Course Projects

Sep 13, 2012
Course Projects

- Covers 50% of your grade
- 10-12 weeks of work
- Required:
 - Serious commitment to project
 - Extra points for working demonstration
 - Project Report
 - Poster presented in poster session
 - Graded by anonymous external reviewers in addition to the course instructors
Project Complexity

- Depends on what you want to do
- Complexity of the project will be considered in grading.
- Projects typically vary from cutting-edge research to reimplementation of existing techniques. Both are fine.
More details

- Projects will be done in teams of 2 or 3
- It is ok to work alone but your project will be no simpler
- If you cannot find teammates, email the TA

- Teams will have to spend a lot of time understanding the problem.

- Team members will also grade each other to make sure that everybody contributes
Incomplete Projects

- Be realistic about your goals.

- Incomplete projects can still get a good grade if
 - You can demonstrate that you made progress
 - You can clearly show why the project is infeasible to complete in one semester

- Remember: You will be graded by peers
Possible projects

• A list of possible projects will be presented in the rest of this lecture.

• You are also free to pick your own project.

• Teams must inform us of their choice of project by (mumble,mumble).
 • The later you start, the less time you have to work on the project.
Projects from previous years

- Non-intrusive load monitoring
- Seam carving
- Statistical Klatt Parametric Synthesis
- Voice Transformation using Canonical Correlation analysis
- Sound source separation and missing feature enhancement
- Counting blood cells in cerebrospinal fluid
- And many more …
The Doppler Effect

- The observed frequency of a moving sound source differs from the emitted frequency when the source and observer are moving relative to each other.
The Doppler Effect

- Spectrogram of horn from speeding car
 - Tells you the velocity
 - Tells you the distance of the car from the mic
Problem

- Analyze audio from speeding automobiles to detect velocity using the Doppler shift
- Find the frequency shift and track velocity/position

Supervisor: Dr. Rita Singh
Pitch Tracking

- Frequency shift invariant latent variable analysis
- Combined with Kalman filtering
- Estimate the velocity of *multiple* cars at the same time
More on Doppler

- Reflections of a 40khz tone from a speaker’s face have Doppler shifts
- These capture facial movements related to speech
- They represent articulator movements of the speaker
- Prior work:
 - Recognizing the speaker from the Doppler measurements
 - Resynthesizing the speech from the Doppler measurements of the speaker’s face
Identifying talking faces

- Beam ultrasound on talker’s face
- Capture and analyze reflections
- Identify subject
Synthesizing Sound from ultrasound observations

- Subject mimes sound but does not produce any sound
- Can we produce sound with just the ultrasound observations?
New Doppler Problem

- Can we learn to derive articulator information from speech by considering its relationship to Doppler signal?
- Can this be used to improve automatic speech recognition performance?

Procedure
- Learn a deep neural network to learn the mapping
- Use the network as a feature computation module for speech recognition
 - Augments conventional features

Supervisor: Bhiksha Raj
Doppler from walking person

- Gait recognition
- Beam ultrasound at walking subjects
- Capture reflections
- Determine identity of the person
Gesture recognizer

- Recognizing gestures and the actions that constitute a gesture
Seam Carving
Seam carving for word spotting (Rita Singh)

- Seams in spectrograms: Word specific
- Characterize seams to recognize/detect words
 - Combine with traditional methods for improved performance
Song lyric recognition (Rita Singh)

- Recognize lyrics in songs

- Conventional Automatic Speech recognition won’t work
 - Stylized voices
 - Overlaid music
 - Mispronunciations

- Can assume any framework
 - Select lyrics from a collection of lyrics
 - Know words but not lyrics
De-reverberation

- Develop a \textit{supervised} technique that can dereverberate a noisy signal
 - Know what is spoken and has prior information about speaker
 - Will work with artificially reverberated data

- Issues:
 - Modeling the data
 - Learning parameters
 - Overcomplete representations
Sound Classification

- Identifying cars from their sound
- Simple problem: Can we build a system that can identify the make (and possibly model) of a car by listening to it?
 - Can you make out the difference between a V6 and a V8 engine?

- Issues:
 - Gathering training data
 - Modeling
Face Recognition

- Similar to the face detector, but now we want to recognize the faces too
 - Who was it that walked by my office?
- Variety of existing techniques available
- Can be combined with face detection
Recognizing the gender of a face

- A hard problem
- Even humans are bad at this
Image Manipulation: Filling in

- Some images are often occluded
- Search a database to find objects that best fit into the occluded region
Bonobo ‘speech’ analysis

- Bonobos and chimpanzees are humans’ closest living relatives
- Bonobos vocalize in a way similar to humans
- Need to make sense of several Terabytes of data where bonobos interact with humans
- Supervisor: Prof. Alan Black
Detecting buses

- Detecting buses that stand at Forbes and Craig so that you can stay in your office in Gates and work until the bus comes.
- Need to use the audio or visual data to detect the presence of buses in video.
- Supervisor: Prof. Alan Black + possibly others
Emotion detection from audio/images

- Detecting and recognizing the emotion in faces
- Doing the same from voices
Assigning Semantic tags to video

- http://www.cs.cmu.edu/~abhinavg/Home.html
Object detection and Clustering

- Detect various types of objects in images
 - Supervised: You know what objects to detect
 - Unsupervised: Detect objects based on motion
Scene segmentation with audio

- Identify change of scene with audio alone
 - A set of speakers is scene specific
 - The background conditions change
 - Detect when the change is significant
Scene segmentation with video

- Automatically detect discontinuity in the narrative with video alone
 - Automatic shot change detection

- Scene change detection. A scene may have multiple shots
Some more ideas will be put on the website
Questions?