bmatrix} \]
 \[A = \begin{bmatrix} a \\ b \end{bmatrix} \]

- Rewrite

\[y = A^T X + e \]
Learning the parameters

\[y = A^T X + e \]

\[\hat{y} = A^T X \] \quad \text{Assuming no error}

- Given training data: several \(x, y \)
- Can define a “divergence”: \(D(y, \hat{y}) \)
 - Measures how much \(\hat{y} \) differs from \(y \)
 - Ideally, if the model is accurate this should be small
- Estimate \(A, b \) to minimize \(D(y, \hat{y}) \)
The prediction error as divergence

\[y_1 = a^T x_1 + b + e_1 \]
\[y_2 = a^T x_2 + b + e_2 \]
\[y_3 = a^T x_3 + b + e_3 \]

\[y = A^T X + e \]

\[D(y, \hat{y}) = E = e_1^2 + e_2^2 + e_3^2 + ... \]

\[= (y_1 - a^T x_1 - b)^2 + (y_2 - a^T x_2 - b)^2 + (y_3 - a^T x_3 - b)^2 + ... \]

\[E = (y - A^T X)(y - A^T X)^T = \|y - A^T X\|^2 \]

- Define the divergence as the sum of the squared error in predicting y
Prediction error as divergence

\[y = a^T x + e \]

- \(e \) = prediction error
- Find the “slope” \(a \) such that the total squared length of the error lines is minimized
Solving a linear regression

\[y = A^T X + e \]

- Minimize squared error

\[E = \| y - X^T A \|^2 = (y - A^T X)(y - A^T X)^T \]

\[= yy^T + A^T XX^T A - 2yX^T A \]

- Differentiating w.r.t. \(A \) and equating to 0

\[dE = \left(2A^T XX^T - 2yX^T \right) dA = 0 \]

\[A^T = yX^T (XX^T)^{-1} = ypinv(X) \]

\[A = (XX^T)^{-1} Xy^T \]
What happens if we minimize the perpendicular instead?
Regression in multiple dimensions

\[y_1 = A^T x_1 + b + e_1 \]
\[y_2 = A^T x_2 + b + e_2 \]
\[y_3 = A^T x_3 + b + e_3 \]

- Also called *multiple regression*
- Equivalent of saying:

\[y_1 = A^T x_1 + b + e_1 \]
\[y_{11} = a_1^T x_1 + b_1 + e_{11} \]
\[y_{12} = a_2^T x_2 + b_2 + e_{12} \]
\[y_{13} = a_3^T x_3 + b_3 + e_{13} \]

- Fundamentally no different from N separate single regressions
 - But we can use the relationship between ys to our benefit
Multiple Regression

\[Y = [y_1 \ y_2 \ y_3 ...] \quad X = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots \\ 1 & 1 & 1 & \cdots \end{bmatrix} \quad A = \begin{bmatrix} A \\ b \end{bmatrix} \]

\[E = [e_1 \ e_2 \ e_3 ...] \]

\[Y = A^T X + E \]

\[DIV = \sum_i \| y_i - A^T x_i - b \|^2 = trace((Y - A^T X)(Y - A^T X)^T) \]

- Differentiating and equating to 0

\[dDIV = \left(2A^T XX^T - 2YX^T \right) dA = 0 \]

\[A^T = YX^T (XX^T)^{-1} = Y \text{pinv}(X) \]

\[A = (XX^T)^{-1} XY^T \]
A Different Perspective

- y is a noisy reading of $A^T x$

 $y = A^T x + e$

- Error e is Gaussian

 $e \sim N(0, \sigma^2 I)$

- Estimate A from

 $Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N]$
The **Likelihood** of the data

\[y = A^T x + e \quad \text{e} \sim N(0, \sigma^2 I) \]

- Probability of observing a specific \(y \), given \(x \), for a particular matrix \(A \)

\[
P(y \mid x; A) = N(A^T x, \sigma^2 I) \]

- Probability of the collection: \(Y = [y_1, y_2\ldots y_N] \quad X = [x_1, x_2\ldots x_N] \)

\[
P(Y \mid X; A) = \prod_{i} N(A^T x_i, \sigma^2 I) \]

