Machine Learning for Signal Processing Applications of Linear Gaussian Models

Recap: MAP Estimators

- MAP (Maximum A Posteriori): Find most probable value of \mathbf{y} given \mathbf{x}

$$
\mathbf{y}=\operatorname{argmax}_{Y} P(\mathrm{Y} \mid \mathbf{x})
$$

MAP estimation

- x and y are jointly Gaussian

$$
\begin{gathered}
z=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\operatorname{Var}(z)=C_{z z}=\left[\begin{array}{ll}
C_{x x} & C_{x y} \\
C_{y x} & C_{y y}
\end{array}\right] \quad C_{x y}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)^{T}\right] \\
\left.P(z)=N\left(\mu_{z}, C_{z z}\right)=\frac{1}{\mu_{y}}\right] \\
\sqrt{2 \pi\left|C_{z z}\right|} \\
e x p \\
\left(-0.5\left(z-\mu_{z}\right)^{T} C_{z z}^{-1}\left(z-\mu_{z}\right)\right)
\end{gathered}
$$

- z is Gaussian

MAP estimation: Gaussian PDF
 particular value of X

$$
\begin{aligned}
& P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right) \\
& E_{y \mid x}[y]=\mu_{y \mid x}=\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right) \\
& \operatorname{Var}(y \mid x)=C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}
\end{aligned}
$$

- The conditional probability of y given x is also Gaussian
- The slice in the figure is Gaussian
- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
- Uncertainty is reduced particular value of X

T) error estimate
- Minimize error:

$$
\operatorname{Err}=E\left[\|\mathbf{y}-\hat{\mathbf{y}}\|^{2} \mid \mathbf{x}\right]=E\left[(\mathbf{y}-\hat{\mathbf{y}})^{T}(\mathbf{y}-\hat{\mathbf{y}}) \mid \mathbf{x}\right]
$$

$$
E r r=E\left[\mathbf{y}^{T} \mathbf{y}+\hat{\mathbf{y}}^{T} \hat{\mathbf{y}}-2 \hat{\mathbf{y}}^{T} \mathbf{y} \mid \mathbf{x}\right]=E\left[\mathbf{y}^{T} \mathbf{y} \mid \mathbf{x}\right]+\hat{\mathbf{y}}^{T} \hat{\mathbf{y}}-2 \hat{\mathbf{y}}^{T} E[\mathbf{y} \mid \mathbf{x}]
$$

- Differentiating and equating to 0 :

$$
d . E r r=2 \hat{\mathbf{y}}^{T} d \hat{\mathbf{y}}-2 E[\mathbf{y} \mid \mathbf{x}]^{T} d \hat{\mathbf{y}}=0
$$

$$
\hat{\mathbf{y}}=E[\mathbf{y} \mid \mathbf{x}]
$$

The MMSE estimate is the mean of the distribution

For the Gaussian: MAP = MMSE

Most likely value
is also

The MEAN value

Y

- Would be true of any symmetric distribution
- Linear Gaussian Models..
- PCA to develop the idea of LGM

A Brief Recap

- Principal component analysis: Find the K bases that best explain the given data
- Find \mathbf{B} and \mathbf{C} such that the difference between \mathbf{D} and $B C$ is minimum
- While constraining that the columns of \mathbf{B} are orthonormal

Learning PCA

- For the given data: find the K-dimensional subspace such that it captures most of the variance in the data
- Variance in remaining subspace is minimal

Error is at 90° to the eigenface

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{w} \sim N(0, B) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- \mathbf{x} is a random variable generated according to a linear relation
- \mathbf{w} is drawn from an K-dimensional Gaussian with diagonal covariance
- \mathbf{e} is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian
- Estimate \mathbf{V} (and B) given examples of \mathbf{x}

Linear Gaussian Models!!

