
Homework 3
NMF - Clustering - Sparse Optimization - SVMs

CMU 11-755/18-797: Machine Learning for Signal Processing (Fall 2019)

OUT: October 10th, 2019
DUE: October 27th, 11:59 PM

START HERE: Instructions
• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought

about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Canvas unless explicitly
stated otherwise. Please submit all results as “report YourAndrewID.pdf” in you submission. Each
derivation/proof should be completed on a separate page. Submissions can be handwritten,
but should be labeled and clearly legible. Else, submissions can be written in LaTeX. Upon submis-
sion, label each question using the template provided by Canvas. Please refer to Piazza for detailed
instruction for joining Canvas and submitting your homework.

• Programming: All programming portions of the assignments should be submitted to Canvas as well.
Please zip or tar all the code and output files together, and submit the compressed file together with
the pdf report. We will not be using this for autograding, meaning you may use any language which
you like to submit.

• Late submissions: You are allowed 7 days of grace days only on homeworks. There is no restriction
on how many late days you can use per homework. You don’t need to inform the course staff if you
use a late day.

1

1 Understanding Clustering, Regression and SVMs

1.1 Clustering. Centroids election.

In this problem, you will see why we define the centroids as the mean of the points in a cluster.

1. Let {a1,a2, ...,an} be a set of n points in a d-dimensional space. Show that the sum of the squared
distances of the ai to any point x equals the sum of the squared distances to the centroid of the ai
plus n times the squared distance from x to the centroid. That is,

n∑
i=1

‖ai − x‖2 =

n∑
i=1

‖ai − c‖2 + n‖c− x‖2 (1)

where c = 1
n

∑n
i=1 ai is the centroid of the set of points.

2. Conclude that the sum of squared distances of the ai to a point x is minimized when x is the centroid,
namely x = 1

n

∑
i ai

1.2 Support Vector Machines

Use the following dataset in 1-D space which consists of 3 positive data points {0, 1, 2} and 3 negative data
points {−2,−1, 3}.

1. Find a feature map ϕ : R1 → R2 which will map the data in the original 1-D input space (x) to a
2-D feature space ϕ(x) = (y1, y2) so that the data becomes linearly-separable. Plot the dataset after
mapping in 2-D space.

2. Write down the equation for the separator hyperplane w0 + w1y1 + w2y2 = 0 given by hard-margin
linear SVM in the 2-D feature space. Draw this hyperplane on your plot and mark the corresponding
support vector(s).

1.3 Regularized least squares

Given X, a m× n matrix, show that the solution to the regularized least-squares problem

min
β
‖y −Xβ‖2 + λ‖β‖2 (2)

is

β̂ = (X>X + λIn)−1X>y (3)

where In is the identity matrix of size n and λ > 0.

2

2 Signal Separation using Non Negative Matrix Factorization

In this problem you will use NMF to separate a mixed signal into its component signals. Specifically, your
goal is to separate music and speech sounds from a signal consisting of both.

The basic idea is that you will use NMF to first learn bases for speech and music. Then you will use the
learned bases to separate out music and speech from a recording consisting of both.

Do the following processing steps.

1. In the directory hw3materials/problem2 you will find speech.wav file. Read the speech signal and
compute its spectrogram. You already did this in previous homework 1. Use the stft function followed
by magnitude computation, as before;

[s, fs] = audioread('filename');
spectrogram = stft(s',2048,256,0,hann(2048))
M = abs(spectrogram)

2. Do the same for music.wav file.

If we call Mm and Ms the magnitude spectrum of the music and speech file respectively, then the dimen-
sionality of both matrices should be 1025× 977.

