Machine Learning for Signal Processing Linear Gaussian Models

MLSP

- Application of Machine Learning techniques to the analysis of signals

- Modeling
- Representation
- Classification

Linear Gaussian Models

- MAP and MMSE prediction with Gaussian models
- Estimation
- Regularization
- Representation
- PCA
- Probabilistic PCA
- Gaussian Classifier

Recap: MAP Estimators

- MAP (Maximum A Posteriori): Find most probable value of \mathbf{y} given \mathbf{x}

$$
\mathbf{y}=\operatorname{argmax}_{Y} P(\mathrm{Y} \mid \mathbf{x})
$$

- We have used this for classification earlier. But we can also use it for regression
- Estimating continuous valued variables
- Lets do this for a Gaussian RV..

MAP estimation

- x and y are jointly Gaussian

$$
\begin{gathered}
z=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\operatorname{Var}(z)=C_{z z}=\left[\begin{array}{ll}
C_{x x} & C_{x y} \\
C_{y x} & C_{y y}
\end{array}\right] \quad C_{x y}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)^{T}\right] \\
\left.P(z)=N\left(\mu_{z}, C_{z z}\right)=\frac{1}{\mu_{y}}\right] \\
\sqrt{2 \pi\left|C_{z z}\right|} \\
\exp \left(-0.5\left(z-\mu_{z}\right)^{T} C_{z z}^{-1}\left(z-\mu_{z}\right)\right)
\end{gathered}
$$

- z is Gaussian

MAP estimation: Gaussian PDF
 particular value of X

$$
\begin{aligned}
& P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right) \\
& E_{y \mid x}[y]=\mu_{y \mid x}=\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right) \\
& \operatorname{Var}(y \mid x)=C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}
\end{aligned}
$$

- The conditional probability of y given x is also Gaussian
- The slice in the figure is Gaussian
- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
- Uncertainty is reduced particular value of X

MAP Estimation of a Gaussian RV

$$
\hat{y}=\arg _{\max }^{y}{ }_{y} P(y \mid x)=E_{y \mid x}[y]
$$

Conditional Probability of $\mathrm{y} \mid \mathrm{x}$

$P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right)$
$E_{y \mid x}[y]=\mu_{y}=\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right)$
$\operatorname{Var}(y \mid x)=C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}$

- The conditional pro MAP Estimate.
- The slice in the fig

Its actually a regression line

- The mean of this Gaussialis aramictioniorx
- The variance of y reduces if x is known
- Uncertainty is reduced

Conditional Probability of $\mathrm{y} \mid \mathrm{x}$

$$
P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right)
$$

$$
E_{y \mid x}[y]=\mu_{y \mid x}=\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right)
$$

$$
\operatorname{Var}(y x)=C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}
$$

- The conditional pro The variance of Y shrinks
- The slice in the fig because we know X
- The mean of this Gi Note that the actual value of X
- The variance of y re doesn't matter. Simply knowing
- Uncertainty is redu X reduces the variance of Y if the two are correlated

MMSE estimation

Its also a minimum-mean-squared error estimate

- Minimize error:

$$
E r r=E\left[\|\mathbf{y}-\hat{\mathbf{y}}\|^{2} \mid \mathbf{x}\right]=E\left[(\mathbf{y}-\hat{\mathbf{y}})^{T}(\mathbf{y}-\hat{\mathbf{y}}) \mid \mathbf{x}\right]
$$

$$
E r r=E\left[\mathbf{y}^{T} \mathbf{y}+\hat{\mathbf{y}}^{T} \hat{\mathbf{y}}-2 \hat{\mathbf{y}}^{T} \mathbf{y} \mid \mathbf{x}\right]=E\left[\mathbf{y}^{T} \mathbf{y} \mid \mathbf{x}\right]+\hat{\mathbf{y}}^{T} \hat{\mathbf{y}}-2 \hat{\mathbf{y}}^{T} E[\mathbf{y} \mid \mathbf{x}]
$$

- Differentiating and equating to 0 :

$$
d . E r r=2 \hat{\mathbf{y}}^{T} d \hat{\mathbf{y}}-2 E[\mathbf{y} \mid \mathbf{x}]^{T} d \hat{\mathbf{y}}=0
$$

$$
\hat{\mathbf{y}}=E[\mathbf{y} \mid \mathbf{x}]
$$

The MMSE estimate is the mean of the distribution

For the Gaussian: MAP = MMSE

- Would be true of any symmetric distribution

Whansㄴinear Regression: A Likelihood

Perspective

- \mathbf{y} is a noisy reading of $\mathbf{a}^{\top} \mathbf{x}$

$$
\mathbf{y}=\mathbf{a}^{T} \mathbf{x}+\mathbf{e}
$$

- Error \mathbf{e} is Gaussian

$$
\mathbf{e} \sim N\left(0, \sigma^{2} \mathbf{I}\right)
$$

- Estimate A from

$$
\mathbf{Y}=\left[\begin{array}{ll}
\mathbf{y}_{1} & \mathbf{y}_{2} \ldots \mathbf{y}_{N}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ll}
\mathbf{x}_{1} & \mathbf{x}_{2} \ldots \mathbf{x}_{N}
\end{array}\right]
$$