- Assuming IID for convenience (not necessary)
A Maximum Likelihood Estimate

\[y = A^T x + e \quad e \sim N(0, \sigma^2 I) \quad Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N] \]

\[
P(Y \mid X) = \prod_i \frac{1}{\sqrt{(2\pi\sigma^2)^D}} \exp \left(-\frac{1}{2\sigma^2} \| A^T x_i \|^2 \right)
\]

\[
\log P(Y \mid X; A) = C - \sum_i \frac{1}{2\sigma^2} \| y_i - A^T x_i \|^2
\]

\[
= C - \frac{1}{2\sigma^2} \text{trace} \left((Y - A^T X)(Y - A^T X)^T \right)
\]

- Maximizing the log probability is identical to minimizing the trace
 - Identical to the least squares solution

\[
A^T = YY^T \left(XX^T \right)^{-1} = Y \text{pinv}(X)
\]

\[
A = \left(XX^T \right)^{-1} XY^T
\]
Predicting an output

- From a collection of training data, have learned A
- Given x for a new instance, but not y, what is y?
- Simple solution:

$$\hat{y} = A^T X$$
Applying it to our problem

- Prediction by regression

- Forward regression

\[x_t = a_1 x_{t-1} + a_2 x_{t-2} \ldots a_k x_{t-k} + e_t \]

- Backward regression

\[x_t = b_1 x_{t+1} + b_2 x_{t+2} \ldots b_k x_{t+k} + e_t \]
Applying it to our problem

- Forward prediction

\[
\begin{bmatrix}
 x_t \\
 x_{t-1} \\
 \vdots \\
 x_{K+1}
\end{bmatrix} = a_t^T \begin{bmatrix}
 x_{t-1} & x_{t-2} & \ldots & x_K \\
 x_{t-2} & x_{t-3} & \ldots & x_{K-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{t-K} & x_{t-K-1} & \ldots & x_1
\end{bmatrix} + \begin{bmatrix}
 e_t \\
 e_{t-1} \\
 \vdots \\
 e_{K+1}
\end{bmatrix}
\]

\[\mathbf{x} = a_t^T \mathbf{X} + \mathbf{e}\]

\[\mathbf{x} \text{ pinv}(\mathbf{X}) = a_t^T\]
Applying it to our problem

- Backward prediction

\[
\begin{bmatrix}
 x_{t-K-1} \\
 x_{t-K-2} \\
 \vdots \\
 x_1
\end{bmatrix}
= \mathbf{b}_t^T
\begin{bmatrix}
 x_t & x_{t-1} & \ldots & x_{K+1} \\
 x_{t-1} & x_{t-2} & \ldots & x_K \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{t-K} & x_{t-K-1} & \ldots & x_2
\end{bmatrix}
+ \begin{bmatrix}
 e_{t-K-1} \\
 e_{t-K-2} \\
 \vdots \\
 e_1
\end{bmatrix}
\]

\[
\bar{x} = \mathbf{b}_t^T \bar{X} + \mathbf{e}
\]

\[
\bar{x} \; \text{pinv}(\bar{X}) = \mathbf{b}_t^T
\]
Finding the burst

- At each time
 - Learn a “forward” predictor a_t
 - At each time, predict next sample $x_t^{est} = \sum_i a_{t,k}x_{t-k}$
 - Compute error: $ferr_t = |x_t - x_t^{est}|^2$
 - Learn a “backward” predict and compute backward error $berr_t$
 - Compute average prediction error over window, threshold
Filling the hole

- Learn “forward” predictor at left edge of “hole”
 - For each missing sample
 - At each time, predict next sample \(x_t^{\text{est}} = \sum_i a_{t,k} x_{t-k} \)
 - Use estimated samples if real samples are not available

- Learn “backward” predictor at left edge of “hole”
 - For each missing sample
 - At each time, predict next sample \(x_t^{\text{est}} = \sum_i b_{t,k} x_{t+k} \)
 - Use estimated samples if real samples are not available

- Average forward and backward predictions
Reconstruction zoom in

![Graph showing reconstruction of a signal with distortion and recovery.](chart)

- **Reconstruction area**
- **Distorted signal**
- **Recovered signal**
- **Interpolation result**
- **Actual data**
- **Next glitch**

23 Oct 2012
Incrementally learning the regression

\[A = (XX^T)^{-1}XY^T \]

Can we learn A incrementally instead?

- As data comes in?

