
Homework 4
Maximum Likelihood - EM Algorithm

CMU 11-755/18-797: Machine Learning for Signal Processing (Fall 2019)

OUT: November 7th, 2019
DUE: November 22th, 11:59 PM

START HERE: Instructions
• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought

about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Canvas unless explicitly
stated otherwise. Please submit all results as “report YourAndrewID.pdf” in you submission. Each
derivation/proof should be completed on a separate page. Submissions can be handwritten,
but should be labeled and clearly legible. Else, submissions can be written in LaTeX. Upon submis-
sion, label each question using the template provided by Canvas. Please refer to Piazza for detailed
instruction for joining Canvas and submitting your homework.

• Programming: All programming portions of the assignments should be submitted to Canvas as well.
Please zip or tar all the code and output files together, and submit the compressed file together with
the pdf report. We will not be using this for autograding, meaning you may use any language which
you like to submit.

• Late submissions: You are allowed 7 days of grace days only on homeworks. There is no restriction
on how many late days you can use per homework. You don’t need to inform the course staff if you
use a late day.
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1 Logistic Regression and Maximum Likelihood Estimation

1.1 Why logistic regression?

In logistic regression we attempt to predict a binary random variable y (ie y can be either 0 or 1) as a
function of a vector x.

An alternative approach is to consider a linear model, this is

y = β>x + ε (1)

where ε is a random variable with 0 mean. In this case, we don’t consider that x is a random variable.

1. Show that for any binary random variable y, if E(y) = p, then V ar(y) = p(1− p)

2. Show that, using this model, E(y) = β>x

3. Using the proposed model, find an expression for V ar(ε) which depends on x.

Note: In general, we don’t use a linear model to predict a binary variable, because, as it is shown in this
problem, the variance of the error depends on the input x, which is an assumption that we want to avoid.

1.2 Maximum Likelihood of Logistic Regression

Given a sample {(x1, y1), ..., (xn, yn)}, using the logistic regression model, the likelihood of is given by

L =

n∏
i=1

pyi

i · (1− pi)
1−yi (2)

where xi ∈ RN , pi = F (β>xi), and F (x) = exp(x)
1+exp{x} .

Show that the value of β that maximizes L must satisfy the following equation

n∑
i=1

yixi =

n∑
i=1

F (β>xi)xi (3)

1.3 Maximum Likelihood Estimator

Let X be a random variable. We say that X is distributed as Uniform(a, b), noted X ∼ Uniform(a, b), if its
density function is given by

fX(x) =

{
1

b−a if x ∈ [a, b]

0 otherwise
(4)

Consider an independent identically distributed sample {x1, ..., xn}, such that

xi ∼ Uniform(−θ, θ) (5)

where θ is a positive unknown parameter.
Find an expression for the Maximum Likelihood Estimator of θ in terms of the sample {x1, ..., xn}.
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2 EM, Shift-Invariant Models and Deblurring

2.1 Shift-Invariant Models

In this problem we will consider shift-invariant mixtures of multi-variate multinomial distributions.

Consider data that have multiple discrete attributes. “Discrete” attributes are attributes that can take
only one of a countable set of values. We will consider discrete attributes of a particular kind – integers that
have not only a natural rank ordering, but also a definite notion of distance.

Let (X,Y ) be the pair of discrete attributes defining any data instance. Since both X and Y are dis-
crete, the probability distribution of (X,Y ) is a bi-variate multinomial.

We describe (X,Y ) as the outcome of generation by the following process:

The process has at its disposal several urns. Each urn has two sub-urns inside it. The first sub-urn
represents a bi-variate multinomial: it contains balls, such that each ball has an (X1, Y1) value marked on
it. The second sub-urn represents a uni-variate multinomial – it contains balls, such that each ball has a X2

value marked on it.

In the following explanation we will use the notation Px(X) to indicate the probability that the Random
Variable x takes the value X.

We represent the content of the larger sub-urn within each urn as (x1, y1). The smaller sub-urn gener-
ates the random variable x2.
Drawing procedure: At each draw the drawing process performs the following operations.

• It first randomly selects one of the larger urns according to a probability distribution Pz(Z). Here Z
represents the urn selected.

• Then it selects one ball from each of the sub-urns in the selected urn. The probability of balls in the
(x1, y1) sub-urn of the Zth urn is Px1,y1|z(X1, Y1|Z). The probability of balls in the (x2) sub-urn of

the Zth urn is Px2|z(X2|Z). Drawing from these distributions, the process obtains a (X1, Y1) pair from
the (x1, y1) sub-urn, and X2 from the x2 sub-urn

• It finally outputs (X,Y ) = (X1 +X2, Y1).
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Thus, the final observation is:
(X,Y ) = (X1 +X2, Y1)

Representing the output random variable as (x, y), the probability that it takes a value (X,Y ) is given by
Px,y(X,Y ).

1. Give the expression for Px,y(X,Y ) in terms of Pz(Z), Px1,y1(X1, Y1|Z) and Px2(X2|Z). Please, submit
your expressions with the proper explanation as part of your report.

2. You are given a histogram of counts H(X,Y ) obtained from a large number of observations. H(X,Y )
represents the number of times (X,Y ) was observed. Give the EM update rules to estimate Pz(Z),
Px1,y1(X1, Y1|Z) and Px2(X2|Z). Submit your aswer with the proper explanation as part of your report.

2.2 Application to Deblurring

In this problem we will try to deblur a picture that has become blurry due to a slight left-to-right shake of
the camera. You can find the actual picture in hw4materials/problem2.

We model the picture as a histogram (the value of any pixel at a position (X,Y ), which ranges from 0-255,
is viewed as the count of “light elements” at that position). We model this distribution as a shift-invariant
mixture of one component (i.e. one large urn).

Assuming a very slight 20-pixel strictly-horizontal shake, we model that within the X2 sub-urn X2 can
take integer values 0-19 (i.e. 20 wide). The X1 value in the (X1, Y1) sub-urn can range from 0 to (width-of-
picture - 20). Y1 can take values in the range 0 to (height-of-picture - 1).

1. Write a script that takes as input a histogram H(X,Y ) and using the EM algorithm returns Px2
(X2)

and Px1,y1
(X1, Y1). Submit your code.

2. Using the image provided, estimate and plot Px2
(X2) and Px1,y1

(X1, Y1). You will need the solution
to problem 2.1 for this problem. Attach your estimation of Px1,y1

(X1, Y1) as image to your report.
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