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{w} \sim N(0, B) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- \mathbf{x} is a random variable generated according to a linear relation
- w is drawn from a Gaussian
- \mathbf{e} is drawn from a 0-mean Gaussian
- Estimate \mathbf{V} given examples of \mathbf{x}
- In the process also estimate \mathbf{B} and \mathbf{E}

model

$$
\begin{array}{ll}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} & \mathbf{w} \sim N(0, I) \\
& \mathbf{e} \sim N(0, E)
\end{array}
$$

$$
\mathbf{x} \sim N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right)
$$

- Estimating the variables of the LGM is equivalent to estimating $\mathrm{P}(\mathbf{x})$
- The variables are \mathbf{V}, and E
- Assuming "centered" (0-mean) data

LGM: The complete EM algorithm

- Initialize \mathbf{V} and E
- E step:

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{W}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{W | x} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1}
$$

$$
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathrm{w} \mid \mathbf{x},}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

So what have we achieved

- Employed a complicated EM algorithm to learn a Gaussian PDF for a variable x
- What have we gained???
- Example uses:
- PCA
- Sensible PCA
- EM algorithms for PCA
- Factor Analysis
- FA for feature extraction

Learning principal components

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
\mathbf{w} \sim N(0, I) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- Find directions that capture most of the variation in the data
- Error is orthogonal to principal directions
$-V^{T} \mathbf{e}=0 ; e^{T} V=0$

Some Observations: 1

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \\
E=\mathrm{E}\left[\mathbf{e d}^{T}\right]
\end{gathered}
$$

$$
\mathbf{V}^{T} E=\mathrm{E}\left[\mathbf{V}^{T} \mathbf{e s}^{T}\right]=\mathrm{E}\left[0 \mathbf{e}^{T}\right]=0
$$

- The covariance \mathbf{E} of \mathbf{e} is orthogonal to \mathbf{V}
$-\mathbf{V}$ is in the null space of \mathbf{E}

Observation 2

$$
\mathbf{V}^{T} E=0
$$

$$
\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1}=\left(\mathbf{V}^{T} \mathbf{V}\right)^{-1} \mathbf{V}^{T}
$$

- Proof

$$
\begin{gathered}
\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1}\left(\mathbf{V} \mathbf{V}^{T}+E\right)=\left(\mathbf{V}^{T} \mathbf{V}\right)^{-1} \mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right) \\
\mathbf{V}^{T}=\left(\mathbf{V}^{T} \mathbf{V}\right)^{-1} \mathbf{V}^{T} \mathbf{V} \mathbf{V}^{T}+\left(\mathbf{V}^{T} \mathbf{V}\right)^{-1} \mathbf{V}^{T} E \\
\mathbf{V}^{T}=\mathbf{I} \mathbf{V}^{T}+\left(\mathbf{V}^{T} \mathbf{V}\right)^{-1} 0 \\
\mathbf{V}^{T}=\mathbf{V}^{T}
\end{gathered}
$$

Observation 3

$$
\mathbf{V}^{T} E=0
$$

$$
\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1}=\left(\mathbf{V}^{T} \mathbf{V}\right)^{-1} \mathbf{V}^{T}
$$

$$
=\operatorname{pinv}(\mathbf{V})
$$

LGM: The complete EM algorithm
 $$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \quad \mathbf{X} \approx \mathbf{V} \mathbf{W}
$$

- Initialize \mathbf{V} and E
- E step: $E_{w \mathbf{w i x}_{i}}[\mathbf{w}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{aligned}
& \mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x} \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \\
& E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{aligned}
$$

LGM: The complete EM algorithm
 $$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \quad \mathbf{X} \approx \mathbf{V} \mathbf{W}
$$

- Initialize \mathbf{V} and E
- E step: $E_{\mathbf{w | x} i}[\mathbf{w}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}$

$$
E_{\mathbf{w} \mid x_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w | x _ { i }}}[\mathbf{w}] E_{\mathbf{w} \mathbf{w} \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{aligned}
& \mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x} \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \\
& E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{aligned}
$$

EM for PCA

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \quad \mathbf{X} \approx \mathbf{V} \mathbf{W}
$$