The Likelihood of the data

$$
\mathbf{y}=\mathbf{a}^{T} \mathbf{x}+\mathbf{e} \quad \mathbf{e} \sim N\left(0, \sigma^{2} \mathbf{I}\right)
$$

- Probability of observing a specific \mathbf{y}, given \mathbf{x}, for a particular matrix a

$$
P(\mathbf{y} \mid \mathbf{x} ; \mathbf{a})=N\left(\mathbf{y} ; \mathbf{a}^{T} \mathbf{x}, \sigma^{2} \mathbf{I}\right)
$$

- Probability of collection: $\mathbf{Y}=\left[\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}} \ldots \mathbf{y}_{\mathbf{1}}\right], \mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2} \ldots \mathbf{x}_{\mathbf{N}}\right]$

$$
P(\mathbf{Y} \mid \mathbf{X} ; \mathbf{a})=\prod_{i} N\left(\mathbf{y}_{i} ; \mathbf{a}^{T} \mathbf{x}_{i}, \sigma^{2} \mathbf{I}\right)
$$

- Assuming IID for convenience (not necessary)

Curve Fitting With Noise

$$
\begin{gathered}
\mathbf{y}=\mathbf{a}^{T} \mathbf{x}+\mathbf{e} \quad \mathbf{e} \sim N\left(0, \sigma^{2} \mathbf{I}\right) \quad \mathbf{Y}=\left[\begin{array}{ll}
\mathbf{y}_{1} & \left.\mathbf{y}_{2} \ldots \mathbf{y}_{N}\right] \quad \mathbf{X}=\left[\begin{array}{ll}
\mathbf{x}_{1} & \mathbf{x}_{2} \ldots \mathbf{x}_{N}
\end{array}\right] \\
P(\mathbf{Y} \mid \mathbf{X})=\prod_{i} \frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{D}}} \exp \left(\frac{-1}{2 \sigma^{2}}\left\|\mathbf{y}_{i}-\mathbf{a}^{T} \mathbf{x}_{i}\right\|^{2}\right) \\
\log P(\mathbf{Y} \mid \mathbf{X} ; \mathbf{a})=C-\sum_{i} \frac{1}{2 \sigma^{2}}\left\|\mathbf{y}_{i}-\mathbf{a}^{T} \mathbf{x}_{i}\right\|^{2}
\end{array},=\right.\text {. }
\end{gathered}
$$

$$
\log P(\mathbf{Y} \mid \mathbf{X}, \mathbf{a})=C-\frac{1}{2 \sigma^{2}} \operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)\right)
$$

- Maximizing the log probability is identical to minimizing the squared error
- Just L_{2} based regression

A problem with regressions

$$
\mathbf{A}=\left(\mathbf{X X}^{T}\right)^{-1} \mathbf{X} \mathbf{Y}^{T}
$$

- ML fit is sensitive
- Error is squared
- Small variations in data \rightarrow large variations in weights
- Outliers affect it adversely
- Unstable
- If dimension of $\mathbf{X}>=$ no. of instances
- $\left(\mathbf{X X}^{\mathrm{T}}\right)$ is not invertible

MAP estimation of weights

- Assume weights drawn from a Gaussian

$$
-\mathrm{P}(\mathbf{a})=\mathrm{N}\left(0, \sigma^{2} \mathrm{I}\right)
$$

- Max. Likelihood estimate

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} \log P(\mathbf{Y} \mid \mathbf{X} ; \mathbf{a})
$$

- Maximum a posteriori estimate
$\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} \log P(\mathbf{a} \mid \mathbf{Y}, \mathbf{X})=\arg \max _{\mathbf{a}} \log P(\mathbf{Y} \mid \mathbf{X}, \mathbf{a}) P(\mathbf{a})$

MAP estimation of weights

$$
\begin{aligned}
& \hat{\mathbf{a}}=\arg \max _{\mathbf{A}} \log P(\mathbf{a} \mid \mathbf{Y}, \mathbf{X})=\arg \max _{\mathbf{A}} \log P(\mathbf{Y} \mid \mathbf{X}, \mathbf{a}) P(\mathbf{a}) \\
& \square \mathrm{P}(\mathbf{a})=\mathrm{N}\left(0, \sigma^{2} \mathrm{I}\right) \\
& \log \mathrm{P}(\mathbf{a})=\mathrm{C}-\log \sigma-0.5 \sigma^{-2}\|\mathbf{a}\|^{2}
\end{aligned}
$$

$$
\log P(\mathbf{Y} \mid \mathbf{X}, \mathbf{a})=C-\frac{1}{2 \sigma^{2}} \operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)\right)
$$

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{A}} C^{\prime}-\log \sigma-\frac{1}{2 \sigma^{2}} \operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)\right)-0.5 \sigma^{2} \mathbf{a}^{T} \mathbf{a}
$$

