Hidden Markov Models

04 Oct 2012
Prediction: a holy grail

- Physical trajectories
 - Automobiles, rockets, heavenly bodies
- Natural phenomena
 - Weather
- Financial data
 - Stock market
- World affairs
 - Who is going to have the next XXXX spring?
- Signals
 - Audio, video..
A Common Trait

- **Series data with trends**
- Stochastic functions of stochastic functions (of stochastic functions of ...)

- An underlying process that progresses (seemingly) randomly
 - E.g. Current position of a vehicle
 - E.g. current sentiment in stock market
 - Current state of social/economic indicators

- Random expressions of underlying process
 - E.g. what you see from the vehicle
 - E.g. current stock prices of various stock
 - E.g. do populace stay quiet / protest on streets / topple dictator..
What a sensible agent must do

- *Learn* about the process
 - From whatever they know
 - Basic requirement for other procedures

- *Track* underlying processes

- Predict future values
A Specific Form of Process..

- Doubly stochastic processes

- One random process generates an X
 - Random process $X \rightarrow P(X; \Theta)$

- Second-level process generates observations as a function of
 - Random process $Y \rightarrow P(Y; f(X, \Lambda))$
Doubly Stochastic Processes

- Doubly stochastic processes are *models*
 - May not be a *true* representation of process underlying actual data

- First level variable may be a *quantifiable* variable
 - Position/state of vehicle
 - Second level variable is a stochastic function of position

- First level variable may *not* have meaning
 - “Sentiment” of a stock market
 - “Configuration” of vocal tract
Stochastic Function of a Markov Chain

- First-level variable is usually abstract

- The first level variable assumed to be the output of a Markov Chain

- The second level variable is a function of the output of the Markov Chain

- Also called an HMM

- Another variant – stochastic function of Markov process
 - Kalman Filtering..
Markov Chain

- Process can go through a number of states
 - Random walk, Brownian motion..
- From each state, it can go to any other state with a probability
 - Which only depends on the current state
- Walk goes on forever
 - Or until it hits an “absorbing wall”
- Output of the process – a sequence of states the process went through

\[\text{S}_1 \longrightarrow \text{S}_2 \longrightarrow \text{S}_3 \]
Output:
- \(Y \rightarrow P(Y ; f([s_1, s_2, ...], \Lambda)) \)

Specific to HMM:
- \(Y = Y_1 Y_2 ... \)
- \(Y_i \rightarrow P(Y_i ; f(s_i), \Lambda) \)
Stochastic function of Markov Chains (HMMS)

- Problems:
 - Learn the nature of the process from data
 - Track the underlying state
 - Semantics
 - Predict the future
Fun stuff with HMMs..
The little station between the mall and the city

- A little station between the city and a mall
 - Inbound trains bring people back from the mall
 - Mainly shoppers
 - Occasional mall employee
 - Who may have shopped..
 - Outbound trains bring back people from the city
 - Mainly office workers
 - But also the occasional shopper
 - Who may be from an office..
The Turnstile

- One jobless afternoon you amuse yourself by observing the turnstile at the station
 - Groups of people exit periodically
 - Some people are wearing casuals, others are formally dressed
 - Some are carrying shopping bags, other have briefcases
 - Was the last train an incoming train or an outgoing one
The Turnstile

- One jobless afternoon you amuse yourself by observing the turnstile at the station
 - ...