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{aligned}
& \mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x},}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \\
& E=\frac{1}{N} \sum_{i} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{aligned}
$$

EM for PCA

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \quad \mathbf{X} \approx \mathbf{V} \mathbf{W}
$$

- Initialize V and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{aligned}
& \mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x} \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \\
& E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w | x _ { i }}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{aligned}
$$

EM for PCA

$X \approx V W$

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{aligned}
& \mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x} x_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \\
& E=\frac{1}{N} \sum_{i} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{aligned}
$$

EM for PCA

$X \approx V W$

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w w}^{T}\right]\right)^{-1}
$$

$$
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{w \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

EM for PCA

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w w}^{T}\right]\right)^{-1}
$$

$$
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{w \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

EM for PCA

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{W} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{gathered}
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w | x},}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x} i}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1}=\mathbf{X W}^{T}\left(\mathbf{W} \mathbf{W}^{T}\right)^{-1} \\
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{gathered}
$$

EM for PCA

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$$
\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{array}{r}
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1}=\mathbf{X} \mathbf{W}^{T}\left(\mathbf{W} \mathbf{W}^{T}\right)^{-1}=\mathbf{X p i n v}(\mathbf{W}) \\
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
\end{array}
$$

EM for PCA

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{w}_{i}=\operatorname{pinv}(\mathbf{V}) \mathbf{x}_{i}
$$

$\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{W} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{W}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{W}]^{T}
$$

- M step:

$$
\mathbf{V}=\mathbf{X} \operatorname{pinv}(\mathbf{W})
$$

$$
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

EM for PCA

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{gathered}
\mathbf{V}=\mathbf{X} \operatorname{pinv}(\mathbf{W}) \\
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w | \mathbf { x } _ { i }}}[\mathbf{W}] \mathbf{x}_{i}^{T}
\end{gathered}
$$

EM for PCA

- Initialize \mathbf{V} and E
- E step:

$$
\mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X}
$$

- M step:
irrelevant

$$
\mathbf{V}=\mathbf{X} \operatorname{pinv}(\mathbf{W})
$$

EM for PCA

- Initialize V
- Iterate

$$
\begin{aligned}
& \mathbf{W}=\operatorname{pinv}(\mathbf{V}) \mathbf{X} \\
& \mathbf{V}=\mathbf{X} \operatorname{pinv}(\mathbf{W})
\end{aligned}
$$

- Note: V will not be actual eigenvectors, but a set of bases in space spanned by principal eigenvectors
- Additional decorrelation within PC space may be needed

Why EM PCA?

- Example: Computing eigenfaces
- Each face is $100 \times 100: 10000$ dimensional
- But only 300 examples
$-\mathbf{X}$ is 10000×300
- What is the size of the covariance matrix?
- What is its rank?

PCA on illconditioned data

- Few instances of high-dimensional data
- No. instances < dimensionality
- Covariance matrix is very large
- Eigen decomposition is expensive
- E.g. 1000000-dimensional data: Covariance has 10^{12} elements
- But the rank of the covariance is low
- Only the no. of instances of data

Why EM PCA?

- Consequence of low rank X
- The actual number of bases is limited to the rank of \mathbf{X}
- Note actual size of \mathbf{V}
- Max number of columns = min(dimension, no. data points)
- No. of columns = rank of (XX $\mathbf{X X}^{\mathbf{T}}$)
- Note size of W
- Max number of rows $=\min ($ dimension, no. of data points)

Why EM PCA?

- If \mathbf{X} is high dimensional
- Particularly if the number of vectors in \mathbf{X} is smaller than the dimensionality
- $\operatorname{Pinv}(\mathbf{V})$ and $\operatorname{pinv}(\mathbf{W})$ are efficient to compute
- V will have a max of 300 columns in the example
- W will have a max of 300 rows

PCA as an instance of LGM

- Viewing PCA as an instance of linear Gaussian models leads to EM solution
- Very effective in dealing with highdimensional and/or data poor situations
- An aside: Another simpler solution for the same situation..

