

Machine Learning for Signal Processing Applications of Linear Gaussian Models

Recap: MAP Estimators

 MAP (*Maximum A Posteriori*): Find most probable value of y given x
 y = argmax y P(Y|x)

MAP estimation

• x and y are jointly Gaussian

$$z = \begin{bmatrix} x \\ y \end{bmatrix} \qquad E[z] = \mu_z = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$
$$Var(z) = C_{zz} = \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix} \qquad C_{xy} = E[(x - \mu_x)(y - \mu_y)^T]$$
$$P(z) = N(\mu_z, C_{zz}) = \frac{1}{\sqrt{2\pi |C_{zz}|}} \exp\left(-0.5(z - \mu_z)^T C_{zz}^{-1}(z - \mu_z)\right)$$

• z is Gaussian

MAP estimation: Gaussian PDF

520-412/520-612

520-412/520-612

Conditional Probability of y x

$$P(y \mid x) = N(\mu_{y} + C_{yx}C_{xx}^{-1}(x - \mu_{x}), C_{yy} - C_{yx}C_{xx}^{-1}C_{xy})$$

$$E_{y|x}[y] = \mu_{y|x} = \mu_{y} + C_{yx}C_{xx}^{-1}(x - \mu_{x})$$

 $Var(y | x) = C_{yy} - C_{yx}C_{xx}^{-1}C_{yy}$

- The conditional probability of y given x is also Gaussian
 - The slice in the figure is Gaussian
- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
 - Uncertainty is reduced

520-412/520-612

• Minimize error:

$$Err = E[\|\mathbf{y} - \hat{\mathbf{y}}\|^2 | \mathbf{x}] = E[(\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}}) | \mathbf{x}]$$

 $Err = E[\mathbf{y}^T\mathbf{y} + \hat{\mathbf{y}}^T\hat{\mathbf{y}} - 2\hat{\mathbf{y}}^T\mathbf{y} | \mathbf{x}] = E[\mathbf{y}^T\mathbf{y} | \mathbf{x}] + \hat{\mathbf{y}}^T\hat{\mathbf{y}} - 2\hat{\mathbf{y}}^TE[\mathbf{y} | \mathbf{x}]$

• Differentiating and equating to 0: $\frac{d.Err}{d} = 2\hat{\mathbf{y}}^T d\hat{\mathbf{y}} - 2E[\mathbf{y} | \mathbf{x}]^T d\hat{\mathbf{y}} = 0$

$$\hat{\mathbf{y}} = E[\mathbf{y} \mid \mathbf{x}]$$

The MMSE estimate is the mean of the distribution

Would be true of any symmetric distribution

520-412/520-612

- Linear Gaussian Models..
- PCA to develop the idea of LGM

- Principal component analysis: Find the *K* bases that best explain the given data
- Find B and C such that the difference between D and
 BC is minimum
 - While constraining that the columns of **B** are orthonormal

Learning PCA

- For the given data: find the K-dimensional subspace such that it captures most of the variance in the data
 - Variance in remaining subspace is minimal

- x is a random variable generated according to a linear relation
- w is drawn from an K-dimensional Gaussian with diagonal covariance
- e is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian
- Estimate V (and *B*) given examples of x

Linear Gaussian Models!!

$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{w} \sim N(\mathbf{0}, B)$ $\mathbf{e} \sim N(\mathbf{0}, E)$

- x is a random variable generated according to a linear relation
- w is drawn from a Gaussian
- e is drawn from a 0-mean Gaussian
- Estimate V given examples of x
 - In the process also estimate B and E

EXAMPLE 1 Stimulating the variables of the model

$$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$$
 $\mathbf{w} \sim N(0, I)$
 $\mathbf{e} \sim N(0, E)$
 $\mathbf{x} \sim N(0, \mathbf{V}\mathbf{V}^T + E)$

- Estimating the variables of the LGM is equivalent to estimating P(x)
 - The variables are V, and E
 - Assuming "centered" (0-mean) data

JOHNS HOPKINS WHITING SCHOOL JERGM: The complete EM algorithm

- Initialize V and E
- E step:

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] = \mathbf{V}^{T} (\mathbf{V}\mathbf{V}^{T} + E)^{-1} \mathbf{x}_{i}$$
$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T} (\mathbf{V}\mathbf{V}^{T} + E)^{-1} \mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Employed a complicated EM algorithm to learn a *Gaussian* PDF for a variable x
- What have we gained???
- Example uses:
 - PCA
 - Sensible PCA
 - EM algorithms for PCA
 - Factor Analysis
 - FA for feature extraction

- Find directions that capture most of the variation in the data
- Error is orthogonal to principal directions $-V^{T}e = 0; e^{T}V = 0$

