Machine Learning for Signal

Processing
Fundamentals of Linear Algebra

Class 2. 3 Sep 2013

Instructor: Bhiksha Raj

MLsH
Overview

Vectors and matrices

Basic vector/matrix operations
Vector products

Matrix products

Various matrix types
Projections

MLSH
Incentive to use linear algebra

Pretty notation! L
iy e
Easier intuition
Really convenient geometric interpretations
Operations easy to describe verbally
Easy code translation!

fori=1:n
for j=1:m
c(=c(iy+y()x()*adij)
end

[ ]

end

Administrivia

Change of classroom: BH A51
Being broadcast to west coast

Registration: Anyone on waitlist still?

Homework 1: Will appear over weekend.
Linear algebra

Both TAs have office hours from 9.30am-11.30am on
Fridays
Location TBD, still waiting for info from ECE
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MLSH
Book

Fundamentals of Linear Algebra, Gilbert Strang

Important to be very comfortable with linear algebr

Appears repeatedly in the form of Eigen analysi),Sactor
analysis

Appears through various properties of matrices tha¢ used in
machine learning, particularly when applied to ireagnd
sound

Today s lecture: Definitions
Very small subset of all that s used
Important subset, intended to help you recollect

MLSH
And other things you can do

ro acs gein

S o

€Ceq

Rotation + Projection +
Scaling + Perspective

Time ®
Decomposition (NMF)

Manipulate Images
Manipulate Sounds
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Scalars vectors matrices

Ascalara is a number
a=2,a=3.14, a=-1000, etc.

Avectorais a linear arrangement of a collection of scalar:

é3.140
a=[1 2 3 a=a X
[ i & 324
Amatrix Ais a rectangular arrangement of a collection of
scalars
_&.12 -100
@00 24

MATLAB syntax=[1 2 3], A=[1 2;3 4]
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Vectors in the abstract

Ordered collection of numbers

Examples: [34 5], [abcd], ..
[345]!=[43 rder is important

Typically viewed as identifyinghé path from origin tp a location in an
N-dimensional space ;
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Dimensions of a matrix

The matrix size is specified by the number of rawd
columns
au
c=gog, r =[a b c]
et
¢ = 3x1 matrix: 3 rows and 1 column
r = 1x3 matrix: 1 row and 3 columns

é@ by _¢éa b ou “
Edi el @ &
S = 2 x 2 matrix

R =2 x 3 matrix
Pacman = 321 x 399 matrix

Vectors

Vectors usually hold sets of numerical
attributes
X, Y, Z coordinates
1,2 0] [-2.5av 65y \
Earnings, losses, suicides [av 8sg
[$0 $1,000,000 3]
A location in Manhattan
[3av 33st]

Vectors are either column or row vectors

au
C=§’H r=[a b q 5=[J\/\'Lﬁww"‘] [2av 4st]
&q

A sound can be a vector, a series of daily
temperatures can be a vector, etc
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MLSH
Matrices
Matrices can be square or rectangular
é U
gatm @ba,
EdTEe 4G P
& ¢
Images can be a matrix, collections of sounds @a b
matrix, etc.
A matrix can be vertical stacking of row vectors
R=
Or a horizontal arrangement of column vectors
—e cu
r=&3 2 [f
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Representing an image as a matrix
N 3 pacmen
A 321 x 399 matrix
‘ ‘ a Row and Column = position

A 3 x 128079 matrix
Triples of x,y and value
A 1x 128079 vector

e11.2.22. 2 .10 nraveling the matrix
g1 2 .1.56 .10 . 104
g11.1.00 .1 1§

Note: All of these can be recast as the
: ;
——— matrix that forms the image

implicit Representations 2 and 4 are equivalent
The position is not represented




Vectors vs. Matrices

| (345)

is

3

A vector is a geometric notation for how to getrfiq0,0)
to some location in the space
A matrix is simply a collection of vectors!