- What you know:
 - People shop in casual attire
 - Unless they head to the shop from work
 - Shoppers carry shopping bags, people from offices carry briefcases
 - Usually
 - There are more shops than offices at the mall
 - There are more offices than shops in the city
 - Outbound trains follow inbound trains
 - Usually
Modelling the problem

- Inbound trains (from the mall) have
 - more casually dressed people
 - more people carrying shopping bags
- The number of people leaving at any time may be small
 - Insufficient to judge
Modelling the problem

- $P(\text{attire, luggage | outbound}) = ?$
- $P(\text{attire, luggage | inbound}) = ?$
- $P(\text{outbound | inbound}) = ?$
- $P(\text{inbound | outbound}) = ?$
- If you know all this, how do you decide the direction of the train?
- How do you estimate these terms?
What is an HMM

“Probabilistic function of a markov chain”

Models a dynamical system

System goes through a number of states
 - Following a Markov chain model

On arriving at any state it generates observations according to a state-specific probability distribution
A Thought Experiment

- Two “shooters” roll dice
- A caller calls out the number rolled. We only get to hear what he calls out
- The caller behaves randomly
 - If he has just called a number rolled by the blue shooter, his next call is that of the red shooter 70% of the time
 - But if he has just called the red shooter, he has only a 40% probability of calling the red shooter again in the next call
- How do we characterize this?

I just called out the 6 from the blue guy.. gotta switch to pattern 2.

6 4 1 5 3 2 2 2 ...

6 3 1 5 4 1 2 4 ...

4 4 1 6 3 2 1 2 ...

25 Oct 2011
A Thought Experiment

The dots and arrows represent the “states” of the caller

- When he’s on the blue circle he calls out the blue dice
- When he’s on the red circle he calls out the red dice
- The histograms represent the probability distribution of the numbers for the blue and red dice
A Thought Experiment

- When the caller is in any state, he calls a number based on the probability distribution of that state
 - We call these state output distributions
- At each step, he moves from his current state to another state following a probability distribution
 - We call these transition probabilities
- The caller is an HMM!!!
What is an HMM

- HMMs are statistical models for (causal) processes
- The model assumes that the process can be in one of a number of states at any time instant
- The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)
- At each instant the process generates an observation from a probability distribution that is specific to the current state
- The generated observations are all that we get to see
 - the actual state of the process is not directly observable
 - Hence the qualifier hidden
A Hidden Markov Model consists of two components

- A state/transition backbone that specifies how many states there are, and how they can follow one another
- A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state

This can be factored into two separate probabilistic entities

- A probabilistic Markov chain with states and transitions
- A set of data probability distributions, associated with the states
HMM assumed to be generating data

How an HMM models a process

- **State sequence**
- **State distributions**
- **Observation sequence**
HMM Parameters

- The **topology** of the HMM
 - Number of states and allowed transitions
 - E.g. here we have 3 states and cannot go from the blue state to the red

- The transition probabilities
 - Often represented as a matrix as here
 - \(T_{ij} \) is the probability that when in state \(i \), the process will move to \(j \)

- The probability \(\pi_i \) of beginning at any state \(s_i \)
 - The complete set is represented as \(\pi \)

- The **state output distributions**
HMM state output distributions

• The state output distribution is the distribution of data produced from any state
• Typically modelled as Gaussian

\[P(x \mid s_i) = \text{Gaussian}(x; \mu_i, \Theta_i) = \frac{1}{\sqrt{(2\pi)^d|\Theta_i|}} e^{-0.5(x-\mu_i)^T \Theta_i^{-1}(x-\mu_i)} \]

• The parameters are \(\mu_i \) and \(\Theta_i \)
• More typically, modelled as Gaussian mixtures

\[P(x \mid s_i) = \sum_{j=0}^{K-1} w_{i,j} \text{Gaussian}(x; \mu_{i,j}, \Theta_{i,j}) \]

• Other distributions may also be used
• E.g. histograms in the dice case
The Diagonal Covariance Matrix

Full covariance: all elements are non-zero

\[-0.5(x - \mu)^T \Theta^{-1} (x - \mu)\]

Diagonal covariance: off-diagonal elements are zero

\[-\Sigma_i (x_i - \mu_i)^2 / 2\sigma_i^2\]

- For GMMs it is frequently assumed that the feature vector dimensions are all *independent* of each other

