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Overview 

ÅVectors and matrices 
ÅBasic vector/matrix operations 
ÅVarious matrix types 
ÅProjections 

 

ÅMore on matrix types 
ÅMatrix determinants 
ÅMatrix inversion 
ÅEigenanalysis 
ÅSingular value decomposition 
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Orthogonal/Orthonormal vectors 

Å Two vectors are orthogonal if they are perpendicular to one another 

ïA.B = 0 

ïA vector that is perpendicular to a plane is orthogonal to every vector on the 
plane 

 

Å Two vectors are orthonormal if 

ï They are orthogonal 

ï The length of each vector is 1.0 

ïOrthogonal vectors can be made orthonormal by normalizing their lengths to 1.0 
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Orthogonal matrices 

Å Orthogonal Matrix  :  AAT = ATA = I 

ïThe matrix is square 

ïAll row vectors are orthonormal to one another 
ÅEvery vector is perpendicular to the hyperplane formed by all other vectors 

ïAll column vectors are also orthonormal to one another 

ïObservation: In an orthogonal matrix if the length of the row vectors 
is 1.0, the length of the column vectors is also 1.0 

ïObservation: In an orthogonal matrix no more than one row can 
have all entries with the same polarity (+ve or ςve) 
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Orthogonal and Orthonormal Matrices 

ÅOrthogonal matrices will retain the length and relative 
angles between transformed vectors 

ïEssentially, they are combinations of rotations, reflections and 
permutations 

ïRotation matrices and permutation matrices are all orthonormal 
 

ÅIf the vectors in the matrix are not unit length, it cannot 
be orthogonal 
ï AAT != I,   ATA != I 

ï AAT = Diagonal or ATA = Diagonal, but not both 

ï If all the entries are the same length, we can get AAT = ATA = Diagonal, though 

Å A non-square matrix cannot be orthogonal 
ï AAT=I or ATA = I, but not both   
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Matrix Rank and Rank-Deficient Matrices 

Å Some matrices will eliminate one or more dimensions during 
transformation 

ïThese are rank deficient matrices 

ïThe rank of the matrix is the dimensionality of the transformed 
version of a full-dimensional object 
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Matrix Rank and Rank-Deficient Matrices 

ÅSome matrices will eliminate one or more dimensions during 
transformation 
ïThese are rank deficient matrices 

ïThe rank of the matrix is the dimensionality of the transformed 
version of a full-dimensional object 
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Projections are often examples of rank-deficient transforms 
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Â P = W (WTW)-1 WT ; Projected Spectrogram = P*M 

Â The original spectrogram can never be recovered 
Ç P is rank deficient 

Â P explains all vectors in the new spectrogram as a mixture of 
only the 4 vectors in W 
Ç There are only a maximum of 4 independent bases 

Ç Rank of P is 4 

M =  

W =  



Non-square Matrices 

ÅNon-square matrices add or subtract axes 
ïMore rows than columns Ą add axes 

ÅBut does not increase the dimensionality of the dataaxes 
ÅMay reduce dimensionality of the data 
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Non-square Matrices 

ÅNon-square matrices add or subtract axes 
ïMore rows than columns Ą add axes 
ÅBut does not increase the dimensionality of the data 

ïFewer rows than columns Ą reduce axes 
ÅMay reduce dimensionality of the data 
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The Rank of  a Matrix 

Å The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space 

 

Å The matrix can never increase dimensions 
ï Cannot convert a circle to a sphere or a line to a circle 

 

Å The rank of a matrix can never be greater than the lower of its two 
dimensions 
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The Rank of Matrix 
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Â Projected Spectrogram = P * M 
Ç Every vector in it is a combination of only 4 bases 

Â The rank of the matrix is the smallest no. of bases required to 
describe the output 
Ç E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 

and 3, it provides no additional information 

Ç Eliminating note no. 4 would give us the same projection 

Ç The rank of P would be 3! 