Some Observations: 1

$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e} \qquad \mathbf{e} \sim N(0, E)$ $E = E[\mathbf{e}\mathbf{e}^T]$

$$\mathbf{V}^T E = \mathbf{E}[\mathbf{V}^T \mathbf{e} \mathbf{e}^T] = \mathbf{E}[\mathbf{0} \mathbf{e}^T] = \mathbf{0}$$

- The covariance ${\bf E}$ of e is orthogonal to ${\bf V}$
 - $-\,\mathbf{V}$ is in the null space of E

20

Observation 2

$$\mathbf{V}^T E = \mathbf{0}$$

$$\mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} = (\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T$$

• Proof

$$\mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} (\mathbf{V}\mathbf{V}^T + E) = (\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)$$

$$\mathbf{V}^{T} = (\mathbf{V}^{T}\mathbf{V})^{-1}\mathbf{V}^{T}\mathbf{V}\mathbf{V}^{T} + (\mathbf{V}^{T}\mathbf{V})^{-1}\mathbf{V}^{T}E$$

$$\mathbf{V}^T = \mathbf{I}\mathbf{V}^T + (\mathbf{V}^T\mathbf{V})^{-1}\mathbf{0}$$

$$\mathbf{V}^T = \mathbf{V}^T$$

Observation 3

 $\mathbf{V}^T E = \mathbf{0}$

$$\mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} = (\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T$$

$$= pinv(\mathbf{V})$$

LGM: The complete EM algorithm $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

• Initialize \mathbf{V} and E

• Estep:
$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} \mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

JOHNS HOPKINS

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

LGN: The complete EM algorithm $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

• Initialize ${\bf V}$ and E

• E step:
$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1}\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

JOHNS HOPKINS

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

EM for PCA $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

• Initialize V and E

• Estep:
$$\mathbf{w}_i = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} \mathbf{x}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

EM for PCA $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

 $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

 $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1} = \mathbf{X}\mathbf{W}^{T}(\mathbf{W}\mathbf{W}^{T})^{-1}$$
$$E = \frac{1}{N}\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N}\mathbf{V}\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]\mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1} = \mathbf{X}\mathbf{W}^{T}(\mathbf{W}\mathbf{W}^{T})^{-1} = \mathbf{X}pinv(\mathbf{W})$$
$$E = \frac{1}{N}\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N}\mathbf{V}\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]\mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \mathbf{X} pinv(\mathbf{W})$$

$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \mathbf{X} \ pinv(\mathbf{W})$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize \mathbf{V} and E
- E step:

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}\mathbf{w}^T] = I \cdot \mathbf{V}^T (\mathbf{W}\mathbf{v}^T + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}]^T$$

$$\mathbf{V} = \mathbf{X} \ pinv(\mathbf{W})$$

$$\frac{E - \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}] \mathbf{x}_{i}^{T}}{N \mathbf{v}_{i}^{T} \mathbf{v}_{i}^{T} \mathbf{v}_{i}^{T}}$$

- Initialize V
- Iterate

$$W = pinv(V)X$$
$$V = X pinv(W)$$

- Note: V will not be actual eigenvectors, but a set of bases in space spanned by principal eigenvectors
 - Additional decorrelation within PC space may be needed

Why EM PCA? X $\mathbf{X}\mathbf{Y}^{T}$

- **Example:** Computing eigenfaces
- Each face is 100x100 : 10000 dimensional \bullet
- But only 300 examples ullet
 - X is 10000 x 300
- What is the size of the covariance matrix?
- What is its rank?

PCA on illconditioned data

- Few instances of high-dimensional data
 - No. instances < dimensionality</p>
- Covariance matrix is very large
 - Eigen decomposition is expensive
 - E.g. 1000000-dimensional data: Covariance has 10¹² elements
- But the rank of the covariance is low
 - Only the no. of instances of data

$\approx V$

- Consequence of low rank \boldsymbol{X}
 - The actual number of bases is limited to the rank of ${\bf X}$
- Note actual size of V
 - Max number of columns = min(dimension, no. data points)
 - No. of columns = rank of (XX^T)
- Note size of W
 - Max number of rows = min(dimension, no. of data points)

- If **X** is high dimensional
 - Particularly if the number of vectors in X is smaller than the dimensionality
- Pinv(V) and pinv(W) are efficient to compute
 - V will have a max of 300 columns in the example
 - W will have a max of 300 rows

PCA as an instance of LGM

- Viewing PCA as an instance of linear Gaussian models leads to EM solution
- Very effective in dealing with highdimensional and/or data poor situations
- An aside: Another simpler solution for the same situation..