An Aside: The GRAM trick

- The number of non-zero Eigen values is no more than the length of the smallest "edge" of \mathbf{X}
- 300 in this case
- This leads to the "gram" trick..
- Assumption $\mathbf{X}^{\boldsymbol{\top} \mathbf{X}} \mathbf{~ i s ~ i n v e r t i b l e : ~ t h e ~ i n s t a n c e s ~ a r e ~ l i n e a r l y ~}$ independent

- $\mathbf{X X} \mathbf{X}^{\mathbf{T}}$ is large but $\mathbf{X}^{\mathbf{T}} \mathbf{X}$ is not

If X is 10000×300, $X^{\top} X=300 \times 300$

- Difficult to compute Eigen vectors of $\mathbf{X X}^{\mathbf{T}}$
- But easy to compute Eigen vectors of $\mathbf{X}^{\mathbf{T}} \mathbf{X}$

The Gram Trick

- To compute principal vectors we Eigendecompose $\mathbf{X X}^{\boldsymbol{\top}}$

$$
\left(\mathbf{X} \mathbf{X}^{T}\right) \mathbf{E}=\mathbf{E} \Lambda
$$

- Let us find the Eigen vectors of $\mathbf{X}^{\top} \mathbf{X}$ instead

$$
\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{E}}=\hat{\mathbf{E}} \hat{\Lambda}
$$

- Manipulating it slightly

Note that for a diagonal matrix: $\Lambda \Lambda^{-0.5}=\Lambda^{-0.5} \Lambda$

$$
\mathbf{X}^{T} \mathbf{X} \hat{\mathbf{E}} \hat{\Lambda}^{-0.5}=\hat{\mathbf{E}} \hat{\Lambda}^{-0.5} \hat{\Lambda}
$$

The Gram Trick

- Eigendecompose $\mathbf{X}^{\top} \mathbf{X}$ instead of $\mathbf{X X} \mathbf{X}^{\boldsymbol{\top}}$

$$
\begin{gathered}
\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{E}}=\hat{\mathbf{E}} \hat{\Lambda} \\
\mathbf{X}^{T} \mathbf{X} \hat{\mathbf{E}} \hat{\Lambda}^{-0.5}=\hat{\mathbf{E}} \hat{\Lambda}^{-0.5} \hat{\Lambda} \\
\left(\mathbf{X} \mathbf{X}^{T}\right)\left(\mathbf{X} \hat{\mathbf{E}} \hat{\Lambda}^{-0.5}\right)=\left(\mathbf{X} \hat{\mathbf{E}} \hat{\Lambda}^{-0.5}\right) \hat{\Lambda}
\end{gathered}
$$

- Letting: X $\hat{\mathbf{E}} \hat{\Lambda}^{-0.5}=\mathbf{E}$

$$
\left(\mathbf{X} \mathbf{X}^{T}\right) \mathbf{E}=\mathbf{E} \hat{\Lambda}
$$

- E is the matrix of Eigenvectors of $\mathbf{X X}^{\top}$!!!

The Gram Trick

- When X is low rank or XX^{\top} is too large:
- Compute $\mathbf{X}^{\top} \mathrm{X}$ instead
- Will be manageable size
- Perform Eigen Decomposition of $\mathbf{X}^{\top} \mathbf{X}$

$$
\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{E}}=\hat{\mathbf{E}} \hat{\Lambda}
$$

- Compute Eigenvectors of XX^{\top} as

$$
\mathbf{X} \hat{\mathbf{E}} \hat{\Lambda}^{-0.5}=\mathbf{E}
$$

- These are the principal components of X

Why EM PCA

- Dimensionality / Rank has alternate potential solution
- Gram Trick
- Other uses?
- Noise
- Incomplete data

PCA with noisy data

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}+\mathbf{n} \\
\mathbf{w} \sim N(0, I) \\
\mathbf{e} \sim N(0, E) \\
\mathbf{n} \sim N(0, B)
\end{gathered}
$$