- **Result**: The covariance matrix is reduced to a diagonal form
 - The determinant of the diagonal Θ matrix is easy to compute
Three Basic HMM Problems

- What is the probability that it will generate a specific observation sequence

- Given a observation sequence, how do we determine which observation was generated from which state
 - The state segmentation problem

- How do we learn the parameters of the HMM from observation sequences
Computing the Probability of an Observation Sequence

- Two aspects to producing the observation:
 - Progressing through a sequence of states
 - Producing observations from these states
Progressing through states

HMM assumed to be generating data

- The process begins at some state (red) here
- From that state, it makes an allowed transition
 - To arrive at the same or any other state
- From that state it makes another allowed transition
 - And so on
Probability that the HMM will follow a particular state sequence

\[P(s_1, s_2, s_3, \ldots) = P(s_1) P(s_2|s_1) P(s_3|s_2) \ldots \]

- \(P(s_1) \) is the probability that the process will initially be in state \(s_1 \)
- \(P(s_i|s_i) \) is the transition probability of moving to state \(s_i \) at the next time instant when the system is currently in \(s_i \)
 - Also denoted by \(T_{ij} \) earlier
Generating Observations from States

HMM assumed to be generating data

- At each time it generates an observation from the state it is in at that time
Probability that the HMM will generate a particular observation sequence given a state sequence (state sequence known)

\[P(o_1, o_2, o_3, \ldots \mid s_1, s_2, s_3, \ldots) = P(o_1 \mid s_1) P(o_2 \mid s_2) P(o_3 \mid s_3) \ldots \]

Computed from the Gaussian or Gaussian mixture for state \(s_1 \)

- \(P(o_i \mid s_i) \) is the probability of generating observation \(o_i \) when the system is in state \(s_i \)
HMM assumed to be generating data

At each time it produces an observation and makes a transition
Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

\[P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \]

\[P(o_1, o_2, o_3, \ldots | s_1, s_2, s_3, \ldots) P(s_1, s_2, s_3, \ldots) = \]

\[P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \ldots P(s_1) P(s_2 | s_1) P(s_3 | s_2) \ldots \]
Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

\[P(o_1, o_2, o_3, \ldots) = \sum_{\text{all possible state sequences}} P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \]

\[\sum_{\text{all possible state sequences}} P(o_1|s_1) P(o_2|s_2) P(o_3|s_3) \ldots P(s_1) P(s_2|s_1) P(s_3|s_2) \ldots \]
Computing it Efficiently

- Explicit summing over all state sequences is not tractable
 - A very large number of possible state sequences

- Instead we use the forward algorithm

- A dynamic programming technique.
Illustrative Example

Example: a generic HMM with 5 states and a “terminating state”.

- Left to right topology
 - $P(s_i) = 1$ for state 1 and 0 for others
- The arrows represent transition for which the probability is not 0

Notation:

- $P(s_i | s_j) = T_{ij}$
- We represent $P(o_t | s_i) = b_i(t)$ for brevity
The trellis is a graphical representation of all possible paths through the HMM to produce a given observation. The Y-axis represents HMM states, X axis represents observations. Every edge in the graph represents a valid transition in the HMM over a single time step. Every node represents the event of a particular observation being generated from a particular state.
The Forward Algorithm

\[\alpha(s,t) = P(x_1, x_2, \ldots, x_t, \text{state}(t) = s) \]

- \(\alpha(s,t) \) is the total probability of ALL state sequences that end at state \(s \) at time \(t \), and all observations until \(x_t \)
The Forward Algorithm

\[\alpha(s, t) = P(x_1, x_2, \ldots, x_t, \text{state}(t) = s) \]

- \(\alpha(s, t) \) can be recursively computed in terms of \(\alpha(s', t-1) \), the forward probabilities at time \(t-1 \)

Can be recursively estimated starting from the first time instant (forward recursion)
The Forward Algorithm

\[\text{Totalprob} = \sum_{s} \alpha(s, T) \]