M =  



Matrix rank is unchanged by transposition 

ÅIf an N-dimensional object is compressed to a  
K-dimensional object by a matrix, it will also 
be compressed to a K-dimensional object by 
the transpose of the matrix 
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Matrix Determinant 

Å¢ƘŜ ŘŜǘŜǊƳƛƴŀƴǘ ƛǎ ǘƘŜ άǾƻƭǳƳŜέ ƻŦ ŀ ƳŀǘǊƛȄ 

ÅActually the volume of a parallelepiped formed from its 
row vectors 
ïAlso the volume of the parallelepiped formed from its column 

vectors 

ÅStandard formula for determinant: in text book 
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Matrix Determinant: Another Perspective 

Å The determinant is the ratio of N-volumes 

ï If V1 is the volume of an N-ŘƛƳŜƴǎƛƻƴŀƭ ƻōƧŜŎǘ άhέ ƛƴ b-dimensional 
space 

ÅO is the complete set of points or vertices that specify the object 

ï If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space 

ï |A| = V2 / V1 
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Matrix Determinants 
Å Matrix determinants are only defined for square matrices 

ïThey characterize volumes in linearly transformed space of the same 
dimensionality as the vectors 

 

Å Rank deficient matrices have determinant 0 

ïSince they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects 

ÅE.g. a 3-D sphere into a 2-D ellipse:  The ellipse has 0 volume (although it 
does have area) 

 

Å Conversely, all matrices of determinant 0 are rank deficient 

ïSince they compress full-volumed N-dimensional objects into  
zero-volume objects 
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Multiplication properties 
ÅProperties of vector/matrix products 
ïAssociative 

 

 

ïDistributive 
 

 

ïNOT commutative!!! 
 

 

Åleft multiplications ґ right multiplications 

ïTransposition 
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AÖ(BÖC)=(AÖB)ÖC

 

AÖB B̧ÖA

 

AÖ(B+C)=AÖB+AÖC

( ) TTT
ABBA Ö=Ö



Determinant properties 
Å Associative for square matrices 

 

ïScaling volume sequentially by several matrices is equal to scaling 
once by the product of the matrices 

 

Å Volume of sum != sum of Volumes 

 
 

Å Commutative 

ïThe order in which you scale the volume of an object is irrelevant 
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Matrix Inversion 

ÅA matrix transforms an  
N-dimensional object to a 
different N-dimensional 
object 

 

ÅWhat transforms the new 
object back to the original? 

ïThe inverse transformation 
 

ÅThe inverse transformation is 
called the matrix inverse 
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Matrix Inversion 

ÅThe product of a matrix and its inverse is the 
identity matrix 

ïTransforming an object, and then inverse 
transforming it gives us back the original object 
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T T-1 

T-1*T*D = D  Č  T-1T = I 

T*T-1*D = D Č TT-1 = I 



Inverting rank-deficient matrices 

Å wŀƴƪ ŘŜŦƛŎƛŜƴǘ ƳŀǘǊƛŎŜǎ άŦƭŀǘǘŜƴέ ƻōƧŜŎǘǎ 
ï In the process, multiple points in the original object get mapped to the same 

point in the transformed  object 
 

Å Lǘ ƛǎ ƴƻǘ ǇƻǎǎƛōƭŜ ǘƻ Ǝƻ άōŀŎƪέ ŦǊƻƳ ǘƘŜ ŦƭŀǘǘŜƴŜŘ ƻōƧŜŎǘ ǘƻ ǘƘŜ ƻǊƛƎƛƴŀƭ 
object 
ï Because of the many-to-one forward mapping 

 

Å Rank deficient matrices have no inverse 
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Revisiting Projections and Least Squares 
Å Projection computes a least squared error estimate 

Å For each vector V in the music spectrogram matrix 

ïApproximation:  Vapprox = a*note1 + b*note2 + c*note3.. 