- Error is orthogonal to principal directions
$-V^{T} \mathbf{e}=0 ; \mathbf{e}^{\mathrm{T}} \mathrm{V}=0$
- Noise is isotropic
$-B$ is diagonal
- Noise is not orthogonal to either \mathbf{V} ore

LGM: The complete EM algorithm

- Initialize \mathbf{V} and E
- E step:

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{W}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}
$$

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{W | x} \mid \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1}
$$

$$
E=\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mathbf{w},}[\mathbf{w}] \mathbf{x}_{i}^{T}
$$

PCA with Noisy Data

$$
\begin{gathered}
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}+\mathbf{n} \\
\mathbf{w} \sim N(0, I) \\
\mathbf{e} \sim N(0, E) \\
\mathbf{n} \sim N(0, B)
\end{gathered}
$$

- E step: $\quad \beta=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+B\right)^{-1} \quad \mathbf{W}=\beta \mathbf{X}$

$$
\mathbf{C}=N I-N \beta \mathbf{V}+\mathbf{W} \mathbf{W}^{T}
$$

- M step:

$$
\begin{gathered}
\mathbf{V}=\mathbf{X W}^{T} \mathbf{C}^{-1} \\
B=\frac{1}{N} \operatorname{diag}\left(\mathbf{X X}^{T}-\mathbf{V W} \mathbf{X}^{T}\right)
\end{gathered}
$$

PCA with Incomplete Data

- How to compute principal directions when some components in your training data are missing?
- Eigen decomposition is not possible
- Cannot compute correlation matrix with missing data

PCA with missing data

- How it goes
- Given : $\mathbf{X}=\left\{\mathbf{X}_{\mathrm{c}}, \mathbf{X}_{\mathrm{m}}\right\}$
- \mathbf{X}_{m} are missing components

1. Initialize: Initialize \mathbf{X}_{m}
2. Build "complete" data $\mathbf{X}=\left\{\mathbf{X}_{\mathrm{c}}, \mathbf{X}_{\mathrm{m}}\right\}$
3. PCA ($\mathbf{X}=\mathbf{V W}$): Estimate \mathbf{V}

- \mathbf{V} must have fewer bases than dimensions of \mathbf{X}

4. $W=V^{T} X$
5. $\hat{\mathbf{X}}=\mathbf{V W}$
6. Select $\mathbf{X}_{\mathbf{m}}$ from $\hat{\mathbf{X}}$
7. Return to 2

Data imputation example

- Filling in holes in facial images
- Using a large number of face images, all of which have holes
- PCA will simultaneously "fix" all of them

LGM for PCA

- Obviously many uses:
- III-conditioned data
- Noise
- Missing data
- Any combination of the above..

Learning with insufficient data

- The full covariance matrix of a Gaussian has D^{2} terms
- Fully captures the relationships between variables
- Problem: Needs a lot of data to estimate robustly

An Approximation

- Assume the covariance is diagonal
- Gaussian is aligned to axes : no correlation between dimensions
- Covariance has only D terms
- Needs less data
- Problem : Model loses all information about correlation between dimensions

Is There an Intermediate

- Capture the most important correlations
- But require less data
- Solution: Find the key subspaces in the data
- Capture the complete correlations in these subspaces
- Assume data is otherwise uncorrelated

Factor Analysis

$$
\begin{aligned}
\mathbf{x}= & \mathbf{V} \mathbf{w}+\mathbf{e} \\
& \mathbf{x} \sim N\left(0, \mathbf{V} \mathbf{V}^{T}+E\right)
\end{aligned}
$$

$$
\mathbf{w} \sim N(0, I)
$$

$$
\mathbf{e} \sim N(0, E)
$$

- E is a full rank diagonal matrix
- V has K columns: K-dimensional subspace
- We will capture all the correlations in the subspace represented by V
- Estimated covariance: Diagonal covariance E plus the covariance between dimensions in V