- Similar to ML estimate with an additional term

MAP estimate of weights

$$
\mathbf{a}=\left(\mathbf{X} \mathbf{X}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X} \mathbf{Y}^{T}
$$

- Equivalent to diagonal loading of correlation matrix
- Improves condition number of correlation matrix
- Can be inverted with greater stability
- Will not affect the estimation from well-conditioned data
- Also called Tikhonov Regularization
- Dual form: Ridge regression
- MAP estimate of weights
- Not to be confused with MAP estimate of Y

MAP estimate priors

$\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)$

- Left: Gaussian Prior on W

- Right: Laplacian Prior
\square mans in MAP estimation of weights with laplacian prior
- Assume weights drawn from a Laplacian

$$
-P(\mathbf{a})=\lambda^{-1} \exp \left(-\lambda^{-1}|\mathbf{a}|_{1}\right)
$$

- Maximum a posteriori estimate

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right)-\lambda^{-1}|\mathbf{a}|_{1}
$$

- No closed form solution
- Quadratic programming solution required
- Non-trivial
mans map estimation of weights with laplacian prior
- Assume weights drawn from a Laplacian
$-P(\mathbf{a})=\lambda^{-1} \exp \left(-\lambda^{-1}|\mathbf{a}|_{1}\right)$
- Maximum a posteriori estimate
$-\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right)-\lambda^{-1}|\mathbf{a}|_{1}$
- This is also L_{1} regularized least-squares estimation

L_{1}-regularized LSE

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right)-\lambda^{-1}|\mathbf{a}|_{1}
$$

- No closed form solution
- Quadratic programming solutions required
- Dual formulation
$\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right)$ subject to $|\mathbf{a}|_{1} \leq t$
- "LASSO" - Least absolute shrinkage and selection operator

LASSO Algorithms

- Various convex optimization algorithms
- LARS: Least angle regression
- Pathwise coordinate descent..
- Matlab code available from web

Regularized least squares

- Regularization results in selection of suboptimal (in least-squares sense) solution
- One of the loci outside center
- Tikhonov regularization selects shortest solution
- L_{1} regularization selects sparsest solution

Tikhnov regularization (Gaussian prior)

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right)-\lambda^{-1}\|\mathbf{a}\|^{2}
$$

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right) \text { subject to }\|\mathbf{a}\|^{2} \leq t
$$

- Expand both the ball and the ellipses till the both just meet
- Fix the ball, expand the ellipse till it meets the ball

L_{1} regularization
(Laplacian prior)

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right)-\lambda^{-1}|\mathbf{a}|_{1}
$$

$$
\hat{\mathbf{a}}=\arg \max _{\mathrm{a}} C^{\prime}-\operatorname{trace}\left(\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{Y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\right) \text { subject to }|\mathbf{a}|_{1} \leq t
$$

- Expand both the diamond and the ellipses till the both just meet
- Fix the diamond, expand the ellipse till it meets the ball

MAP / ML / MMSE

- General statistical estimators
- All used to predict a variable, based on other parameters related to it..
- Most common assumption: Data are Gaussian, all RVs are Gaussian
- Other probability densities may also be used..
- For Gaussians relationships are linear as we saw..
- Linear Gaussian Models..
- But first a recap

Linear Gaussian Models

- MAP and MMSE prediction with Gaussian models
- Estimation
- Regularization
- Representation
- PCA
- Probabilistic PCA
- Gaussian Classifier

A Brief Recap

- Principal component analysis: Find the K bases that best explain the given data
- Find \mathbf{B} and \mathbf{C} such that the difference between \mathbf{D} and $B C$ is minimum
- While constraining that the columns of B are orthonormal

Remember Eigenfaces

- Approximate every face f as

$$
f=w_{f, 1} V_{1}+w_{f, 2} V_{2}+w_{f, 3} V_{3}+. .+w_{f, k} V_{k}
$$

- Estimate V to minimize the squared error
- Error is unexplained by $V_{1} . . V_{k}$
- Error is orthogonal to Eigenfaces

Karhunen Loeve vs. PCA

- Eigenvectors of the Correlation matrix:
- Principal directions of tightest ellipse centered on origin
- Directions that retain maximum energy

- Eigenvectors of the Covariance matrix:
- Principal directions of tightest ellipse centered on data
- Directions that retain maximum variance

Eigen Representation

- K-dimensional representation
- Error is orthogonal to representation
- Weight and error are specific to data instance

Representation

- K-dimensional representation
- Error is orthogonal to representation
- Weight and error are specific to data instance

Representation

All data with the same representation wV_{1}
lie a plane orthogonal to $w V_{1}$

- K-dimensional representation
- Error is orthogonal to representation

With 2 bases

Error is at 90° to the eigenfaces

$+w_{21}{ }^{\text {T }}+\varepsilon_{1}$

Illustration assuming 3D space

- K-dimensional representation
- Error is orthogonal to representation
- Weight and error are specific to data instance