Figure 1: Magnitude spectrum (in log scale) of files music.wav and speech.wav

Now using the spectrograms for music Mm and speech Ms you are first going to learn bases, Bm and Bs for
music and speech respectively. Therefore, we given the non-negative matrices Mm and Ms, we need to find
the non-negative matrices Bm, Wm, Bs and Ws such that

Mm ≈ BmWm (4)

Ms ≈ Bs Ws (5)

2.1 NMF Estimation: Learning Bases

In this homework, given a non-negative matrix M ∈ Rp×q, we will consider the algorithm to estimate the
non-negative matrices B ∈ Rp×k and W ∈ Rk×q that attempts to minimize the KL divergence between M
and BW . The KL divergence between matrix A and matrix B is given by

D(A ||B) =
∑
ij

(
Aij log

(
Aij
Bij

)
−Aij +Bij

)
(6)

Then, the algorithm that minimizes D(M ||BW) is the following:

• Initialize B and W randomly.

3

• Iteratively update B and W using the following rule:

B = B ⊗
(
M
BW

)
W>

1p×qW>
(7)

W = W ⊗
B>

(
M
BW

)
B>1p×q

(8)

where⊗ denotes component-wise matrix multiplication, ·· denotes the component-wise matrix division,
and 1p×q is the p× q matrix which each of its component is 1.

1. Write the function NMF train which receives as inputs:

• M: a p× q non-negative matrix.

• B init: a p× k non-negative matrix. This matrix is the initial value of matrix B.

• W init: a k × q non-negative matrix. This matrix is the initial value of matrix W .

• n iter: a positive integer value. It determines the number of iterations of the algorithm.

Based on the algorithm previously described, the outputs of this function must be:

• B: a p× k non-negative matrix.

• W: a k × q non-negative matrix.

Submit your code.

2. In the directory hw3materials/problem2 you can find the files Bm init.csv and Wm init.csv. These
files are matrices which must be used as initial condition to run your function NMF train over the
magnitude spectrum of the music signal Mm. Consider values for n iter in {0, 50, 100, 150, 200, 250}.
Run your function using these parameters and plot D(Mm||BmWm) as function of n iter. Attach
this plot to your report and write the value of D(Mm||BmWm) for n iter = 250.

3. Similarly, you can also find in the directory hw3materials/problem2 the files Bs init.csv and
Ws init.csv. As before, these files are matrices which must be used as initial condition to run your
function NMF train over the magnitude spectrum of the speech signal Ms. Repeat the previous task
your this signal considering the same setting. Attach your plot to the report and write the value of
D(Ms||BsWs) for n iter = 250.

2.2 Signal Separation

Now, using the bases you learned for speech and music, we will separate a signal which is a mix between a
different speech signal and a music signal.

In the directory hw3materials/problem2 you can find a file named mixed.wav. Compute its magnitude
spectrum, that we will call Mmixed. The following figure visualize this matrix.

Figure 2: Magnitude spectrum (in log scale) of file mixed.wav

4

Our model considers that the bases we learned in the previous part are good enough to represent this audio
file. More precisely, in this case, given Mmixed, Bs and Bm, we need to learn the weights W such that

Mmixed ≈ [Bs Bm]W (9)

In this equation, [Bs Bm] represents the concatenation of the bases you already learned; so if Mmixed is a
p× q matrix, [Bs Bm] is a p× 2k matrix. Moreover, the matrix W gives us the contribution of each element
in this new set of bases. To learn W we can use the previous algorithm, but without updating the bases B
(we already know B).

1. Write the function separate signals which receives as inputs:

• M mixed: a p× q non-negative matrix.

• B speech: a p× k non-negative matrix. This matrix is the bases you have to represent speech.

• B music: a p× k non-negative matrix. This matrix is the bases you have to represent music.

• n iter: a positive integer value. It determines the number of iterations of the algorithm.

The output of this function must be:

• M speech rec: a p× q non-negative matrix. It is the recovered speech magnitude spectrum.

• M music rec: a p× q non-negative matrix. It is the recovered music magnitude spectrum.

Submit your code

2. Using the bases you learned from the previous problem when you considered n iter = 250, apply your
function separate signals using the magnitude spectrum of the mixed signal and taking n iter =
500. Submit your output as M speech rec.csv and M music rec.csv.