- In the final observation the alpha at each state gives the probability of all state sequences ending at that state.
- General model: The total probability of the observation is the sum of the alpha values at all states.
The absorbing state

- Observation sequences are assumed to end only when the process arrives at an absorbing state
 - No observations are produced from the absorbing state
The Forward Algorithm

Totalprob = \alpha(s_{absorbing}, T + 1)

\alpha(s_{absorbing}, T + 1) = \sum_{s'} \alpha(s', T) P(s_{absorbing} \mid s')

Absorbing state model: The total probability is the alpha computed at the absorbing state after the final observation
Problem 2: State segmentation

- Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?
The HMM as a generator

The process goes through a series of states and produces observations from them.
The observations do not reveal the underlying state
The state segmentation problem

HMM assumed to be generating data

State segmentation: Estimate state sequence given observations

- State segmentation: Estimate state sequence given observations
Estimating the State Sequence

- Many different state sequences are capable of producing the observation

- Solution: Identify the most *probable* state sequence
 - The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
 - i.e. is maximum

\[P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) \]
Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

\[P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) = \]
\[P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) ... P(s_1) P(s_2 | s_1) P(s_3 | s_2) ... \]

- Needed:

\[\arg \max_{s_1, s_2, s_3, ...} P(o_1 | s_1) P(s_1) P(o_2 | s_2) P(s_2 | s_1) P(o_3 | s_3) P(s_3 | s_2) \]
Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

\[P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \]

\[P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)\ldots P(s_1)P(s_2|s_1)P(s_3|s_2)\ldots \]

- Needed:

\[\arg\max_{s_1, s_2, s_3, \ldots} P(o_1|s_1)P(s_1)P(o_2|s_2)P(s_2|s_1)P(o_3|s_3)P(s_3|s_2) \]
The HMM as a generator

HMM assumed to be generating data

- Each enclosed term represents one forward transition and a subsequent emission

25 Oct 2011
The state sequence

- The probability of a state sequence \ldots,s_x,s_y ending at time t, and producing all observations until o_t
 - $P(o_{1..t-1}, \ldots, s_x, o_t, s_y) = P(o_{1..t-1}, \ldots, s_x) \times P(o_t|s_y)P(s_y|s_x)$

- The best state sequence that ends with s_x,s_y at t will have a probability equal to the probability of the best state sequence ending at $t-1$ at s_x times $P(o_t|s_y)P(s_y|s_x)$
The probability of a state sequence $?,?,?,?,?,s_x,s_y$ ending at time t and producing observations until o_t

$$P(o_{1..t-1}, o_t, ?,?,?,?, s_x, s_y) = P(o_{1..t-1},?,?,?,?, s_x) P(o_t|s_y) P(s_y|s_x)$$
The graph below shows the set of all possible state sequences through this HMM in five time instants.
The cost of extending a state sequence

- The cost of extending a state sequence ending at s_x is only dependent on the transition from s_x to s_y, and the observation probability at s_y.

$$P(o_t|s_y)P(s_y|s_x)$$
The cost of extending a state sequence

The best path to s_y through s_x is simply an extension of the best path to s_x

\[
\text{BestP}(o_{1..t-1},?,?,?,?, s_x) = P(o_t|s_y)P(s_y|s_x)
\]
The Recursion

- The overall best path to s_y is an extension of the best path to one of the states at the previous time.
The Recursion

- Prob. of best path to \(s_y = \)
 \[
 \text{Max}_{s_x} \text{ BestP}(o_{1:t-1},?,?,?,?, s_x) \ P(o_t|s_y)P(s_y|s_x)
 \]
Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
 - After A.J. Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!
Initial state initialized with path-score $P(s_1)b_i(1)$.

