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Overview

A More on matrix types

A Matrix determinants

A Matrix inversion

A Eigenanalysis

A Singular value decomposition
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Orthogonal/Orthonormal vectors

exg eug
A=¢yu B=¢évu
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AB=0 Y xu+y+zw=0

A Two vectors are orthogonal if they are perpendicular to one another
i AB=0
I A vector that is perpendicular to a plane is orthogonatveryvector on the
plane

A Two vectors arerthonormalif
I They are orthogonal
I The length of each vector is 1.0

I Orthogonal vectors can be madethonormalby normalizing their lengths to 1.0
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Orthogonal matrices
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A Orthogonal Matrix : Al AA = |

The matrix is square

All row vectors are orthonormal to one another
A Every vector is perpendicular to tihgperplaneformed by all other vectors
All column vectors are also orthonormal to one another

Observation:ln an orthogonal matrix if the length of the row vectors
IS 1.0, the length of the column vectors is also 1.0

Observation In an orthogonal matrix no more than one row can
have all entries with the same polarity (s or ¢ve)
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Orthogonal and Orthonormal Matrices

A Orthogonal matrices will retain thength andrelative
angles betweertransformed vectors

I Essentially, thegre combinations of rotations, reflections and
permutations

I Rotation matrices and permutation matrices areaathonormal

A If the vectors in thematrix are not unit length, it cannot
be orthogonal
I AAI=1, AAI=|
i AA'= Diagonal or A = Diagonal, but not both
i If all the entries are the same length, we can get AAA = Diagonal, though
A A nonsquare matrix cannot be orthogonal
i AA=l or AA = |, but not both
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Matrix Rank and Rankeficient Matrices
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A Some matrices will eliminate one or more dimensions during
transformation
I These argank deficientmatrices

I The rank of the matrix is the dimensionality of the transformed
version of a fuldimensional object
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Matrix Rank and Ranbeficient Matrices
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A Some matrices will eliminate one or more dimensions during
transformation
I These ar@ank deficienimatrices
I The rank of the matrix is the dimensionality of the transformed
version of a fuldimensional object
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Projections are often examples of ranteficient transforms
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A P=W (WMW)tWT; Projected Spectrogram = P*M
A The original spectrogram can never be recovered
¢ P is rank deficient
A P explains all vectors in the new spectrogram as a mixture of
only the 4 vectors in W
¢ There are only a maximum ofiddependentbases
¢ RankofPis4
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Non-square Matrices
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X = 2D data P = transform PX =3D, rank 2

A Non-square matrices add or subtract axes

I More rows than columng, add axes
A But does not increase the dimensionality of thata
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Non-square Matrices
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X = 3D data, rank 3 P = transform PX = 2D, rank 2

A Non-square matrices add or subtract axes

I Fewer rows than column& reduce axes

A May reduce dimensionality of the data
5 Sep 2013 11-755/18-797 10



The Rank of a Matrix

/7 Ay

A The matrix rank is the dimensionality of the transformation of a full
dimensioned object in the original space

A The matrix can nevancreasedimensions
I Cannot convert a circle to a sphere or a line to a circle

A The rank of a matrix can never be greater than the lower of its two
dimensions
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Projected Spectrogram =P * M
¢ Every vector in it is a combination of only 4 bases
The rank of the matrix is themallestno. of bases required to

describe the output

¢ E.g.if note no. 4 in P could be expressed as a combination of notes 1,:
and 3, it provides no additional information

¢ Eliminating note no. 4 would give us the same projection
¢ The rank of P would be 3!
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Matrix rank Is unchanged by transposition
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A If an Ndimensional object is compressed to a
K-dimensional object by a matrix, it will also
be compressed to a-#imensional object by
the transpose of the matrix
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Matrix Determinant

: r1+r3
(r2) (a+cb+d) (r1+r2) jp F1+r2+13

el

- b (r1)
A=
L d] (r2)

(2.b) (r1)

ACKS RSUSNNYAYIYUO Ada GKS a0
A Actually the volume of a parallelepiped formed from its
row vectors

I Also the volume of the parallelepiped formed from its column
vectors

A Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective

Volume=Vv, Volume =V,

08 0 078 7
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7 09 o1y |

A The determinant is the ratio of-Molumes
i IfVisthevolumeofanMRA YSyYy aA 2yl f -dh@@iBnall
space
A O is the complete set of points or vertices that specify the object

I If V, is the volume of the Mlimensional object specified by A*O,
where A is a matrix that transforms the space

i Al =V,/V,
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Matrix Determinants

A Matrix determinants arenly defined for square matrices

I They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

A Rank deficient matrices have determinant O

I Since they compress fulblumedN-dimensional objects into zero
volume Ndimensional objects

A E.g. a D sphere into a-D ellipse: The ellipse has 0 volume (although it
does have area)

A Conversely, all matrices of determinant O are rank deficient

I Since they compress fatblumedN-dimensional objects into
zerovolume objects
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Multiplication properties

A Properties of vector/matrix products
I Associative

ABO@=(AM® @
I Distributive

AB+O)=AB+A Q@
I NOT commutative!!!