The Widrow Hoff rule

\[a^{t+1} = a^t + \eta (y_t - \hat{y}_t)x_t \]
\[\hat{y}_t = (a^t)^T x_t \]

Note the structure

- Can also be done in batch mode!
Predicting a value

\[A = (XX^T)^{-1} XY^T \]

\[\hat{y} = A^T x = YX^T (XX^T)^{-1} x \]

- What are we doing exactly?

\[C = XX^T \]

- Let

\[\hat{x} = C^{-2} \]

 - Normalizing and rotating space
 - The rotation is irrelevant

\[\hat{y} = Y\hat{X}^T \hat{x} = \sum_{i} \hat{x}_i^T \hat{y}_i \]

- Weighted combination of inputs
Relationships are not always linear

- How do we model these?
- Multiple solutions
Non-linear regression

- $y = \varphi(x) + e$

$x \rightarrow \varphi(x) = [\phi_1(x) \ \phi_2(x) \ldots \phi_N(x)]$

$X \rightarrow \Phi(X) = [\varphi(x_1) \ \varphi(x_2) \ldots \varphi(x_K)]$

- $Y = A\Phi(X) + e$

Replace X with $\Phi(X)$ in earlier equations for solution

$$A = \left(\Phi(X)\Phi(X)^T\right)^{-1} \Phi(X)Y^T$$
What we are doing

- Finding the optimal combination of various function
 - Remind you of something?
Being non-committal: Local Regression

- Regression is usually trained over the *entire* data
 - Must apply everywhere

\[\hat{y} = Y\hat{X}^T\hat{x} = \sum_i \hat{x}_i \hat{y}_i \]

- How about doing this locally?
 - For any \(x \)

\[y = \sum_i x^T C^{-1} x_i y_i + e \]

\[y = \sum_i d(x, x_i) y_i + e \]
Local Regression

- The resulting regression is dependent on x!

$$\hat{y}(x) = \sum_i d(x, x_i)y_i$$

- No closed form solution
 - But can be highly accurate

- But what is $d(x, x')$??
Kernel Regression

\[\hat{y} = \frac{\sum_{i} K_h(x - x_i) y_i}{\sum_{i} K_h(x - x_i)} \]

- Actually a non-parametric MAP estimator of \(y \)
 - Note – an estimator of \(y \), not parameters of regression
 - The “Kernel” is the kernel of a parzen window

- But first.. MAP estimators..
Map Estimators

- MAP (Maximum A Posteriori): Find a “best guess” for y (in a statistical sense), given that we know x
 \[y = \arg\max_y P(Y|x) \]

- ML (Maximum Likelihood): Find that value of Y for which the statistical best guess of X would have been the observed X
 \[y = \arg\max_y P(x|Y) \]

- MAP is simpler to visualize
MAP estimation: Gaussian PDF

Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.
Learning the parameters of the Gaussian

\[z = \begin{bmatrix} y \\ x \end{bmatrix} \]

\[\mu_z = \frac{1}{N} \sum_{i=1}^{N} z_i \]

\[C_z = \frac{1}{N} \sum_{i=1}^{N} (z_i - \mu_z)(z_i - \mu_z)^T \]

\[\mu_z = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix} \]

\[C_z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \]
Learning the parameters of the Gaussian

\[\mu_z = \frac{1}{N} \sum_{i=1}^{N} z_i \]

\[\mu_z = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix} \]

\[z = \begin{bmatrix} y \\ x \end{bmatrix} \]

\[C_z = \frac{1}{N} \sum_{i=1}^{N} (z_i - \mu_z)(z_i - \mu_z)^T \]

\[C_z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \]

\[\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[C_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)^T \]
Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.
MAP Estimator for Gaussian RV

Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.

Now we are given an X, but no Y.

What is Y?
MAP estimator for Gaussian RV
MAP estimation: Gaussian PDF
MAP estimation: The Gaussian at a particular value of X
MAP estimation: The Gaussian at a particular value of X

Most likely value
MAP Estimation of a Gaussian RV

\[Y = \arg \max_y P(y|X) \]
MAP Estimation of a Gaussian RV
MAP Estimation of a Gaussian RV

![Graph showing MAP estimation of a Gaussian RV](image)
So what is this value?