All other states have score 0 since $P(s_i) = 0$ for them.
Viterbi Search (contd.)

\[P_j(t) = \max_i \left[P_i(t-1) \cdot t_{ij} \cdot b_j(t) \right] \]

State transition probability, \(i \) to \(j \)

Score for state \(j \), given the input at time \(t \)

Total path-score ending up at state \(j \) at time \(t \)

State with best path-score
State with path-score < best
State without a valid path-score
Viterbi Search (contd.)

\[P_j(t) = \max_i \left[P_i(t-1) \cdot t_{ij} \cdot b_j(t) \right] \]

State transition probability, \(i \) to \(j \)

Score for state \(j \), given the input at time \(t \)

Total path-score ending up at state \(j \) at time \(t \)
Viterbi Search (contd.)
Viterbi Search (contd.)
Viterbi Search (contd.)
Viterbi Search (contd.)

[Diagram of Viterbi Search process]

25 Oct 2011
11755/18797
Viterbi Search (contd.)

[Diagram of a Viterbi search algorithm showing a state transition model with time progression and decision points.]
Viterbi Search (contd.)
Viterbi Search (contd.)

(time)
THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION
Problem 3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM’s parameters.

- But where do the HMM parameters come from?

- They must be learned from a collection of observation sequences.
Learning HMM parameters: Simple procedure – counting

- Given a set of training instances
- Iteratively:
 1. Initialize HMM parameters
 2. Segment all training instances
 3. Estimate transition probabilities and state output probability parameters by counting
Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
 - How to count after state sequences are obtained
Example: Learning HMM Parameters

- We have an HMM with two states s1 and s2.
- Observations are vectors x_{ij}
 - i-th sequence, j-th vector
- We are given the following three observation sequences
 - And have already estimated state sequences

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>

25 Oct 2011

11755/18797
Example: Learning HMM Parameters

- **Initial state probabilities (usually denoted as π):**
 - We have 3 observations
 - 2 of these begin with S_1, and one with S_2
 - $\pi(S_1) = 2/3$, $\pi(S_2) = 1/3$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S_1</td>
<td>S_1</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
<td>S_1</td>
<td>S_1</td>
<td>S_2</td>
<td>S_1</td>
<td>S_1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S_2</td>
<td>S_2</td>
<td>S_1</td>
<td>S_1</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
<td>S_1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S_1</td>
<td>S_2</td>
<td>S_1</td>
<td>S_1</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>

Observation 3
Example: Learning HMM Parameters

- Transition probabilities:
 - State S1 occurs 11 times in non-terminal locations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_a1</td>
<td>X_a2</td>
<td>X_a3</td>
<td>X_a4</td>
<td>X_a5</td>
<td>X_a6</td>
<td>X_a7</td>
<td>X_a8</td>
<td>X_a9</td>
<td>X_a10</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_b1</td>
<td>X_b2</td>
<td>X_b3</td>
<td>X_b4</td>
<td>X_b5</td>
<td>X_b6</td>
<td>X_b7</td>
<td>X_b8</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_c1</td>
<td>X_c2</td>
<td>X_c3</td>
<td>X_c4</td>
<td>X_c5</td>
<td>X_c6</td>
<td>X_c7</td>
<td>X_c8</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- Transition probabilities:
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
Example: Learning HMM Parameters

- Transition probabilities:
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
 - It is followed immediately by S2 5 times

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_a1</td>
<td>X_a2</td>
<td>X_a3</td>
<td>X_a4</td>
<td>X_a5</td>
<td>X_a6</td>
<td>X_a7</td>
<td>X_a8</td>
<td>X_a9</td>
<td>X_a10</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_b1</td>
<td>X_b2</td>
<td>X_b3</td>
<td>X_b4</td>
<td>X_b5</td>
<td>X_b6</td>
<td>X_b7</td>
<td>X_b8</td>
<td>X_b9</td>
<td></td>
</tr>
</tbody>
</table>