3. Now using the phase for the mixed signal along with reconstructed spectrograms, reconstruct time
domain music and speech signals. You did this in homework 1 as well. You can use the stft function
again to do this. Save the generated signals as speech rec.wav and music rec.wav. Submit these
two files.

5

3 Sparse recovery

We have previously noted in class that given a dictionary D and a data X that can be composed as a sparse
combination of dictionary entries, i.e. we can write X = DY , where ‖Y ‖0 ≤ k for some small value of k,
then Y can be recovered from X and D using sparse recovery techniques. Specifically, we noted that this
can be estimtated through the following minimization:

Ŷ = arg min
Y
‖X −DY ‖22 + λ‖Y ‖1 (10)

We will now see how this simple principle can be used to subsample data and still recover it. This principle
is known as “compressive sensing”.

We will use an example to explain the concept. The example will also be your homework problem.

A little story: Cassini-Huygens

The Cassini spacecraft was launched on 15 Oct 1997 and entered into orbit around Saturn on 1 July 2004.
Ever since it has been orbiting the ringed planet, taking thousands of pictures of Saturn, its rings, and its
moons, and beaming them back to Earth. Here are some of the gorgeous pictures sent by Cassini to earth.
Cassini is powered by about 33 kg of Plutonium-238, which will continue to provide power to the spacecraft
until the end of its mission.

On Christmas day 2004 Cassini launched the Huygens probe towards Saturn’s moon, Titan. Huygens
landed on Titan on 14 Jan 2005. Unlike Cassini, Huygens was powered by a battery. By design, the module
had no more than three hours of battery life, most of which was planned to be used during the descent onto
Titan. Engineers expected to get at most only 30 minutes of data from the surface, much of which was in
the form of pictures of Titan’s surface and topography. Here are the incredible pictures sent by Huygens.

Our “story” ends with this note: Huygens could only send 350 pictures before its batteries ran out of
power. (An additional 350 pictures were lost because of a software bug due to which the channel they were
sent on was ignored).

Compressive sensing to the rescue

One of the main consumptions of on-board battery is for the transmission of the pictures. Each image must
be adequately “wrapped” with error-correcting code and transmitted to the recipient (Huygens transmitted
to both Cassini and the Earth). The amount of energy consumed to transmit a picture directly relates to
the number of pixels captured – more pixels require more energy both to capture and to transmit.

Let us now consider an alternate scheme.

(a) A note on image sparsity in the wavelet domain

It is well known that when considered in the wavelet transform domain, images are sparse. A wavelet
transform can be viewed as a matrix operation (just as a discrete Fourier transform can). Let I be any
image (expressed as a vector). The wavelet transform F of the image can be computed as

F = WI (11)

where W is the transform matrix. (In reality, the transform is viewed as a filterbank, but we will
assume the simpler model above for our discussion).

The image itself can be recovered from the transform as

I = W−1F (12)

6

https://saturn.jpl.nasa.gov/galleries/images/
http://esamultimedia.esa.int/docs/titanraw/index.htm

For images, F is generally sparse, i.e. most of the components of F are zero or close to zero. We will
use this to our benefit.

(b) Capturing one-pixel masked integral images

Instead of simply snapping a picture directly, consider a scheme where Huygens would instead apply
a random mask to its camera and computes an integral instead. So, for instance, instead of capturing
the entire image, Huygens applies a random mask to get the following picture

and computes a single integral value

P1 =
∑
i,j

mi,jIi,j (13)

where mi,j is the value of the mask at pixel (i, j), and Ii,j is the actual image value. Representing the
mask as the vector m1, where the subscript 1 is to indicate that this is the first such mask applied,
Huygens’ first measurement would be

P1 = m>1 I (14)

Similarly, applying a series of other such masks, e.g.

Huygens can now get a series of measurements P1, P2, P3, · · · , PK of (scalar) measurements, where Pi
has been obtained using mask mi, and K is the total number of measurements obtained in this manner.
Representing all of the masks as a single matrix M = [m1 m2 m3 · · ·mK]>, and the measurements Pi
collectively as a vector P = [P1 P2 P3 · · ·PK]>, we can write

P = MI (15)

Note that K may be far fewer than the number of pixels in the image. Huygens can now simply
transmit P1 · · ·PK , and save on power. If K < N , where N is the number of pixels in the image,
Huygens could use the saved energy to take more pictures and transmit them. Since we are sending far
fewer numbers than we would if we were to actually send the entire image, we will call these compressed
measurements.