 

 

 

 

 

ïError vector E =  V ς Vapprox 

ïSquared error energy for V     e(V) = norm(E)2 

 

Å Projection computes Vapprox for all vectors such that Total error is 
minimized 

Å.ǳǘ ²I!¢ !w9 άŀέ άōέ ŀƴŘ άŎέΚ 
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The Pseudo Inverse (PINV) 

ÅWe are approximating spectral vectors V as the 
transformation of the vector [a b c]T 

ïNote ς ǿŜΩǊŜ ǾƛŜǿƛƴƎ ǘƘŜ ŎƻƭƭŜŎǘƛƻƴ ƻŦ ōŀǎŜǎ ƛƴ ¢ ŀǎ ŀ 
transformation 

 

ÅThe solution is obtained using the pseudo inverse 

ïThis give us a LEAST SQUARES solution 

ÅIf T were square and invertible Pinv(T) = T-1, and V=Vapprox 
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Explaining music with one note 
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Â Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M 
 

Â Approximation:  M = W*X 

Â The amount of W in each vector = X = PINV(W)*M 

Â W*Pinv(W)*M = Projected Spectrogram 

Ç W*Pinv(W) = Projection matrix!! 

M =  

W =  

X =PINV(W)*M 

PINV(W) = (WTW)-1WT 



Explanation with multiple notes 
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Â X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M 

M =  

W =  

X=PINV(W)M 



How about the other way? 
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Â                        W = M Pinv(V)       U = WV 

M =  

W =  ? ? 

V =  

U =  

ὡὠ ὓ 



Pseudo-inverse (PINV) 

ÅPinv()  applies to non-square matrices 

ÅPinv ( Pinv (A))) = A 

ÅA*Pinv(A)= projection matrix! 

ïProjection onto the columns of A 
 

ÅIf A = K x N matrix and K > N, A projects N-D vectors 
into a higher-dimensional K-D space 

ïPinv(A) = NxK matrix 

ïPinv(A)*A = I  in this case 

ÅOtherwise  A * Pinv(A) = I 
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Matrix inversion (division) 

ÅThe inverse of matrix multiplication 
ïNot element-wise division!! 

ÅtǊƻǾƛŘŜǎ ŀ ǿŀȅ ǘƻ άǳƴŘƻέ ŀ ƭƛƴŜŀǊ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴ 
ï Inverse of the unit matrix is itself 

ï Inverse of a diagonal is diagonal 

ï Inverse of a rotation is a (counter)rotation (its transpose!) 

ï Inverse of a rank deficient matrix does not exist! 

ÅBut pseudoinverse exists 

ÅFor square matrices: Pay attention to multiplication side! 

 

ÅIf matrix is not square use a matrix pseudoinverse: 
 

ÅMATLAB syntax: inv(a), pinv(a) 
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Eigenanalysis 

ÅIf something can go through a process mostly 
unscathed in character it is an eigen-something 

ïSound example: 

ÅA vector that can undergo a matrix multiplication and 
keep pointing the same way is an eigenvector 

ïIts length can change though 

ÅHow much its length changes is expressed by its 
corresponding eigenvalue 

ïEach eigenvector of a matrix has its eigenvalue 

ÅCƛƴŘƛƴƎ ǘƘŜǎŜ άŜƛƎŜƴǘƘƛƴƎǎέ ƛǎ ŎŀƭƭŜŘ ŜƛƎŜƴŀƴŀƭȅǎƛǎ 
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EigenVectors and EigenValues 

ÅVectors that do not change angle upon 

transformation 

ïThey may change length 

 

 

ïV = eigen vector 

ïl = eigen value 
30 
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Eigen vector example 
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Matrix multiplication revisited 

ÅaŀǘǊƛȄ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴ άǘǊŀƴǎŦƻǊƳǎέ ǘƘŜ ǎǇŀŎŜ 

ïWarps the paper so that the normals to the two 
vectors now lie along the axes 
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A stretching operation 

ÅDraw two lines 

ÅStretch / shrink the paper along these lines by factors l1 
and l2 

ïThe factors could be negative ς implies flipping the paper 

ÅThe result is a transformation of the space 
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A stretching operation 
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Â Draw two lines 