Observation 3

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_c1</td>
<td>X_c2</td>
<td>X_c3</td>
<td>X_c4</td>
<td>X_c5</td>
<td>X_c6</td>
<td>X_c7</td>
<td>X_c8</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
 - It is followed immediately by S2 5 times
 - \(P(S1 \mid S1) = \frac{6}{11}; \quad P(S2 \mid S1) = \frac{5}{11} \)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
<td>X_{b10}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td>X_{c9}</td>
<td>X_{c10}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times
 - It is followed immediately by S2 8 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td></td>
<td></td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>O2</td>
<td>O2</td>
<td>O2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
<td></td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>O2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td>X_{c9}</td>
<td></td>
</tr>
</tbody>
</table>

Observation 3
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times
 - It is followed immediately by S2 8 times
 - $P(S1 \mid S2) = 5/13$; $P(S2 \mid S2) = 8/13$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>

Observation 3
Parameters learnt so far

- State initial probabilities, often denoted as π
 - $\pi(S1) = 2/3 = 0.66$
 - $\pi(S2) = 1/3 = 0.33$

- State transition probabilities
 - $P(S1 \mid S1) = 6/11 = 0.545$; $P(S2 \mid S1) = 5/11 = 0.455$
 - $P(S1 \mid S2) = 5/13 = 0.385$; $P(S2 \mid S2) = 8/13 = 0.615$
 - Represented as a transition matrix

$$A = \begin{pmatrix} P(S1 \mid S1) & P(S2 \mid S1) \\ P(S1 \mid S2) & P(S2 \mid S2) \end{pmatrix} = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

Each row of this matrix must sum to 1.0
Example: Learning HMM Parameters

- State output probability for S1
- There are 13 observations in S1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>Xa1</td>
<td>Xa2</td>
<td>Xa3</td>
<td>Xa4</td>
<td>Xa5</td>
<td>Xa6</td>
<td>Xa7</td>
<td>Xa8</td>
<td>Xa9</td>
<td>Xa10</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>Xb1</td>
<td>Xb2</td>
<td>Xb3</td>
<td>Xb4</td>
<td>Xb5</td>
<td>Xb6</td>
<td>Xb7</td>
<td>Xb8</td>
<td>Xb9</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>Xc1</td>
<td>Xc2</td>
<td>Xc3</td>
<td>Xc4</td>
<td>Xc5</td>
<td>Xc6</td>
<td>Xc7</td>
<td>Xc8</td>
</tr>
</tbody>
</table>

Observation 3
Example: Learning HMM Parameters

- State output probability for S1
 - There are 13 observations in S1
 - Segregate them out and count
- Compute parameters (mean and variance) of Gaussian output density for state S1

\[
P(X \mid S_1) = \frac{1}{\sqrt{2\pi}^d |\Theta_1|} \exp \left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1) \right)
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{a1})</td>
<td>(X_{a2})</td>
<td>(X_{a6})</td>
<td>(X_{a7})</td>
<td>(X_{a9})</td>
<td>(X_{a10})</td>
</tr>
</tbody>
</table>

\[
\mu_1 = \frac{1}{13} \left(\left(X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + \right) \right. \\
\left. X_{b4} + X_{b9} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \right)
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>3</th>
<th>4</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{b3})</td>
<td>(X_{b4})</td>
<td>(X_{b9})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{c1})</td>
<td>(X_{c2})</td>
<td>(X_{c4})</td>
<td>(X_{c5})</td>
</tr>
</tbody>
</table>

\[
\Theta_1 = \frac{1}{13} \left(\left(X_{a1} - \mu_1 \right) \left(X_{a1} - \mu_1 \right)^T + \left(X_{a2} - \mu_1 \right) \left(X_{a2} - \mu_1 \right)^T + \cdots \right. \\
\left. \left(X_{b3} - \mu_1 \right) \left(X_{b3} - \mu_1 \right)^T + \left(X_{b4} - \mu_1 \right) \left(X_{b4} - \mu_1 \right)^T + \cdots \right. \\
\left. \left(X_{c1} - \mu_1 \right) \left(X_{c1} - \mu_1 \right)^T + \left(X_{c2} - \mu_1 \right) \left(X_{c2} - \mu_1 \right)^T + \cdots \right)
\]
Example: Learning HMM Parameters