(c) Recovering the full image from the compressed measurements

But how then can the N -pixel pictures themselves be recovered from this sequence of K compressed
measurements? For this we exploit the sparsity of images in the wavelet domain.

Recall from our earlier discussion that we can represent I = W−1F , where F is sparse. Hence we can
write

P = MW−1F (16)

7

Let R = MW−1. Remember that the random masks applied to the camera are known, i.e. M is
known. The inverse wavelet transform matrix W−1 of course known. Hence R is known. We can
therefore write

P = RF (17)

In other words, we are expressing the compressed measurements P as a sparse combination of the
columns in a dictionary matrix R.

To recover the image I from the K × 1 compressed measurement vector P, it is sufficient to recover
the N × 1 sparse vector F , since I = W−1F . We can do so using the sparse recovery technique we
discussed in the context of dictionary-based representations, which we recalled above:

F̂ = arg min
F
‖P−RF‖22 + λ‖F‖1 (18)

The complete image can now be recovered as I = W−1F̂ . This is the basic concept behind compressive
sensing.

We have managed to come up with a solution that enables Huygens to send far fewer numbers (only
K) than the size of the image itself (N pixels) and still recover the image. Huygens can now use the
conserved battery to take more pictures. We have thus rescued NASA’s space exploration program!!

Having achieved these lofty goals, let us now return to a more mundane issue: homework problems.

3.1 `1 minimization

In this problem we give you compressed measurements from an image taken by Cassini (not Huygens). We
also give you the “measurement matrix” R. You must recover the full image. (Note: we are referring to R in
the above equations as the measurement matrix; more conventionally M would be called the measurement
matrix).

You have been provided of the original image (hw3material/problem3). This is only for reference, to
compute error; we will not use it in recovery computations. It is a 128 × 128 image with a total
of 16384 pixels. Note that the sparse wavelet transform F of the image will also have 16384 components,
although most of them will be very small or 0.

In the directory hw3materials/problem3/data you also can find three sets of compressed measurements
P1024.csv, P2048.csv and P4096.csv, and their corresponding measurement matrices R1024.csv, R2048.csv
and R4096.csv. In each case the numbers represent the number of measurements. Thus P1024.csv con-
tains a 1024× 1 vector, representing 1024 one-pixel measurements, and R1024.csv is a 1024× 16384 matrix
that gives the linear transform from the 16384-component sparse transform F to the measurement vector
in P1024. In the same directory you will also find the file named S.csv. This file is required by matlab for
image reconstruction, and is not part of the actual recovery algorithm.

You are required to use the sparse recovery procedure to recover F for each of these three measurements,
and to reconstruct the image.

1. For each of the three measurements, solve

F̂ = arg min
F
‖P−RF‖22 + λ‖F‖1 (19)

We recommend setting λ = 100, although you may also try other values. We included a matlab
implementation of a least-squares `1 (l1 ls.m) solver from Stephen Boyd (hw3materials/problem3).
Note however that this is not the best algorithm; there are other better algorithms for `1 minimization.
The Stanford sparselab page has several nice solvers. You may try these; some of them should give
you better results.

8

http://sparselab.stanford.edu/

For each of the three measurements, reconstruct the original image using the recovered F . You can do
so using matlab through the following commands:

S = csvread('S.csv');
Irec = waverec2(F',S,'db1');

Compute the error E =
∑
i,j(I(i, j)− Irec(i, j))2, where I(i, j) and Irec(i, j) are the (i, j)th pixel value

in the original and recovered image respectively.

You will be required to include your errors of three measurements and show the reconstructed image in
your report (specify which solver and what parameters do you use), and submit your code. Submissions
that report lower error will obtain better scores for this problem, so it is in your benefit to explore.