With 2 bases

Error is at 90° to the eigenfaces

Illustration assuming 3D space

- K-dimensional representation
- Error is orthogonal to representation
- Weight and error are specific to data instance

In Vector Form

Error is at 90° to the eigenfaces

$$
\mathbf{X}_{\mathrm{i}}=\boldsymbol{w}_{\mathbf{1 i}} \mathbf{V}_{\mathbf{1}}+\boldsymbol{w}_{2 \mathrm{i}} \mathbf{V}_{\mathbf{2}}+\varepsilon_{\mathrm{i}}
$$

$$
X_{i}=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{l}
w_{1 i} \\
w_{2 i}
\end{array}\right]+\varepsilon_{i}
$$

- K-dimensional representation
- Error is orthogonal to representation
- Weight and error are specific to data instance

In Vector Form

Error is at 90° to the eigenface

$$
\begin{aligned}
& v_{2} \underset{\substack{m_{2} \\
v_{2} \\
v_{2} v_{2} \\
d v_{1} \\
d v_{1}}}{ } \\
& \mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
& \mathbf{e}^{T} \mathbf{V}=0
\end{aligned}
$$

- K-dimensional representation
- \mathbf{x} is a D dimensional vector
- \mathbf{V} is a $D \times K$ matrix
- \mathbf{w} is a K dimensional vector
- \mathbf{e} is a D dimensional vector

Learning PCA

- For the given data: find the K-dimensional subspace such that it captures most of the variance in the data
- Variance in remaining subspace is minimal

Constraints

Error is at 90° to the eigenface

$\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}$

- $\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}$: Eigen vectors are orthogonal to each other
- For every vector, error is orthogonal to Eigen vectors
$-\mathbf{e}^{\mathrm{T}} \mathbf{V}=0$
- Over the collection of data
- Average $\mathbf{w w}^{\mathrm{T}}=$ Diagonal : Eigen representations are uncorrelated
$-\mathbf{e}^{\mathrm{T}} \mathbf{e}=$ minimum: Error variance is minimum
- Mean of error is 0

Error is at 90° to the eigenface

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{w} \sim N(0, B) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- \mathbf{x} is a random variable generated according to a linear relation
- \mathbf{w} is drawn from an K-dimensional Gaussian with diagonal covariance
- \mathbf{e} is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian
- Estimate \mathbf{V} (and B) given examples of \mathbf{x}

Linear Gaussian Models!!

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{w} \sim N(0, B) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- \mathbf{x} is a random variable generated according to a linear relation
- w is drawn from a Gaussian
- \mathbf{e} is drawn from a 0-mean Gaussian
- Estimate \mathbf{V} given examples of \mathbf{x}
- In the process also estimate \mathbf{B} and \mathbf{E}

Linear Gaussian Models!!

- Es. E is given mean Gaussian
- In the process also estimate \mathbf{B}_{5} and \mathbf{E}

Linear Gaussian Models

$$
\begin{array}{ll}
\mathbf{x}=\boldsymbol{\mu}+\mathbf{V} \mathbf{w}+\mathbf{e} & \mathbf{w} \sim N(0, B) \\
& \mathbf{e} \sim N(0, E)
\end{array}
$$

- Observations are linear functions of two uncorrelated Gaussian random variables
- A "weight" variable w
- An "error" variable e
- Error not correlated to weight: $\mathrm{E}\left[\mathbf{e}^{\mathrm{T}} \mathbf{w}\right]=0$
- Learning LGMs: Estimate parameters of the model given instances of \mathbf{x}
- The problem of learning the distribution of a Gaussian RV

LGMs: Probability Density

$$
\begin{array}{ll}
\mathbf{x}=\boldsymbol{\mu}+\mathbf{V} \mathbf{w}+\mathbf{e} & \mathbf{w} \sim N(0, B) \\
& \mathbf{e} \sim N(0, E)
\end{array}
$$

- The mean of \mathbf{x} :

$$
E[\mathbf{x}]=\boldsymbol{\mu}+\mathbf{V} E[\mathbf{w}]+E[\mathbf{e}]=\boldsymbol{\mu}
$$

- The Covariance of \mathbf{x} :
$E\left[(\mathbf{x}-E[\mathbf{x}])(\mathbf{x}-E[\mathbf{x}])^{T}\right]=\widehat{\mathbf{V}} B \mathbf{V}^{T}+E$