Properties of matrices araverageproperties of the traveller s
path to the vector destinations
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mLsH
Basic arithmetic operations

Addition and subtraction
Element-wise operations

il U éa+hy éu & éa-hU
BYDE gt e by 20Dy P e by

gl &0 68, +bif gl &l 8- b
A+B:?an aizl;'+§)11 blz@:(f«an"'bu a12+b12§

1 a?ZH 3321 bZZH gé?l + bZl a?? + bZZt

MATLAB syntax: a+b and a-b

Vector Operations

3

Operations tell us how to get from origin to the
result of the vector operations

(3,4,5) +(3,-2,-3) = (6,2,2)

3 Sep 2013 11-755/18-797

Operations example

611 .2.22. 2 .10
& a
§12.1.56 . 10 . 10
€11 .1 .00 . 1 . 1§

+

3 Sep 2013 11-755/18-797 16

Random(3,columns(M))

Adding random values to different
representations of the image

Vector norm

. | Length=sqrt(@+42+57) | (3.4,5)
Measure of how big a vector is: gth = sqri¢ )

Represented as|/X|
Ila b .J=va®+b?+.2

Geometrically the shortest
distance to travel from the origin
to the destination

As the crow flies 2o 12

3

[-6av 108]

Assuming Euclidean Geometry
/
MATLAB syntax: |

norm(x) i/
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Transposition

A transposed row vector becomes a column (and vérsa)

éu éau
_80  7_ - _a¢d
X—g)u xT—[a b c] y—[a b c] yT—goﬂ
&l &
A transposed matrix gets all its row (or columnjtees
transposed in order

@ b e éa du é a é U
_6 u.r_g 0 _é Q ,,r_8 a
Xg oo X @ M aMe g

& fg & a & ¢
MATLAB syntax: a




Vector multiplication

Multiplication is not element-wise!
Dot product, or inner product
Vectors must have the same number of elements
Row vector times column vectorssalar
edu
Lel=
[a b c] geg axd +bxe+cxf
éfd
Outer product or vector direct product
Column vector times row vectorrsatrix

éau éd ae afu
& _8 v
difd e f=2d be bxf;
& exd cxe cxfg

MATLAB syntava*b

Sep 2013 11-755/18-797
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mLsH
Vectordot productin Manhattan

Example:
Coordinates are yards, not ave/st
a=[200 1600], ) )
b = [770 300] i

The dot product of the two vectors
relates to the length of @rojection
How much of the first vector have we
covered by following the second one?
Must normalize by the length of the
target vector

- [200 160@%70;' nom /
ad P T80 393yd e [770yd 300yd]
[l [lzoo 160 | nor 826

Vector dot product

C E c2

Sqrt(energy)

frequency frequency frequency
[119 . osa1 q [a.24..6.2 .14 [o.0.30.13.0

Vectors are spectra
Energy at a discrete set of frequencies
Actually 1 x 4096
X axis is thendexof the number in the vector
Represents frequency
Y axis is the value of the number in the vector
Represents magnitude
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LS
C E c2
3
g
&
I3
»n
frequency frequency frequency
[19 . 0osa1 q [a.24..6.2 1] [o.0.30.13.0
How much of Cis also in E
How much can you fake a C by playing an E
C.E/|C|IE|=0.1
Not very much
How much of C is in C2?
c.c2/|c|/|Ic2|=0.5
Not bad, you can fake it
To do this, C, E, and BRist be the same size
3 Sep 2013 11-755/18-797 22
LS
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Vector outer product

The column vector is the spectrum

The row vector is an amplitude modulation

The outer product is a spectrogram
Shows how the energy in each frequency varies tiitie
The pattern in each column is a scaled versiorhefdpectrum
Each row is a scaled version of the modulation

Multiplying a vector by a matrix

Generalization of vector multiplication
Left multiplication: Dot product of each vector pair
. - N
Ag=C & Olg,_ &bl
g a ®f g‘; &, >0y

Dimensions must match!!
No. of columns of matrix = size of vector
Result inherits the number of rows from the matrix

MATLAB syntax: a*b




LS
Multiplying a vector by a matrix

Generalization of vector multiplication
Right multiplicationt Dot product of each vector pair
é _u
~B= - a dgol bzg:[ab1 ab,]
e

Dimensions must match!!
No. of rows of matrix = size of vector
Result inherits the number of columns from the niatr

MATLAB syntax: a*b

s
Multiplication of vector space by matrix
//’ - e
e
4o o

Thenormalsto the row vectors in the matrix become the
new axes
X axis = normal to theecondrow vector

Scaled by the inverse of the length of thirst row vector
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LS
Matrix Multiplication: Column space

. exa
¢a b clgu_gau  éu ecu
B e rf0TRETVRL R
&2
So much for spaces .. what does multiplying a
matrix by a vector really do?
It mixesthe column vectors of the matrix
using the numbers in the vector
Thecolumn spacef the Matrix is the
complete set of all vectors that can be formed
by mixing its columns
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s
Multiplication of vector space by matri

Pa

_€03 o7

V’e
g 13 16

The matrix rotates and scales the space
Including its own vectors

LS
Matrix Multiplication

= /‘4 — }

The k-th axis corresponds to the normal to the hypane represented
by the 1..k-1,k+1..N-th row vectors in the matrix

Any set of K-1 vectors represent a hyperplane ofadision K-1 or less

The distance along the new axis equals the lentth@ projection on
the k-th row vector
Expressed in inverse-lengths of the vector

LS
Matrix Multiplication: Row space

éa b cu
bl o fimka b defa e

Left multiplication mixes theow vectorsof

the matrix.