AM@ . BQA

A left multiplicationsr' right multiplications
I Transposition

(AG) =BT\
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Determinant properties
A Associative for square matrices ‘ A @D @‘ — ‘ A‘ (B‘ qr‘

I Scaling volume sequentially by several matrices is equal to scaling
once by the product of the matrices

A Volume of sum != sum of Volumes ‘(B +C)

B +|C

5

A Commutative
I The order in which you scale the volume of an object is irrelevant

A®| =B =|A|GB]
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Matrix Inversion

A A matrix transforms an
N-dimensional object to a
different N-dimensional T
object T wi oo oo

A What transforms the new
object back to the original?
I Theinverse transformation

A The inverse transformation is
called the matrix inverse i
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Matrix Inversion

T-*T*D=D C TIT=I
A The product of a matrix and its inverse is the
identity matrix

I Transforming an object, and then inverse
transforming it gives us back the original object

T*T*D=DC TT=|
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Inverting rankdeficlent matrices

I TR !
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I In the process, multiple points in the original object get mapped to the same
point in the transformed object

25 - 0.432‘6
- 0433 075 |

ALG Aa y20 LRaarotsS G2 332 aGol O1¢ 7
object
I Because of the mantp-one forward mapping

A Rank deficient matrices have no inverse
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Revisiting Projections and Least Square

A Projection computes keast squared erroestimate
A For each vector V in the music spectrogram matrix
I Approximation: Yy ,.,= a*notel + b*note2 + c*note3..

—

_|

11
notel
note2

CTT/m'th's?(\

520
— u
Vapprox_ T gnu

&l

I Error vector E = §V,pox
I Squared error energy for V. e(V) = nori(E)

A Projection computes Mo« for all vectors such that Total error is
minimized

A.dzi 211¢ w9 alFé ao0é¢ YR aO¢K
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The Pseudo Inverse (PINV)

g Ay
appmx—T%“ —) VngDE —) eo” PINV/(T)*V
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A We are approximating spectral vectors V as the
transformation of the vector [a b €]

i Notecg SQNBE GASgAYy3I (KS O2ftft SO0
transformation

A The solution is obtained using tipseudo inverse

I This give us REAST SQUARBSItion
A If T were square and invertible Pinv(T)% dnd V=Y prox
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Explalnlng musu: Wlth one note
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Recap: P =W (WW)! W Projected Spectrogram = P*M

Approximation: M = W*X
The amount of W in each vector = X = PINV(W)*M
W*Pinv(W)*M = Projected Spectrogram

— T\A/N-I\N/T
W*Pinv(W) = Projection matrix!! PINV(W) = (W'W)=W
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A X = Pinv(W) *M; Projected matrix = W*X = W*Pinv(W)*M
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How about the other way’>

E u=

AW U W=MPinv(V) U=WV
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Pseudainverse (PINV)

A Pin\) applies to norsquare matrices
A Pinv( Pinv(A))) = A
A A*Pin\A)= projection matrix!

I Projection onto the columns of A

A1f A = K x N matrix and K > N, A projeci3 \ectors
Into a higherdimensional KD space

I PinyA) =NxKmatrix
I PIn(A)*A =1 In this case

A Otherwise A PinyA) = |
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Matrix inversion (division)

A The inverse of matrix multiplication
I Not elementwise division!!
At N2POARSa | gleé& G2 adzyR2¢ |
I Inverse of the unit matrix is itself
i Inverse of a diagonal is diagonal
I Inverse of a rotation is a (counter)rotation (its transpose!)
|

" Inverse of a rank deficient matrix does not exist!
A Butpseudoinversexists

A For square matrices: Pay attention to multiplication side!
A@=C, A=C@B", B=A'@
A If matrixis notsquare use a matrlplseudomverse

A@B°C, A=CB", B=A"C
A MATLAB syntainv(a), pinv(a)
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Eigenanalysis

A If something can go through a process mostly
unscathed in character it is agensomething

I Sound example'@ © ® O

A A vector that can undergo a matrix multiplication and
keep pointing the same way is amgenvector
I Its length can change though

A How much its length changes is expressed by its
correspondingeigenvalue
I Each eigenvector of a matrix has its eigenvalue

ACAYRAY3I (KSaS8S aSA3S8SyiKAyY3
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EigenVectors and EigenValues

Black

vectors V M 221057 _196)78 \
are 0 . U -
eigen . > . -
vectors : :

A Vectors that do not change angle upon
transformation
I They may change length

MV =/V

IV =eigenvector
I | =eigenvalue N,

5 Sep 2013
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Eigen vector example
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Matrix multiplication revisited

_210 - 007g
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I Warps the paper so that the normals to the two
vectors now lie along the axes
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A stretching operation

1.4 0.8

-1 -0.5
.