The probability of \mathbf{x}

$$
\mathbf{x}=\boldsymbol{\mu}+\mathbf{V} \mathbf{w}+\mathbf{e}
$$

$$
\begin{aligned}
& \mathbf{w} \sim N(0, B) \\
& \mathbf{e} \sim N(0, E)
\end{aligned}
$$

$$
\mathbf{x} \sim N\left(\boldsymbol{\mu}, \mathbf{V} B \mathbf{V}^{T}+E\right)
$$

$$
P(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{D}\left|\mathbf{V} B \mathbf{V}^{T}+E\right|}} \exp \left(-0.5(\mathbf{x}-\boldsymbol{\mu})^{T}\left(\mathbf{V} B \mathbf{V}^{T}+E\right)^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- \mathbf{x} is a linear function of Gaussians: \mathbf{x} is also Gaussian
- Its mean and variance are as given
W) Estimating the variables of the
model

$$
\begin{array}{rrr}
\mathbf{x}=\boldsymbol{u}+\mathbf{V} \mathbf{w}+\mathbf{e} & \mathbf{w} & \sim N(0, B) \\
& \mathbf{e} & \sim N(0, E)
\end{array}
$$

$$
\mathbf{x} \sim N\left(\boldsymbol{\mu}, \mathbf{V} B \mathbf{V}^{T}+E\right)
$$

- Estimating the variables of the LGM is equivalent to estimating $\mathrm{P}(\mathbf{x})$
- The variables are μ, \mathbf{V}, B and E

Estimating the model

$$
\begin{aligned}
\mathbf{x}= & \boldsymbol{\mu}+\mathbf{V} \mathbf{w}+\mathbf{e} \quad \begin{array}{l}
\mathbf{w} \sim N \\
\\
\\
\\
\mathbf{x} \sim N\left(\boldsymbol{\mu}, \mathbf{V} B \mathbf{V}^{T}+E\right)
\end{array}
\end{aligned}
$$

$$
\mathbf{w} \sim N(0, B)
$$

$$
\mathbf{e} \sim N(0, E)
$$

- The model is indeterminate:
$-\mathbf{V w}=\mathbf{V C C}^{-1} \mathbf{w}=(\mathbf{V C})\left(\mathbf{C}^{-1} \mathbf{w}\right)$
- We need extra constraints to make the solution unique
- Usual constraint : $B=\mathbf{I}$
- Variance of \mathbf{w} is an identity matrix
W) Estimating the variables of the model

$$
\mathbf{x}=\boldsymbol{\mu}+\mathbf{V} \mathbf{w}+\mathbf{e} \quad \begin{array}{ll}
\mathbf{w} \sim N(0, I) \\
& \mathbf{e} \sim N(0, E)
\end{array}
$$

$$
\mathbf{x} \sim N\left(\boldsymbol{\mu}, \mathbf{V} \mathbf{V}^{T}+E\right)
$$

- Estimating the variables of the LGM is equivalent to estimating $\mathrm{P}(\mathbf{x})$
- The variables are μ, \mathbf{V}, and E

The Maximum Likelihood Estimate

$$
\mathbf{x} \sim N\left(\boldsymbol{\mu}, \mathbf{V} \mathbf{V}^{T}+E\right)
$$

- Given training set $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots \mathbf{x}_{\mathbf{N}}$, find $\mu, \mathbf{V}, \boldsymbol{E}$
- The ML estimate of μ does not depend on the covariance of the Gaussian

$$
\boldsymbol{\mu}=\frac{1}{N} \sum_{i} \mathbf{x}_{i}
$$

Centered Data

- We can safely assume "centered" data
$-\mu=0$
- If the data are not centered, "center" it
- Estimate mean of data
- Which is the maximum likelihood estimate
- Subtract it from the data

Simplified Model

$$
\begin{aligned}
& \mathbf{x}= \mathbf{V w}+\mathbf{e} \\
& \\
& \mathbf{x} \sim N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right)
\end{aligned}
$$

$$
\mathbf{w} \sim N(0, I)
$$

$$
\mathbf{e} \sim N(0, E)
$$

- Estimating the variables of the LGM is equivalent to estimating $\mathrm{P}(\mathbf{x})$
- The variables are \mathbf{V}, and E

Estimating the model

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}
$$

$$
\mathbf{x} \sim N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right)
$$

- Given a collection of \mathbf{x}_{i} terms
$-\mathbf{x}_{1}, \mathbf{x}_{2}, . . \mathbf{x}_{\mathrm{N}}$
- Estimate \mathbf{V} and E
- \mathbf{w} is unknown for each \mathbf{x}
- But if assume we know \mathbf{w} for each \mathbf{x}, then what do we get:

Estimating the Parameters

$$
\mathbf{x}_{i}=\mathbf{V} \mathbf{w}_{i}+\mathbf{e}
$$

$$
P(\mathbf{e})=N(0, E)
$$

$$
P(\mathbf{x} \mid \mathbf{w})=N(\mathbf{V} \mathbf{w}, E)
$$

Gaussian

$$
\begin{array}{cc}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \quad \mathbf{z}=\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{w}
\end{array}\right] & P(\mathbf{z})=N\left(\mu_{\mathbf{z}}, C_{\mathrm{zz}}\right) \\
P(\mathbf{x})=N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right) & \mu_{\mathrm{z}}=\left[\begin{array}{l}
\mu_{\mathbf{x}} \\
\mu_{\mathbf{w}}
\end{array}\right]=0 \\
P(\mathbf{w})=N(0, I) & C_{\mathrm{zz}}=\left[\begin{array}{ll}
C_{\mathbf{x x}} & C_{\mathbf{x w}} \\
C_{\mathbf{w x}} & C_{\mathrm{ww}}
\end{array}\right] \\
C_{\mathrm{xw}}=E\left[\left(\mathbf{x}-\mu_{\mathrm{x}}\right)\left(\mathbf{w}-\mu_{\mathbf{w}}\right)^{T}\right]=\mathbf{V} & C_{\mathrm{zz}}=\left[\begin{array}{cc}
\mathbf{V} \mathbf{V}^{T}+E & \mathbf{V} \\
\mathbf{V}^{T} & I
\end{array}\right]
\end{array}
$$

- \mathbf{x} and \mathbf{w} are jointly Gaussian!