Therow spaceof the Matrix is the complete

set of all vectors that can be formed by mixing
its rows




MLSH
Matrix multiplication: Mixing vectors
¢ ¢ € X Y
61 3 00 . éru
é ou €U eq
é u &u  =¢uq
€9 24 .U gl u é.u
é 1] H éu
é 1a €0
A physical example
The three column vectors of the matrix X are thectpa of
three notes
The multiplying column vector Y is just a mixingtee
The result is a sound that is the mixture of theeté notes
p 201 11- 11 31
MLSH

Multiplying matrices

Generalization of vector multiplication
Outer product of dot products!!

a ®
a, ®

2

é& -

uga a_é%h, ajb,0
b, b,o=a :
Hgﬂi JE &b, 2,4

Dimensions must match!!
Columns of first matrix = rows of second
Result inherits the number of rows from the firsatrix and
the number of columns from the second matrix

MATLAB syntax: a*b

MLSH
Why is that useful?
9 9 9
@'30”: {3005(1751(175050 ..... u
g. . q g 1 Q705 0 05 ...... ﬂ
24 .( § 0506 07 08 09 151 . ... | 8
é { Y
e - X
X
Sounds: Three notes modulated
independently

3 Sep 2013

s
Matrix multiplication: Mixing vectors

200 x 200 200 x 200 200 x 200

U= ]

40000 x 2 40000 x 1

Mixing two images
The images are arranged as columns
position value not included

The result of the multiplication is rearranged asimage
3 11-755/18-797

I
&P

g:,rm D

s
Matrix multiplication: another view

A éan ¢a, 0 da, 0
azL;?bn-bNxt}J & & e

NHXS . ,u:g ﬂbu blK]+g gbzl : bzx]+--'+g :{:bm bl
o S byl & e e
. aMNOng ol il 20 Eun

n The outer product of the first column of A and tfiest row of
B + outer product of the second column of A and skeeond
row of B + .

n Sum of outer products

Matrix multiplication: Mixing modulated

spectra
9 < 9
213(1, 6 00551 @505 0. ..., O]
é"qf 1m0 0 6. .. .., u
0241 § 0506 07 Q8 09 0951 . . . . | i
é ( Y
e - X

Sounds: Threxe notes modulated
independently




Matrix multiplication: Mixing modulated

spectra

é 00551 Q7505 0. ... u
¢ ¢ Y 4
® : 4
e ‘ <

&

o 1)

e

¢

X
Sounds: Three notes modulated
independently
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Matrix multiplication: Mixing modulated
spectra

e
Q (é 0506 Q7 08 09 51 . . . . | 8
qj
[
L
¥
X
Sounds: Three notes modulated

independently
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Matrix multiplication: Mixing modulated

spectra
¢ 1
¢ §1m0@B o B. . ... i
(.3 £ k|
‘ 4]
[
124
( .
C ol

Sounds:XThree notes modulated
independently
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Matrix multiplication: Image
transition

i
jZE§1.98.7.65.432.1o;

(8012345678091

L
‘L

B~

)(‘D)(‘D){D)(‘E)—(D

D
o

Imagel fades out linearly
Image 2 fades in linearly

Matrix multiplication: Mixing modulated
spectra

Sounds: Three notes modulated
independently
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Matrix multiplication: Image

transition

61987654321
& Cf- -
22 Lég, o 08 ...... oy
¢ L8 op 08 ...... o¥
e ng 0% B ol
é (e a
& l:‘:?' e 0@
& ESN oR, Q& ...... od

Each column is one image

The columns represent a sequence of images of deing
intensity

Imagel fades out linearly

3 Sep 2013 11-755/18-797 a2




Matrix multiplication: Image
transition

]

i
L

le:< 1
] 0
601234567891

L

C
.
-

Image 2 fades in linearly
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The Identity Matrix

. L

An identity matrix is a square matrix where
All diagonal elements are 1.0
All off-diagonal elements are 0.0
Multiplication by an identity matrix does not chamgectors

Matrix multiplication: Image
transition

it
jzté1.98.7.65.432.1m
(8012345678091

B~

@D @ [ D R-®

¢
g
I’

Imagel fades out linearly
Image 2 fades in linearly
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=
Diagonal matrix to transform images

How?