Â Stretch / shrink the paper along these lines by factors l1 
and l2 

Ç The factors could be negative ς implies flipping the paper 

Â The result is a transformation of the space 



Physical interpretation of eigen vector 

Å The result of the stretching is exactly the same as transformation by a 
matrix 

Å The axes of stretching/shrinking are the eigenvectors 

ïThe degree of stretching/shrinking are the corresponding eigenvalues 

Å The EigenVectors and EigenValues convey all the information about the 
matrix 
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Physical interpretation of eigen vector 

Å The result of the stretching is exactly the same as transformation by a 
matrix 

Å The axes of stretching/shrinking are the eigenvectors 

ïThe degree of stretching/shrinking are the corresponding eigenvalues 

Å The EigenVectors and EigenValues convey all the information about the 
matrix 
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Eigen Analysis 
ÅNot all square matrices have nice eigen values and 

vectors 
ïE.g. consider a rotation matrix 

 

 

 

 

 

ïThis rotates every vector in the plane 
ÅNo vector that remains unchanged 

 

ÅIn these cases the Eigen vectors and values are complex 
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Singular Value Decomposition 

ÅMatrix transformations convert circles to ellipses 

Å Eigen vectors are vectors that do not change direction in the 
process 

Å There is another key feature of the ellipse to the left that carries 
information about the transform 

ïCan you identify it? 
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Singular Value Decomposition 

ÅThe major and minor axes of the transformed ellipse 
define the ellipse 

ïThey are at right angles 

ÅThese are transformations of right-angled vectors on 
the original circle! 
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Singular Value Decomposition 

Å U and V are orthonormal matrices 

ï Columns are orthonormal vectors 

Å S is a diagonal matrix 
 

Å The right singular vectors in V are transformed to the left singular vectors 
in U 

ï And scaled by the singular values that are the diagonal entries of S 
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Singular Value Decomposition 
ÅThe left and right singular vectors are not the same 

ïIf A is not a square matrix, the left and right singular vectors will 
be of different dimensions 

 

ÅThe singular values are always real 
 

ÅThe largest singular value is the largest amount by which a 
vector is scaled by A 

ïMax (|Ax| / |x|) = smax 

ÅThe smallest singular value is the smallest amount by which 
a vector is scaled by A 

ïMin (|Ax| / |x|) = smin 

ïThis can be 0 (for low-rank or non-square matrices) 
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The Singular Values 

Å Square matrices: product of singular values = determinant of  the matrix 

ïThis is also the product of the eigen values 

ï I.e. there are two different sets of axes whose products give you the area of 
an ellipse 

 

ÅCƻǊ ŀƴȅ άōǊƻŀŘέ ǊŜŎǘŀƴƎǳƭŀǊ ƳŀǘǊƛȄ !Σ ǘƘŜ ƭŀǊƎŜǎǘ ǎƛƴƎǳƭŀǊ ǾŀƭǳŜ ƻŦ ŀƴȅ 
square submatrix B cannot be larger than the largest singular value of A 

ïAn analogous rule applies to the smallest singular value 

ïThis property is utilized in various problems, such as compressive sensing 
42 
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SVD vs. Eigen Analysis 

ÅEigen analysis of a matrix A: 
ïFind two vectors such that their absolute directions are not changed by the 

transform 

ÅSVD of a matrix A: 
ïFind two vectors such that the angle between them is not changed by the 

transform 

ÅFor one class of matrices, these two operations are the same 
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A matrix vs. its transpose 

ÅMultiplication by matrix A: 

ïTransforms right singular vectors in V to left singular 
vectors U 

ÅMultiplication by its transpose AT: 

ïTransforms left singular vectors U to right singular vector V 

ÅA AT  :  Converts V to U, then brings it back to V 

ïResult: Only scaling 
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Symmetric Matrices 

ÅMatrices that do not change on transposition 
ïRow and column vectors are identical 

ÅThe left and right singular vectors are identical 
ïU = V 
ïA = U S UT 

Å They are identical to the Eigen vectors of the matrix 
Å Symmetric matrices do not rotate the space 
ïOnly scaling and, if Eigen values are negative, reflection 
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