MAP estimation: Gaussian PDF
 particular value of X

Conditional Probability of $\mathrm{x} \mid \mathrm{w}$

$$
\begin{aligned}
& P(\mathbf{x} \mid \mathbf{w})=N\left(\mu_{x}+C_{x w} C_{w w}^{-1}\left(\mathbf{w}-\mu_{w}\right), C_{x x}-C_{x w} C_{w w}^{-1} C_{w x}\right) \\
& =N\left(C_{x w} C_{w w}^{-1} \mathbf{w}, C_{x x}-C_{x w} C_{w w}^{-1} C_{w x}\right) \\
& E_{x \mid w}[\mathbf{x}]=C_{x w} C_{w w}^{-1} \mathbf{w} \\
& \operatorname{Var}(\mathbf{x} \mid \mathbf{w})=C_{x x}-C_{x w} C_{w w}^{-1} C_{w x}
\end{aligned}
$$

- Comparing to

$$
P(\mathbf{x} \mid \mathbf{w})=N(\mathbf{V} \mathbf{w}, E)
$$

- We get:

$$
\mathbf{V}=C_{x w} C_{w w}^{-1} \quad E=C_{x x}-C_{x w} C_{w w}^{-1} C_{w x}
$$

Or more explicitly

$$
C_{w w}=\frac{1}{N} \sum_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{T}
$$

$$
C_{x w}=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{w}_{i}^{T}
$$

$$
\mathbf{V}=C_{x w} C_{w w}^{-1}
$$

$$
E=C_{x x}-C_{x w} C_{w w}^{-1} C_{w x}
$$

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} \mathbf{w}_{i}^{T}\right)\left(\sum_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{T}\right)^{-1}
$$

$$
E=\frac{1}{N}\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\mathbf{V} \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}^{T}\right)
$$

Estimating LGMs: If we know w

$$
\mathbf{x}_{i}=\mathbf{V} \mathbf{w}_{i}+\mathbf{e} \quad P(\mathbf{e})=N(0, E)
$$

$\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} \mathbf{w}_{i}^{T}\right)\left(\sum_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{T}\right)^{-1}$

$$
E=\frac{1}{N}\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\mathbf{V} \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}^{T}\right)
$$

- But in reality we don't know the \mathbf{w} for each \mathbf{x}
- So how to deal with this?
- EM..

Recall EM

- We figured out how to compute parameters if we knew the missing information
- Then we "fragmented" the observations according to the posterior probability $\mathrm{P}(\mathrm{z} \mid \mathrm{x})$ and counted as usual
- In effect we took the expectation with respect to the a posteriori probability of the missing data: $\mathrm{P}(\mathrm{z} \mid \mathrm{x})$

EM for LGMs

$$
\mathbf{x}_{i}=\mathbf{V} \mathbf{w}_{i}+\mathbf{e} \quad P(\mathbf{e})=N(0, E)
$$

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} \mathbf{w}_{i}^{T}\right)\left(\sum_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{T}\right)^{-1} \quad E=
$$

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \quad E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

- Replace unseen data terms with expectations taken w.r.t. $\mathrm{P}\left(\mathbf{w} \mid \mathbf{x}_{i}\right)$

EM for LGMs

$$
\mathbf{x}_{i}=\mathbf{V} \mathbf{w}_{i}+\mathbf{e} \quad P(\mathbf{e})=N(0, E)
$$

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} \mathbf{w}_{i}^{T}\right)\left(\sum_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{T}\right)^{-1}
$$

$$
E=\frac{1}{N}\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\mathbf{V} \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}^{T}\right)
$$

- Replace unseen data terms with expectations taken w.r.t. $\mathrm{P}\left(\mathbf{w} \mid \mathbf{x}_{i}\right)$

Flipping the problem

$$
E_{\mathbf{w | x _ { i }}}[\mathbf{w}]
$$

$E_{\mathbf{w | x} i}\left[\mathbf{w w} \mathbf{w}^{T}\right]$

- How do we estimate the above terms?
- MAP to the rescue!!