- Clearly a line
- Equation of Line:

\[\hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x) \]

- Scalar version given; vector version is identical

- Derivation? Later in the program a bit
This is a *multiple* regression

\[\hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x) \]

- This is the MAP estimate of \(y \)
 - NOT the regression parameter

- What about the ML estimate of \(y \)
 - Again, ML estimate of \(y \), not regression parameter
It's also a minimum-mean-squared error estimate

- General principle of MMSE estimation:
 - y is unknown, x is known
 - Must estimate it such that the expected squared error is minimized

\[Err = E[\|y - \hat{y}\|^2 | x] \]

- Minimize above term
It's also a minimum-mean-squared error estimate

- Minimize error:

\[
Err = E[\|y - \hat{y}\|^2 \mid x] = E[(y - \hat{y})^T (y - \hat{y}) \mid x]
\]

\[
Err = E[y^T y + \hat{y}^T \hat{y} - 2\hat{y}^T y \mid x] = E[y^T y \mid x] + \hat{y}^T \hat{y} - 2\hat{y}^T E[y \mid x]
\]

- Differentiating and equating to 0:

\[
dErr = 2E[y^T y + \hat{y}^T \hat{y} - 2\hat{y}^T y \mid x] = 2\hat{y}^T d\hat{y} - 2E[y \mid x]^T d\hat{y} = 0
\]

\[
\hat{y} = E[y \mid x]
\]

The MMSE estimate is the mean of the distribution
For the Gaussian: $\text{MAP} = \text{MMSE}$

Most likely value is also the mean value.

- Would be true of any symmetric distribution.
MMSE estimates for mixture distributions

Let $P(y|X)$ be a mixture density.

The MMSE estimate of y is given by

\[P(y|x) = \sum_k P(k)P(y|k,x) \]

\[E[y|x] = \int y \sum_k P(k)P(y|k,x)dy = \sum_k P(k)\int yP(y|k,x)dy = \sum_k P(k)E[y|k,x] \]

Just a weighted combination of the MMSE estimates from the component distributions.
MMSE estimates from a Gaussian mixture

- Let $P(x,y)$ be a Gaussian Mixture

$$z = \begin{bmatrix} y \\ x \end{bmatrix}$$

$$P(x,y) = P(z) = \sum_k P(k)N(z; \mu_k, \Sigma_k)$$

- Let $P(y|x)$ is also a Gaussian mixture

$$P(y|x) = \frac{P(x,y)}{P(x)} = \frac{\sum_k P(k,x,y)}{P(x)} = \frac{\sum_k P(x)P(k|x)P(y|x,k)}{P(x)}$$

$$P(y|x) = \sum_k P(k|x)P(y|x,k)$$
MMSE estimates from a Gaussian mixture

- Let \(P(y|x) \) is a Gaussian Mixture

\[
P(y|x) = \sum_k P(k|x)P(y|x,k)
\]

\[
P(y, x, k) = N([y, x]; [\mu_{k,y}, \mu_{k,x}], \begin{bmatrix} C_{k,yy} & C_{k,yx} \\ C_{k,xy} & C_{k,xx} \end{bmatrix})
\]

\[
P(y|x,k) = N(y; \mu_{k,y} + C_{k,yx}C_{k,xx}^{-1}(x - \mu_{k,x}), \Theta)
\]

\[
P(y|x) = \sum_k P(k|x)N(y; \mu_{k,y} + C_{k,yx}C_{k,xx}^{-1}(x - \mu_{k,x}), \Theta)
\]
MMSE estimates from a Gaussian mixture

\[P(y \mid x) = \sum_k P(k \mid x)N(y; \mu_{k,y} + C_{k,yx}C_{k,xx}^{-1}(x - \mu_{k,x}), \Theta) \]

- \(P[y \mid x] \) is a mixture density
- \(E[y \mid x] \) is also a mixture

\[E[y \mid x] = \sum_k P(k \mid x)E[y \mid k, x] \]

\[E[y \mid x] = \sum_k P(k \mid x)\left(\mu_{k,y} + C_{k,yx}C_{k,xx}^{-1}(x - \mu_{k,x})\right) \]
MMSE estimates from a Gaussian mixture

- A mixture of estimates from individual Gaussians
MMSE with GMM: Voice Transformation

- Festvox GMM transformation suite (Toda)