- State output probability for S2
- There are 14 observations in S2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- State output probability for S2
 - There are 14 observations in S2
 - Segregate them out and count
- Compute parameters (mean and variance) of Gaussian output density for state S2

<table>
<thead>
<tr>
<th>Time</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c2}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>

$$P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d | \Theta_2 |}} \exp \left(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2)\right)$$

$$\mu_2 = \frac{1}{14} \left(X_{a3} + X_{a4} + X_{a5} + X_{a8} + X_{b1} + X_{b2} + X_{b5} + X_{b6} + X_{b7} + X_{b8} + X_{c2} + X_{c6} + X_{c7} + X_{c8} \right)$$

$$\Theta_1 = \frac{1}{14} \left((X_{a3} - \mu_2)(X_{a3} - \mu_2)^T + \ldots \right)$$

25 Oct 2011

11755/18797
We have learnt all the HMM parameters

- State initial probabilities, often denoted as π
 - $\pi(S1) = 0.66$
 - $\pi(S2) = 1/3 = 0.33$

- State transition probabilities

 $$A = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

- State output probabilities

State output probability for S1:

$$P(X | S_1) = \frac{1}{\sqrt{(2\pi)^d |\Theta_1|}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right)$$

State output probability for S2:

$$P(X | S_2) = \frac{1}{\sqrt{(2\pi)^d |\Theta_2|}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right)$$
Update rules at each iteration

\[\pi(s_i) = \frac{\text{No. of observation sequences that start at state } s_i}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i \& \text{state}(t+1)=s_j} \sum 1}{\sum_{\text{obs } t: \text{state}(t)=s_i} \sum 1} \]

\[\Theta_i = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i} (X_{\text{obs},t} - \mu_i)(X_{\text{obs},t} - \mu_i)^T}{\sum_{\text{obs } t: \text{state}(t)=s_i} \sum 1} \]

- Assumes state output PDF = Gaussian
 - For GMMs, estimate GMM parameters from collection of observations at any state
Training by segmentation: Viterbi training

- Initialize all HMM parameters

- Segment all training observation sequences into states using the Viterbi algorithm with the current models

- Using estimated state sequences and training observation sequences, reestimate the HMM parameters

- This method is also called a “segmental k-means” learning procedure
Alternative to counting: SOFT counting

- Expectation maximization
- *Every* observation contributes to every state
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{Obs} P(state(t = 1) = s_i \mid Obs)}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i, state(t + 1) = s_j \mid Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_i \mid Obs)} \]

\[\mu_i = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_i \mid Obs)} \]

\[\Theta_i = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i \mid Obs)(X_{Obs,t} - \mu_i)(X_{Obs,t} - \mu_i)^T}{\sum_{Obs} \sum_{t} P(state(t) = s_i \mid Obs)} \]

- Every observation contributes to every state
Update rules at each iteration

\[
\pi(s_i) = \frac{\sum_{Obs} P(\text{state}(t = 1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}
\]

\[
P(s_j \mid s_i) = \frac{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid Obs)}{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid Obs)}
\]

\[
\mu_i = \frac{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid Obs) X_{\text{Obs},t}}{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid Obs)}
\]

\[
\Theta_i = \frac{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid Obs) (X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid Obs)}
\]

Where did these terms come from?
\[P(\text{state}(t) = s \mid \text{Obs}) \]

- The probability that the process was at \(s \) when it generated \(X_t \) given the entire observation
- Dropping the “Obs” subscript for brevity

\[P(\text{state}(t) = s \mid X_1, X_2, \ldots, X_T) \propto P(\text{state}(t) = s, X_1, X_2, \ldots, X_T) \]