Expected Value of w given x

$$
\begin{gathered}
\mathbf{x}=\mathbf{V w}+\mathbf{e} \quad P(\mathbf{e})=N(0, E) \quad P(\mathbf{w})=N(0, I) \\
P(\mathbf{x})=N\left(0, \mathbf{V V}^{T}+E\right)
\end{gathered}
$$

- \mathbf{x} and \mathbf{w} are jointly Gaussian!
- \mathbf{x} is Gaussian
- w is Gaussian
- They are linearly related

$$
\mathbf{z}=\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{w}
\end{array}\right] \quad P(\mathbf{z})=N\left(\mu_{\mathbf{z}}, C_{\mathbf{z z}}\right)
$$

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{e} \sim N(0, E) \quad P(\mathbf{w})=N(0, I) \\
P(\mathbf{x})=N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right) \\
C_{x x}=\mathbf{V} \mathbf{V}^{T}+E \quad C_{w w}=\mathbf{I} \\
C_{\mathbf{x w}}=E\left[\left(\mathbf{x}-\mu_{\mathbf{x}}\right)\left(\mathbf{w}-\mu_{\mathbf{w}}\right)^{T}\right]=\mathbf{V}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{z} & =\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{w}
\end{array}\right] \\
P(\mathbf{z}) & =N\left(\mu_{\mathrm{z}}, C_{\mathrm{zz}}\right) \\
\mu_{\mathrm{z}} & =\left[\begin{array}{l}
\mu_{\mathrm{x}} \\
\mu_{\mathrm{w}}
\end{array}\right]=0 \\
C_{\mathrm{zz}} & =\left[\begin{array}{ll}
C_{\mathrm{xx}} & C_{\mathrm{xw}} \\
C_{\mathrm{wx}} & C_{\mathrm{ww}}
\end{array}\right]
\end{aligned}
$$

- \mathbf{x} and \mathbf{w} are jointly Gaussian!

Recall: w and x are jointly Gaussian

- \mathbf{x} and \mathbf{w} are jointly Gaussian!

P(w|z)

- $P(w \mid z)$ is a Gaussian

$$
\begin{aligned}
P(\mathbf{w} \mid \mathbf{x}) & =N\left(\mu_{\mathrm{w}}+C_{\mathrm{wx}} C_{\mathbf{x x}}^{-1}\left(x-\mu_{\mathrm{x}}\right), C_{\mathrm{ww}}-C_{\mathrm{wx}} C_{\mathbf{x x}}^{-1} C_{\mathrm{xw}}\right) \\
& =N\left(C_{\mathrm{w} \mathbf{x}} C_{\mathbf{x x}}^{-1} \mathbf{x}, C_{\mathrm{ww}}-C_{\mathrm{wx}} C_{\mathrm{xx}}^{-1} C_{\mathrm{xw}}\right) \\
& =N\left(\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}, I-\mathbf{V}^{T}\left(\mathbf{V}^{T}+E\right)^{-1} \mathbf{V}\right)
\end{aligned}
$$

$$
\operatorname{Var}(\mathbf{w} \mid \mathbf{x})=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}
$$

$$
E_{\mathbf{w} \mathbf{x}_{i}}[\mathbf{w}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}
$$

$$
E_{\mathbf{w} \mid x_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=\operatorname{Var}(\mathbf{w} \mid \mathbf{x})+E_{\mathbf{w} \mid x_{i}}[\mathbf{w}] E_{\mathbf{w} \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

$$
E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w | x _ { i }}}[\mathbf{w}] E_{\mathbf{w | x _ { i }}}[\mathbf{w}]^{T}
$$

LGM: The complete EM algorithm

$$
\begin{array}{rl}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} & \mathbf{e} \sim N(0, E) \quad P(\mathbf{w})=N(0, I) \\
& P(\mathbf{x})=N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right)
\end{array}
$$

- Initialize \mathbf{V} and E
- E step:

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{W} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1}
$$

$$
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w | \mathbf { x } _ { i }}}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

So what have we achieved

- Employed a complicated EM algorithm to learn a Gaussian PDF for a variable x
- What have we gained???
- PCA
- Sensible PCA
- EM algorithms for PCA (Probabilistic PCA)
- Next class:
- Factor Analysis
- FA for feature extraction

Learning principal components

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{w} \sim N(0, I) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- Find directions that capture most of the variation in the data
- Error is orthogonal to these variations

Learning with insufficient data

FULL COV FIGURE

- The full covariance matrix of a Gaussian has D^{2} terms
- Fully captures the relationships between variables
- Problem: Needs a lot of data to estimate robustly

To be continued..