<table>
<thead>
<tr>
<th></th>
<th>awb</th>
<th>bdl</th>
<th>jmk</th>
<th>slt</th>
</tr>
</thead>
<tbody>
<tr>
<td>awb</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
</tr>
<tr>
<td>bdl</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
</tr>
<tr>
<td>jmk</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
</tr>
<tr>
<td>slt</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
<td>♫</td>
</tr>
</tbody>
</table>
Voice Morphing

- **Align training recordings from both speakers**
 - Cepstral vector sequence
- Learn a GMM on joint vectors
- Given speech from one speaker, find MMSE estimate of the other
- **Synthesize from cepstra**
A problem with regressions

- ML fit is sensitive
 - Error is squared
 - Small variations in data \rightarrow large variations in weights
 - Outliers affect it adversely

- Unstable
 - If dimension of $X \geq$ no. of instances
 - (XX^T) is not invertible

$$A = (XX^T)^{-1} XY^T$$
MAP estimation of weights

- Assume weights drawn from a Gaussian
 - \(P(\mathbf{a}) = \mathcal{N}(0, \sigma^2 \mathbf{I}) \)
- Max. Likelihood estimate
 \[
 \hat{\mathbf{a}} = \arg \max_\mathbf{a} \log P(\mathbf{y} | \mathbf{X}; \mathbf{a})
 \]
- Maximum *a posteriori* estimate
 \[
 \hat{\mathbf{a}} = \arg \max_\mathbf{a} \log P(\mathbf{a} | \mathbf{y}, \mathbf{X}) = \arg \max_\mathbf{A} \log P(\mathbf{y} | \mathbf{X}, \mathbf{a})P(\mathbf{a})
 \]

\[\mathbf{y} = \mathbf{a}^T \mathbf{X} + \mathbf{e} \]
MAP estimation of weights

\[\hat{a} = \arg \max_a \log P(a \mid y, X) = \arg \max_a \log P(y \mid X, a)P(a) \]

- \(P(a) = N(0, \sigma^2 I) \)
- \(\log P(a) = C - \log \sigma - 0.5\sigma^{-2} \|a\|_2^2 \)

\[\log P(y \mid X, a) = C - \frac{1}{2\sigma^2} (y - a^T X)^T (y - a^T X) \]

\[\hat{a} = \arg \max_a C' - \log \sigma - \frac{1}{2\sigma^2} (y - a^T X)^T (y - a^T X) - 0.5\sigma^2 a^T a \]

- Similar to ML estimate with an additional term
MAP estimate of weights

\[dL = \left(2a^T XX^T + 2yX^T + 2\sigma I \right) da = 0 \]

\[a = \left(XX^T + \sigma I \right)^{-1} XY^T \]

- Equivalent to *diagonal loading* of correlation matrix
 - Improves condition number of correlation matrix
 - Can be inverted with greater stability
 - Will not affect the estimation from well-conditioned data
 - Also called Tikhonov Regularization
 - Dual form: Ridge regression

- **MAP estimate of weights**
 - Not to be confused with MAP estimate of \(Y \)
MAP estimate priors

- Left: Gaussian Prior on W
- Right: Laplacian Prior
MAP estimation of weights with laplacian prior

- Assume weights drawn from a Laplacian

 \[P(a) = \lambda^{-1} \exp(-\lambda^{-1}|a|_1) \]

- Maximum \textit{a posteriori} estimate

\[
\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1}|a|_1
\]

- No closed form solution

 - Quadratic programming solution required

 - Non-trivial
MAP estimation of weights with laplacian prior

- Assume weights drawn from a Laplacian
 \[P(a) = \lambda^{-1} \exp(-\lambda^{-1} |a|_1) \]

- Maximum a posteriori estimate

\[
\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1} |a|_1
\]

- Identical to L1 regularized least-squares estimation
L1-regularized LSE

\[\hat{a} = \arg \max_A C'(y - a^T X)^T (y - a^T X)^T - \lambda^{-1}|a|_1 \]

- No closed form solution
 - Quadratic programming solutions required

- Dual formulation

\[\hat{a} = \arg \max_A C'(y - a^T X)^T (y - a^T X)^T \quad \text{subject to} \quad |a|_1 \leq t \]

- “LASSO” – Least absolute shrinkage and selection operator
LASSO Algorithms

- Various convex optimization algorithms
- LARS: Least angle regression
- Pathwise coordinate descent..
- Matlab code available from web
Regularized least squares

- Regularization results in selection of suboptimal (in least-squares sense) solution
 - One of the loci outside center
- Tikhonov regularization selects *shortest* solution
- L1 regularization selects *sparsest* solution
LASSO and Compressive Sensing

- Given Y and X, estimate sparse W
- LASSO:
 - $X = \text{explanatory variable}$
 - $Y = \text{dependent variable}$
 - $a = \text{weights of regression}$
- CS:
 - $X = \text{measurement matrix}$
 - $Y = \text{measurement}$
 - $a = \text{data}$

$$Y = X \cdot a$$
An interesting problem: Predicting War!