Factor Analysis

- Initialize \mathbf{V} and E
- E step:

$$
E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{x}_{i}
$$

$$
E_{\mathbf{w | \mathbf { x } _ { i }}}\left[\mathbf{w} \mathbf{w}^{T}\right]=I-\mathbf{V}^{T}\left(\mathbf{V} \mathbf{V}^{T}+E\right)^{-1} \mathbf{V}+E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}] E_{\mathbf{w} \mid \mathbf{x}_{i}}[\mathbf{w}]^{T}
$$

- M step:

$$
\begin{array}{r}
\mathbf{V}=\left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} \mid \mathbf{x}_{i}}\left[\mathbf{w}^{T}\right]\right)\left(\sum_{i} E_{\mathbf{w | x}, \mathbf{x}_{i}}\left[\mathbf{w} \mathbf{w}^{T}\right]\right)^{-1} \\
E=\frac{1}{N} \operatorname{diag}\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} \mid x_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}\right)
\end{array}
$$

FA Gaussian

- Will get a full covariance matrix
- But only estimate DK terms
- Data insufficiency less of a problem

The Factor Analysis Model

$$
\begin{gathered}
\mathbf{w} \sim N(0, I) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- Often used to learn distribution of data when we have insufficient data
- Often used in psychometrics
- Underlying model: The actual systematic variations in the data are totally explained by a small number of "factors"
- FA uncovers these factors

FA, PCA etc.

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}
$$

$$
\begin{gathered}
\mathbf{w} \sim N(0, I) \\
\mathbf{e} \sim N(0, E)
\end{gathered}
$$

- Note: distinction between PCA and FA is only in the assumptions about \mathbf{e}
- FA looks a lot like PCA with noise
- FA can also be performed with incomplete data

FA, PCA etc.

- PCA: Error is always at 90 degrees to the bases in \mathbf{V}
- FA: Error may be at any angle
- PCA used mainly to find principal directions that capture most of the variance
- Bases in V will be orthogonal to one another
- FA tries to capture most of the covariance

FA: A very successful use

- Voice biometrics: Speaker recognition
- Given: Only a small amount of training data from a speaker to learn its model
- Use to verify speaker later
- Problem: Immense variation in ways people can speak
- Less than 1 minute of training data; totally insufficient!

Speaker Recognition

- For most recognition tasks, we need to model the distribution of feature vector sequences

- In practice, we often use Gaussian Mixture Models (GMMs)

Why GMMs

- Vowel Classification

PCA

Where symbols appear in pairs, the one to the right represents a rounded vowel

Speaker Verification

- A model represents distribution of cepstral vectors for the speaker
- A second model represents everyone else (potential imposters)
- The cepstra computed from a test recording are "scored" against both models
- Accept the speaker if the speaker model scores higher

GMM for speaker verification

- We enroll a given speaker by adapting the UBM using the speaker's input speech. [Reynolds 2000]

Speaker Verification

- Problem: One typically has only a few seconds or minutes of training data from the speaker
- Hard to estimate speaker model
- Test data may be spoken differently, or come over a different channel, or in noise
- Wont really match
- For most recognition tasks, we need to model the distribution of feature vector sequences

100 vec/sec

- In practice, we often use Gaussian Mixture Models (GMMs)

MANY
Training Utterances

Feature Space

Training

- Supervectors are obtained for each training speaker by adapting a "Universal background model" trained from large amounts of data
- Few data by each speaker to train a GMM based on Maximum likelihood

Training the Factor Analyzer

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}
$$

$$
\mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)
$$

- The supervectors are assumed to be the output of a linear Gaussian process
- Use FA to estimate \mathbf{V}
$-\mathbf{V}$ are the directions of main variations
- The real information is in the factor \mathbf{w}