- We will compute \(P(\text{state}(t) = s_i, x_1, x_2, \ldots, x_T) \) first
 - This is the probability that the process visited \(s \) at time \(t \) while producing the entire observation
The probability that the HMM was in a particular state s when generating the observation sequence is the probability that it followed a state sequence that passed through s at time t.

$$P(state(t) = s, x_1, x_2, \ldots, x_T)$$
This can be decomposed into two multiplicative sections:

- The section of the lattice leading into state s at time t and the section leading out of it.
The probability of the red section is the total probability of all state sequences ending at state s at time t

- This is simply $\alpha(s, t)$
- Can be computed using the forward algorithm
The Backward Paths

- The blue portion represents the probability of all state sequences that began at state \(s \) at time \(t \)
 - Like the red portion it can be computed using a backward recursion
The Backward Recursion

\[\beta(s,t) = P(x_{t+1}, x_{t+2}, ..., x_T \mid state(t) = s) \]

- \(\beta(s,t) \) is the total probability of ALL state sequences that depart from \(s \) at time \(t \), and all observations after \(x_t \)
- \(\beta(s,T) = 1 \) at the final time instant for all valid final states
The complete probability

$$\alpha(s, t) \beta(s, t) = P(x_{t+1}, x_{t+2}, \ldots, x_T, \text{state}(t) = s)$$
Posterior probability of a state

- The probability that the process was in state s at time t, given that we have observed the data is obtained by simple normalization

$$P(state(t) = s \mid Obs) = \frac{P(state(t) = s, x_1, x_2, ..., x_T)}{\sum_{s'} P(state(t) = s, x_1, x_2, ..., x_T)} = \frac{\alpha(s,t) \beta(s,t)}{\sum_{s'} \alpha(s',t) \beta(s',t)}$$

- This term is often referred to as the gamma term and denoted by $\gamma_{s,t}$
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})(X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

- These have been found
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})(X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

- Where did these terms come from?
\[P(state(t) = s, state(t + 1) = s', x_1, x_2, \ldots, x_T) \]
\[P(\text{state}(t) = s, \text{state}(t+1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) \]
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) P(s' | s) P(x_{t+1} | s') \]
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) P(s'| s) P(x_{t+1} | s') \beta(s', t + 1) \]
The a posteriori probability of transition

\[P(\text{state}(t) = s, \text{state}(t + 1) = s' | \text{Obs}) = \frac{\alpha(s, t)P(s' | s)P(x_{t+1} | s')\beta(s', t + 1)}{\sum_{s_1} \sum_{s_2} \alpha(s_1, t)P(s_2 | s_1)P(x_{t+1} | s_2)\beta(s_2, t + 1)} \]

- The a posteriori probability of a transition given an observation
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{Obs} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) X_{\text{Obs},t}}{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) (X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{Obs} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

- These have been found

25 Oct 2011

11755/18797
Training without explicit segmentation: Baum-Welch training

- Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data
HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered
Magic numbers

- How many states:
 - No nice automatic technique to learn this
 - You choose
 - For speech, HMM topology is usually left to right (no backward transitions)
 - For other cyclic processes, topology must reflect nature of process
 - No. of states – 3 per phoneme in speech
 - For other processes, depends on estimated no. of distinct states in process
Applications of HMMs

- Classification:
 - Learn HMMs for the various classes of time series from training data
 - Compute probability of test time series using the HMMs for each class
 - Use in a Bayesian classifier
 - Speech recognition, vision, gene sequencing, character recognition, text mining...

- Prediction

- Tracking
Applications of HMMs

- Segmentation:
 - Given HMMs for various events, find event boundaries
 - Simply find the best state sequence and the locations where state identities change

- Automatic speech segmentation, text segmentation by topic, genome segmentation, ...

25 Oct 2011