- Economists measure a number of social indicators for countries weekly
 - Happiness index
 - Hunger index
 - Freedom index
 - Twitter records
 - ...

- Question: Will there be a revolution or war next week?
An interesting problem: Predicting War!

Issues:

- Dissatisfaction builds up – not an instantaneous phenomenon
 - Usually
- War / rebellion build up much faster
 - Often in hours

Important to predict

- Preparedness for security
- Economic impact
Predicting War

Given

- Sequence of economic indicators for each week
- Sequence of unrest markers for each week
 - At the end of each week we know if war happened or not that week
- Predict probability of unrest next week
 - This could be a new unrest or persistence of a current one
An HMM is a model for time-series data

How can we use it predict the future?
Predicting with an HMM

- **Given**
 - Observations $O_1..O_t$
 - All HMM parameters
 - Learned from some training data

- **Must estimate future observation** O_{t+1}
 - Estimate must consider *entire* history $(O_1..O_t)$
 - No knowledge of actual state of the process at any time
Predicting with an HMM

- **Given** \(O_1..O_t \)
 - **Compute** \(P(O_1..O_t,s) \)
 - Using the forward algorithm – computes \(\alpha(s,t) \)

\[
P(s_t = s \mid O_{1..t}) = \frac{P(s_t = s, O_{1..t})}{\sum_{s'} P(s_t = s', O_{1..t})} = \frac{\alpha(s,t)}{\sum_{s'} \alpha(s',t)}
\]
Predicting with an HMM

- Given $P(s_t=s \mid O_{1..t})$ for all s
- $P(s_{t+1} = s \mid O_{1..t}) = \sum_{s'} P(s_{t}=s' \mid O_{1..t})P(s\mid s')$
- $P(O_{t+1},s\mid O_{1..t}) = P(O\mid s) \ P(s_{t+1}=s\mid O_{1..t})$
- $P(O_{t+1}\mid O_{1..t}) = \sum_s P(O_{t+1}\mid s\mid O_{1..t})$
 \[= \sum_s P(O\mid s) \ P(s_{t+1}=s\mid O_{1..t})\]
- This is a mixture distribution

23 Oct 2012

11755/18797
Predicting with an HMM

- $P(O_{t+1}|O_{1..t}) = \sum_s P(O_{t+1},s|O_{1..t})$
 $= \sum_s P(O|s) P(s_{t+1}=s|O_{1..T})$

- MMSE estimate of O_{t+1} given $O_{1..t}$
 - $E[O_{t+1} | O_{1..t}] = \sum_s P(s_{t+1}=s|O_{1..T}) E[O|s]$

- A weighted sum of the state means

23 Oct 2012

11755/18797

85
Predicting with an HMM

- **MMSE Estimate of** $O_{t+1} = E[O_{t+1}|O_{1..T}]$
 - $E[O_{t+1} | O_{1..t}] = \sum_s P(s_{t+1}=s|O_{1..T}) E[O|s]$

- **If** $P(O|s)$ is a GMM
 - $E(O|s) = \sum_k P(k|s) \mu_{k,s}$

\[
\hat{O}_{t+1} = \sum_s P(s | O_{1..t}) \sum_k w_{k,s} \mu_{k,s}
\]

\[
\hat{O}_{t+1} = \sum_s \sum_{s'} \frac{\alpha(t, s)}{\alpha(t, s')} \sum_k w_{k,s} \mu_{k,s}
\]
Predicting War

- Train an HMM on $z = [w, s]$
- After the t^{th} week, predict probability distribution:
 - $P(z_t | z_1...z_t) = P(w, z | z_1..z_t)$
- Marginalize out x (not known for next week)

$$P(w | z_{1..t}) = \int P(w, s | z_{1..t}) ds$$

- War? $\Rightarrow E[w | z_1..z_t]$