Identification

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e}
$$

$$
\mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)
$$

- Enrollment: Derive one or more $\mathbf{w}_{s p k r}$ vectors from speaker recordings
- Using \mathbf{V} and E learned during the "training phase"
- Also use $\mathbf{w}_{\text {imposter }}$ from recordings from other speakers to train a binary classifier, e.g. an SVM
- Verification: Derive $\mathbf{w}_{\text {verif }}$ from test recording
- Classify using SVM
- Alternately, compare to $\mathbf{w}_{s p k r}$ vectors from enrollment recordings

I-vector: Total variability space

I-Vector

- Factor analysis as feature extractor
- Speaker and channel dependent supervector

$$
\mathbf{M}=m+T w
$$

- T is rectangular, low rank (total variability matrix)
- w standard Normal random (total factors - intermediate vector or i-vector)

Training models for a speaker

$$
\mathbf{x}=\mathbf{V} \mathbf{w}+\mathbf{e} \quad \mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)
$$

- Use Linear Discriminant Analysis to maximize the discrimination between the speakers

WHITING SCHOOL
 Data Visualization based on Graph

- Nice performance of the cosine similarity for speaker recognition
- Data visualization using the Graph Exploration System (GUESS)
- Represent segment as a node with connections (edges) to nearest neighbors (3 NN used)
- NN computed using blind TV system (with and without channel normalization)
- Applied to 5438 utterances from the NIST SRE10 core
- Multiple telephone and microphone channels
- Absolute locations of nodes not important
- Relative locations of nodes to one another is important:
- The visualization clusters nodes that are highly connected together
- Meta data (speaker ID, channel info) not used in layout
- Colors and shapes of nodes used to highlight interesting phenomena

Females data with intersession compensation

Colors represent speakers

Females data with no intersession compensation

Females data with no intersession-compensation

Cell phone
Landline
215573qqu
215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic CH02
Mic_CH07
Mic_CH05
$\Delta=$ high VE

- low VE

O= normal VE
$\rangle=$ room LDC

* $=$ room HIVE

Females data withno.intersessign compensation

Cell phone Landline
215573qqn 215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic_CH05
$\Delta=$ high VE

- = low VE
- = normal VE
$\rangle=$ room LDC
* $=$ room HIVE

Females data with no intersession

Cell phone Landline
215573qqn
215573now
Mic_CH08

Mic_CH12
Mic_CH13
Mic CH02
Mic_CH07
Mic_CH05
$\Delta=$ high VE
■ = low VE
O= normal VE
$\rangle=$ room LDC

* $=$ room HIVE

Females data with no intersession

Mic_CH08

Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic_CH05
$\Delta=$ high VE
■ $=$ low VE
O= normal VE
$\rangle=$ room LDC

* =room HIVE

Females data with intersessioñ compensation

Cell phone Landline
215573qqn 215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic_CH05
$\Delta=$ high VE
$\square=$ low VE

- = normal VE
$\rangle=$ room LDC
* =room HIVE

Males data with intersessigh compensation

Colors represent speakers

$$
\$ \text { * }
$$

Males data with no intersession compensation

Colors represent speakers

Males data with no intersession compensation

Cell phone Landline
215573qqn
215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic CH05
$\Delta=$ high VE

- = low VE
- = normal VE
$\rangle=$ room LDC
* =room HIVE

Males data with no intersession codinemsation

Cell phone
Landline
215573qqn
215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic_CH05
$\Delta=$ high VE

- = low VE
- = normal VE
$\rangle=$ room LDC
* $=$ room HIVE

Males data with no intersession compensation

Cell phone Landline
215573qqn
215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic CH05
$\Delta=$ high VE

- = low VE
- = normal VE
$\rangle=$ room LDC
* $=$ room HIVE

Males data with no intersessigh compensation

Cell phone Landline
215573qqn
215573now
Mic_CH08
Mic_CH12
Mic_CH13
Mic_CH02
Mic_CH07
Mic CH05
$\Delta=$ high VE

- = low VE
- = normal VE
$\rangle=$ room LDC
* =room HIVE

Speaker representation

Speaker clustering

PCA Visualization

Three-Speaker Conversation
(First Two Principal Components After i-vector Length-Normalization)