A Draw two nnes

A Stretch / shrink the paper along these lines by factars
andl ,

I The factors could be negativamplies flipping the paper
A The result is a transformation of the space
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A stretching operation

A Draw two lines

A Stretch / shrink the paper along these lines by factars
andl ,
¢ The factors could be negativamplies flipping the paper

A The result is a transformation of the space
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Physical interpretation of eigen vector

A The result of the stretching is exactly the same as transformation by a
matrix

A The axes of stretching/shrinking are the eigenvectors
I The degree of stretching/shrinking are the corresponding eigenvalues

A The EigenVectors and EigenValues convey all the information about th
matrix
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Physical interpretation of eigen vector

\ :[V1 Vz]

| :é,/1 Og
g0 /.4

M =VLV"

A The result of the stretching is exactly the same as transformation by a
matrix

A The axes of stretching/shrinking are the eigenvectors
I The degree of stretching/shrinking are the corresponding eigenvalues

A The EigenVectors and EigenValues convey all the information about th
matrix
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Eigen Analysis

A Not all square matrices have nice eigen values and
vectors

I E.g. consider a rotation matrix

i\

__&0sg - singg
7~ &

&sing  cosq {j
_ eXg q
X = é U \ >
eYu

ex'g
XneW: é .l\J
eyu

R

\_—

I This rotates every vector in the plane
A No vector that remains unchanged

A In these cases the Eigen vectors and values are complex
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Singular Value Decomposition

_e10 - 007g
€11 12 ¢

A Matrix transformations convert circles to ellipses

A Eigen vectors are vectors that do not change direction in the
process

A There is another key feature of the ellipse to the left that carries
iInformation about the transform

I Can you identify it?
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Singular Value Decomposition

_e10 - 007g
€11 12 ¢

-

A The major and minor axes of the transformed ellipse
define the ellipse

I They are at right angles

A These are transformations of riganhgled vectors on
the original circle!

||||||||||||
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Singular Value Decomposition

A 810 -0078 |
| €11 12 il
i A=USVT |
matlab:
[U,SV] =svd(A) "

1 1 I 1 1 1 L 1 L 1 1 1 1 1 1 1 1 1 1 1
26 2 15 4 04 o 04 1 15 2 25 -2.58 2 -5 -1 -0.5 0 0.5 1 15 2 24

A U and V ar@rthonormalmatrices
T Columns ar@rthonormalvectors

A S is a diagonal matrix
A Theright singular vectorg V are transformed to théeft singular vectors
inU
I And scaled by theingular valueshat are the diagonal entries of S
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Singular Value Decomposition

A The left and right singular vectors are not the same

I If Alis not a square matrix, the left and right singular vectors will
be of different dimensions

A The singular values are always real

A The largest singular value is the largest amount by which a
vector is scaled by A

i Max (JAX| / X]) = Spay
A The smallest singular value is the smallest amount by whic
a vector is scaled by A
i Min (JAX| 7 [X]) = Sy
I This can be O (for lowank or nonsquare matrices)
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The Singular Values

A Square matriceproductof singularvalues= determinantof the matrix
I This is also the product of tr@genvalues

I l.e. there are two different sets of axes whose products give you the are:
an ellipse

AC2NI Iyeé GoNBFRE NBOUGFyYy3IdzZ I NI YI {
squaresubmatrixB cannot be larger than the largest singular value of

I An analogous rule applies to the smallsstgularvalue
I This property Is utilized in various problems, such as compressive, sensil
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SVD vs. Eigen Analysis

a2l L L L L L L L L L
25 -2 -1.5 -1 05 ] 05 1 15 2 28

A Eigen analysis of a matdx

I Find two vectors such that their absolute directions are not changed by t
transform

A SVD of a matriA:

I Find two vectors such that trenglebetween them is not changed by the
transform

A For one class of matrices, these two operations are the same
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A maitrix vs. Its transpose

e.7 O
A=g ﬁ
| & O

A Multiplication by matrix A:

I Transforms right singular vectors in V to left singular
vectors U

A Multiplication by its transpose™
I Transformdeft singular vectors U to right singular vector V

A A A : Converts V to U, then brings it back to V
I Result: Only scaling
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Symmetric Matrices

A Matrices that do not change on transposition
I Row and column vectors are identical

A The left and right singular vectors are identical
i U=V
i A=USU

A They are identical to thEigenvectorsof the matrix

A Symmetric matrices do not rotate the space
I Only scaling and, if Eigen values are negative, reflection
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