LS
Diagonal Matrix
y:g 0
All off-diagonal elements are zero
Diagonal elements are non-zero
Scales the axes
May flip axes
p 201 11- 11 46
LS
Stretching
éZOOqgll.Z.ZZAZAIQ)
g0 104512 .1.56 .10 .10,
g0 0 1§g1 1 . 1 .00 . 1 . 1§
Location-based
m representation

Scaling matrix only scales

the X axis

The Y axis and pixel value are

scaled by identity

Not a good way of scaling.




Stretching

D=
él1 50 0
é a
- @‘0 515 G
A=€0 0 0 5 o)
§0 000 u
g .. .4
Newpic= EA
Better way
Interpolate
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Modifying color

pP=
é1 0 Ou
i —p € a
Newplc—PéO 2 Ou
g0 0 1§

Scale only Green

Permutation Matrix

 (3,4,5)

{30 1 Og(;ax@ éyu 5 Z (old X)

XEAVa

A permutation matrix simply rearranges the axes
The row entries are axis vectors in a differenterd
The result is a combination of rotations and refiens
The permutation matrix effectivelgermutesthe
arrangement of the elements in a vector

3 Sep 2013 11-755/18-797
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MLSH

Permutation Matrix

€ 1 0y € 1 0y

P=g1 0 0f P=g0 0 1y

g0 0 19 gL 0 Of
611 .2.22.2 .10
§12.1.56 .10.10
g11.1.00. 1 . 1§

Reflections and 90 degree rotations of images
and objects

Permutation Matrix

60 1 0y 6 1 0y
_é V] - & u
P=g1 0 0y P=g0 0 14
80 0 1§ g1 0 0f

€ X .. XU

@ a

ah Y2 - - g

€z 2 . . 7

Reflections and 90 degree rotations of images abjgcts
Object represented as a matrix of 3-Dimensionalsition vectors
Positions identify each point on the surface

3 Sep 2!

Rotation Matrix

x‘: xc.osq— ysing R, = gc?sq - sinqg RX = X
y'=Xxsing + ycosg &sing cosq g
ex , ®.y)
*y) y *y)
q
Y
X X X x

A rotation matrixrotatesthe vector by some angle q

Alternately viewed, it rotates the axes
The new axes are at an angj¢o the old one




Rotating a picture

6cosAS - sind5 Oy
_é G
R=§ sind5 cosd5 Of
g0 o 1§

A

611 .2 .22 .2 o ¢o-J2 . J2 .- 32-a2 . -8z . 4
€12 .1.56 .10 .Y &2 g2 A2 W2 82 122 .y
g1 1 .1 00 .1 1§ g 1 1 1 0 0 1 lg
Note the representation: 3-row matrix

Rotation only applies on the coordinate rows

The value does not change

Why is pacman grainy?
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Matrix Operations: Properties

A+B = B+A
AB !=BA

3 Sep 2013

A

Projection Matrix

\ 90degrees

\ /
il
7 /A
LA
77 W2 v Pl
/4 Vi =
/4 Vs
/4 r T
/4 =

projection

Consider any plane specified by a set of vectorsWy..
Or matrix [W W, ..]

Any vector can be projected onto this plane

The matrix A that rotates and scales the vectotst it becomes its
projection is a projection matrix

3-D Rotation

2 degrees of freedom
2 separate angles

What will the rotation matrix be?

3 Sep 2013
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LS
Projections
!
What would we see if the cone to the left were tsparent if we
looked at it from above the plane shown by the @rid
Normal to the plane
Answer: the figure to the right
How do we get this? Projection
3 Sep 2013 11-755/18-79°
LS
. A .
Projection Matrix
90degrees
\
./
7 7
Ll
A/ 7 W2 7~ -4
I 4

projection

Given a set of vectors W1, W2, which form a matvix [W1 W2.. ]

The projection matrix to transform a vector X te firojection on the plane is
P =W (Mw)ytwr
We will visit matrix inversion shortly
Magic any set of vectors from the same plane tlaaé expressed as a matrix
will give you the same projection matrix
P=V Wytvr
o

10



Projections

"

HOW?