3.2 Iterative Hard Thresholding

In the previous part we solved the problem of sparse recovery as one of `1 minimization. We do so since it
is well known that minimizing the `1 norm also often minimizes the `0 norm of the solution; however our
actual objective in sparse recovery is to find a solution that has minimal `0 norm, i.e. the smallest number of
non-zero elements! Often, the optimal `1 minimized solution will differ significantly (and can be significantly
worse) than the optimal `0 minimized solution.

In this part of the problem we will solve the alternate optimization problem:

F̂ = arg min
F
‖P−RF‖22 such that ‖F‖0 ≤ K (20)

where K is the level of sparsity desired in F . This is clearly an `0 constrained optimization problem.
‖F‖0 ≤ K specifies a feasible set, which is the set of all vectors that have no more than K non-zero elements
(note that this is a non-convex set). Recall from our lecture on optimization that we can use the method of
projected gradients for this problem.

The gradient of ‖P−RF‖22 w.r.t F is given by

∇F‖P−RF‖22 = −R>(P−RF) (21)

Representing the nth iterate in an iterative estimate of F by Fn, the projected gradient descent algorithm
to estimate F would be given by

Fn+1
unconstrained = Fn + ηR>(P−RFn) (22)

Fn+1 = PK(Fn+1
unconstrained) (23)

where η is a step size. The operator PK in the second step of the algorithm simply sets the N −K smallest
elements (in magnitude) of Fn+1

unconstrained to zero, forcing it to be a K − sparse vector.

The second step in the above iteration is the “projection” step of the projected gradient algorithm. It
provably projects Fn+1

unconstrained onto the feasible set for F , namely the set of all K-sparse vectors.

The above iteration is guaranteed to converge under specific conditions on R, K and η. This is cap-
tured nicely in the following algorithm known as “Iterative Hard Thresholding” (IHT), proposed by
Tom Blumensath.

Iterative Hard Thresholding

As a first step, the IHT algorithm assumes that the individual columns of the measurement matrix
R are vectors of norm ≤ 1. So, if this condition is not satisfied, multiply R by a scalar α such that
the norm of the columns of αR is less than 1. Note that it is NOT convenient that α is too small.
Determine the largest value of α to reach the condition.

The IHT algorithm then performs iterations of the following computation:

9

1. Choose a maximum sparsity level K for your solution.

2. Initialize F0
unconstrained = 0. (Alternately, you could set it to any random value).

3. Iterate:
Fn+1 = PK(Fn + R>(P−RFn))

until the error ‖P−RF‖22 converges, or the maximum number of iterations is achieved.

4. The final output is F̂ = Fconv, where Fconv is the final estimate derived from the previous step.

What you need to do are as follows.

i. Implement the IHT algorithm. Include your IHT implementation to your code as a single file
(iht.m or iht.py)

ii. For each of the three measurements in the previous problem, find the estimate F̂ and recon-
struct the original image using the recovered F̂ , as you already did it. Compute the error
E =

∑
i,j(I(i, j)− Irec(i, j))2, where I(i, j) and Irec(i, j) are the (i, j)th pixel value in the original

and recovered image respectively. Include these errors, show the reconstructed images in your
report, and submit your code.

Note: In this problem, use K = round(max(M4 ,
N
10)), where M is the number of measurements,

and N is the size of the image. Set the maximum number of iterations to 500.

Note 2: If you need to redefine the dictionary as αR, then, you will find F such that P ≈ αRF .
However, you need to find F such that P ≈ RF .

iii. You should find that the IHT solution is considerably worse than the `1 minimization result. Can
you give any intuition as to why this is so? Include your analysis to your report.

10

	Understanding Clustering, Regression and SVMs
	Clustering. Centroids election.
	Support Vector Machines
	Regularized least squares

	Signal Separation using Non Negative Matrix Factorization
	NMF Estimation: Learning Bases
	Signal Separation

	Sparse recovery
	1 minimization
	Iterative Hard Thresholding