- Other applications..
- Next class

Linear Gaussian Models

- Recap
- Representation
- PCA
- Probabilistic PCA
- Gaussian Classifier

Multivariate Normal Distribution

$$
\mathbf{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)
$$

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

Bivariate Normal

$\operatorname{Cov}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0, \operatorname{Var}\left(\mathrm{x}_{1}\right)=\operatorname{Var}\left(\mathrm{x}_{2}\right)$

$$
\operatorname{Cov}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)>0
$$

$$
\operatorname{Cov}\left(x_{1}, x_{2}\right)=0, \operatorname{Var}\left(x_{1}\right)=\operatorname{Var}\left(x_{2}\right)
$$

$\operatorname{Cov}\left(x_{1}, x_{2}\right)=0, \operatorname{Var}\left(x_{1}\right)>\operatorname{Var}\left(x_{2}\right)$

Parametric Classification

- If $p\left(\boldsymbol{x} \mid C_{i}\right) \sim N\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
p\left(\mathbf{x} \mid C_{i}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{i}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)\right]
$$

- Discriminant functions

$$
\begin{aligned}
g_{i}(\mathbf{x}) & =\log p\left(\mathbf{x} \mid C_{i}\right)+\log P\left(C_{i}\right) \\
& =-\frac{d}{2} \log 2 \pi-\frac{1}{2} \log \left|\Sigma_{i}\right|-\frac{1}{2}\left(\mathbf{x}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}-\mu_{i}\right)+\log P\left(C_{i}\right)
\end{aligned}
$$

Estimation of Parameters

$$
\begin{aligned}
\hat{P}\left(C_{i}\right) & =\frac{N_{i}}{N} \\
\mathbf{m}_{i} & =\frac{\sum_{t \in c \text { cassi }} \mathbf{x}^{t}}{N_{i}} \\
\mathbf{S}_{i} & =\frac{\sum_{t \in \text { cassi }}\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)^{T}}{N_{i}} \\
g_{i}(\mathbf{x}) & =-\frac{1}{2} \log \left|\mathbf{S}_{i}\right|-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{i}\right)^{T} \mathbf{S}_{i}^{-1}\left(\mathbf{x}-\mathbf{m}_{i}\right)+\log \hat{P}\left(C_{i}\right)
\end{aligned}
$$

Different $\mathbf{S}_{\mathbf{i}}$

- Quadratic discriminant

$$
\begin{aligned}
g_{i}(\mathbf{x}) & =-\frac{1}{2} \log \left|\mathbf{S}_{i}\right|-\frac{1}{2}\left(\mathbf{x}^{\top} \mathbf{S}_{i}^{-1} \mathbf{x}-2 \mathbf{x}^{\top} \mathbf{S}_{i}^{-1} \mathbf{m}_{i}+\mathbf{m}_{i}^{\top} \mathbf{S}_{i}^{-1} \mathbf{m}_{i}\right)+\log \hat{P}\left(c_{i}\right) \\
& =\mathbf{x}^{\top} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0} \\
& \text { where } \\
\mathbf{W}_{i}= & -\frac{1}{2} \mathbf{S}_{i}^{-1} \\
\mathbf{w}_{i}= & \mathbf{S}_{i}^{-1} \mathbf{m}_{i} \\
w_{i 0}= & -\frac{1}{2} \mathbf{m}_{i}^{\top} \mathbf{S}_{i}^{-1} \mathbf{m}_{i}-\frac{1}{2} \log \left|\mathbf{S}_{i}\right|+\log \hat{P}\left(C_{i}\right)
\end{aligned}
$$

likelihoods
$x_{2} \quad x_{1}$
discriminant:
$P\left(C_{1} \mid x\right)=0.5$

- Shared common sample covariance \mathbf{S}

$$
S=\sum_{i} \hat{P}\left(C_{i}\right) S_{i}
$$

- Discriminant reduces to

$$
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{i}\right)^{T} S^{-1}\left(\mathbf{x}-\mathbf{m}_{i}\right)+\log \hat{P}\left(C_{i}\right)
$$

which is a linear discriminant

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0}
$$

where

$$
\mathbf{w}_{i}=\mathbf{S}^{-1} \mathbf{m}_{i} \quad w_{i 0}=-\frac{1}{2} \mathbf{m}_{i}^{\top} \mathbf{S}^{-1} \mathbf{m}_{i}+\log \hat{P}\left(C_{i}\right)
$$

Common Covariance Matrix S

Diagonal S

- When $x_{j} j=1, . . d$, are independent, Σ is diagonal
$p\left(x \mid C_{i}\right)=\prod_{j} p\left(x_{j} \mid C_{i}\right) \quad$ (Naive Bayes' assumption)

$$
g_{i}(\mathbf{x})=-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}^{t}-m_{i j}}{s_{j}}\right)^{2}+\log \hat{P}\left(C_{i}\right)
$$

Classify based on weighted Euclidean distance (in s_{j} units) to the nearest mean

Diagonal S

Diagonal S, equal variances

- Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$
\begin{aligned}
g_{i}(\mathbf{x}) & =-\frac{\| \mathbf{x}-\mathbf{m}}{2 s^{2}}+\log \hat{P}\left(C_{i}\right) \\
& =-\frac{1}{2 s^{2}} \sum_{j=1}^{d}\left(x_{j}^{t}-m_{i j}\right)^{2}+\log \hat{P}\left(C_{i}\right)
\end{aligned}
$$

- Each mean can be considered a prototype or template and this is template matching

Diagonal S, equal variances

Population likelihoods and posteriors

Diag. covar.

Shared covar.

Equal var.