3 Sep 2013

The projection actually projects it onto the plari®jt you re still seeing
the plane in 3D
The result of the projection is a 3-D vector
P =W (VW) W= 3x3, P*Vector = 3x1
The image must be rotated till the plane is in tilane of the paper
The Z axis in this case will always be zero andedgnored
How will you rotate it? (remember you know W1 an@W
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=
Projections: A more physical meaning

Let W, W, .. W be bases
We want to explain our data in terms of these base

We often cannot do so
But we can explain a significant portion of it

The portion of the data that can be expressed inrts of
our vectors W, W,, .. W,, is the projection of the data
on the W, .. W, (hyper) plane

In our previous example, the data were all theipts on a
cone, and the bases were vectors on the plane
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Projections

%ﬁ

Draw any two vectors W1 and W2 that lie on the glan
ANY twoso long as they have different angles
Compose a matrix W = [W1 W2]
Compose the projection matrix P = Wy W™
Multiply every point on the cone by P to get itojaction
View itd
I m missing a step here what is it?

11-755/18-797

LS
Projection matrix properties

LT
<7 <

The projection of any vector that is already on thlane is the vector itself
Px = x if x is on the plane
If the object is already on the plane, there isfother projection to be performed
The projection of a projection is the projection
P (Px) = Px
That is because Px is already on the plane
Projection matrices ar&lempotent
R=p
3 Sep 2013 Follows from the above 11-755/18-797

s
Projection : an example with sounds

&

The spectrogram (matrix) of a piece of music

n How much of the above music was composed of the
above notes
q l.e. how much can it be explained by the notes

3 Sep 2013
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Projection: one note

The spectrogram (matrix) of a piece of music

b

n M= spectrogram; W = note

n P=W (WN)le

n Projected Spectrogram = P * M
3 Sep 2013 11-755/18-797

MLSH
Projection: multiple notes
M=
The spectrogram (matrix) of a piece of music
Ay
W :
n P=W (WN)le
n Projected Spectrogram = P * M
MLSH

Projection and Least Squares

Projection actually computesleast squared erroestimate
For each vector V in the music spectrogram matrix
Approximation: Y,.,= a*notel + b*note2 + c*note3..

2 N ml;lia:;j
Voo | & 2R
‘approx S ue
—bed

Error vector E= V. M,

Squared error energy for V. e(V) = norf(E)

Total error = sum over all V { e(V) $7e(V)
Projection computes o for all vectors such that Total error is minimized

It does not give you a, b, c.. Though

That needs a different operation the inverse / psip inverse

MLSH
Projection: one note cleaned up
M=
The spectrogram (matrix) of a piece of music
Y h
W =
n Floored all matrix values below a threshold to zero
MLSH
Projection: multiple notes, cleaned up
x“
M=
The spectrogram (matrix) of a piece of music
&
W :
0 P =W (WTW)TWT
n Projected Spectrogram = P * M
MLSH
Perspective

The picture is the equivalent of painting the vied scenery on a
glass window

Feature: The lines connecting any point in the scgrand its
projection on the window merge at a common point
The eye

As a result, parallel lines in the scemgparentlymerge to a point

12



An aside on Perspective..

Perspective is the result of convergence of thedgm#o a point
Convergence can be to multiple points

Top Left: One-point perspective

Top Right: Two-point perspective

Right: Three-point perspective
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Central Projection

Y
7 .
X a=2
z
x=ax'
X-y:-z Property of a line through origin y=ay'
Xy z

The positions on the window are scaled along e
To compute (x,y) position on the window, we nee@listance of
window from eye), and (x,y,z) (location beingjpcted)

11-755/18-797
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Representing Perspective

Perspective was not always understood.
Carefully represented perspective can create
illusions..

3 Sep 2013

Homogeneous Coordinates

ax=a'x'

T X,y -

Y o ay=ay
xy a

— X=X
a

Represent points by a triplet
Using yellow window as reference:
(xy) = (xy.1)
(x.y)=(xyc) cada
Locations on line generally represented as (x,y,c)

a . a )
SXEX Y=Y
a a

Homogeneous Coordinates in 3-D

ax,=a'x,' | ax,=a'x,'

X1,Y1.21
) ay,=a'y,' | ay,=a'y,’

az=a'z) | az,=a'z,

XpY1Zy

X2:Y2:Z5

-

Points are represented using FOUR coordinates

X\Y,Z,c)
c is the scaling factor that represents the dsnce of the actual
scene
Actual Cartesian coordinates:
Xactwa= XIC, Yacwa= Y/C, Zoewa= ZIC

Homogeneous Coordinates

In both cases, constant ¢ represents distanceradhe line
with respect to a reference window

In 2D the plane in which all points have valueg 1¥,
Changing the reference plane changes the represemta
l.e. there may benultiple Homogenous representations
(x,y,c) that represent the same cartesian pointy(x

13