An Aside: The GRAM trick

- The number of non-zero Eigen values is no more than the length of the smallest "edge" of X
 - 300 in this case
- This leads to the "gram" trick..
- Assumption X^TX is invertible: the instances are linearly independent

If X is 10000 x 300, XX^T = 10000 x 10000

• **XX^T** is large but **X^TX** is not

The Gram Trick

 To compute principal vectors we Eigendecompose XX^T

$$(\mathbf{X}\mathbf{X}^T)\mathbf{E} = \mathbf{E}\mathbf{\Lambda}$$

- Let us find the Eigen vectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ instead $(\mathbf{X}^{T}\mathbf{X})\hat{\mathbf{E}} = \hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}$
- Manipulating it slightly

Note that for a diagonal matrix: $\Lambda\Lambda^{-0.5} = \Lambda^{-0.5}\Lambda$

$$\mathbf{X}^{T}\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5} = \hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5}\hat{\boldsymbol{\Lambda}}$$

The Gram Trick

Eigendecompose X^TX instead of XX^T

$$(\mathbf{X}^T \mathbf{X}) \hat{\mathbf{E}} = \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}$$

$$\mathbf{X}^{T} \mathbf{X} \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}^{-0.5} = \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}^{-0.5} \hat{\boldsymbol{\Lambda}}$$
$$\left(\mathbf{X} \mathbf{X}^{T} \right) \left(\mathbf{X} \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}^{-0.5} \right) = \left(\mathbf{X} \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}^{-0.5} \right) \hat{\boldsymbol{\Lambda}}$$

• Letting: $\hat{\mathbf{X}}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5} = \mathbf{E}$

$$(\mathbf{X}\mathbf{X}^T)\mathbf{E} = \mathbf{E}\hat{\Lambda}$$

• E is the matrix of Eigenvectors of **XX^T!!!**

The Gram Trick

- When X is low rank or XX^T is too large:
- Compute X^TX instead
 - Will be manageable size
- Perform Eigen Decomposition of X^TX

 $(\mathbf{X}^T \mathbf{X})\hat{\mathbf{E}} = \hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}$

• Compute Eigenvectors of XX^T as

 $\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5}=\mathbf{E}$

• These are the principal components of X

Why EM PCA

- Dimensionality / Rank has alternate potential solution
 - Gram Trick
- Other uses?
 - Noise
 - Incomplete data

• Error is orthogonal to principal directions

 $-V^{T}e = 0; e^{T}V = 0$

- Noise is isotropic
 - B is diagonal
 - Noise is not orthogonal to either V or e

JOHNS HOPKINS WHITING SCHOOL JERGM: The complete EM algorithm

- Initialize V and E
- E step:

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] = \mathbf{V}^{T} (\mathbf{V}\mathbf{V}^{T} + E)^{-1} \mathbf{x}_{i}$$
$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T} (\mathbf{V}\mathbf{V}^{T} + E)^{-1} \mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

n

PCA with Noisy Data

• E step: $\beta = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + B)^{-1}$ $\mathbf{W} = \beta \mathbf{X}$

$$\mathbf{C} = NI - N\beta \mathbf{V} + \mathbf{W}\mathbf{W}^T$$

• M step:

$$\mathbf{V} = \mathbf{X}\mathbf{W}^{T}\mathbf{C}^{-1}$$
$$B = \frac{1}{N}diag(\mathbf{X}\mathbf{X}^{T} - \mathbf{V}\mathbf{W}\mathbf{X}^{T})$$

$$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e} + \mathbf{w} \sim N(0, I)$$
$$\mathbf{e} \sim N(0, E)$$
$$\mathbf{n} \sim N(0, B)$$

PCA with *Incomplete* Data

- How to compute principal directions when some components in your training data are missing?
- Eigen decomposition is not possible
 - Cannot compute correlation matrix with missing data

PCA with missing data

- How it goes
- Given : $\mathbf{X} = \{\mathbf{X}_c, \mathbf{X}_m\}$
 - $\mathbf{X}_{\mathbf{m}}$ are missing components
- 1. Initialize: Initialize \mathbf{X}_{m}
- 2. Build "complete" data $\mathbf{X} = {\mathbf{X}_{c}, \mathbf{X}_{m}}$
- 3. PCA (X = VW): Estimate V
 - $\, V$ must have fewer bases than dimensions of X
- 4. $W = V^T X$
- 5. $\hat{\mathbf{X}} = \mathbf{V}\mathbf{W}$
- 6. Select $\mathbf{X}_{\mathbf{m}}$ from $\hat{\mathbf{X}}$
- 7. Return to 2

Data imputation example

- Filling in holes in facial images
- Using a large number of face images, all of which have holes
- PCA will simultaneously "fix" all of them

LGM for PCA

- Obviously many uses:
 - Ill-conditioned data
 - Noise
 - Missing data
 - Any combination of the above..

LGMs : Application 2 Learning with insufficient data

- The full covariance matrix of a Gaussian has D^2 terms
- Fully captures the relationships between variables
- Problem: Needs a lot of data to estimate robustly

An Approximation

- Assume the covariance is diagonal
 - Gaussian is aligned to axes : no correlation between dimensions
 - Covariance has only *D* terms
- Needs less data
- Problem : Model loses all information about correlation between dimensions

Is There an Intermediate

- Capture the most important correlations
- But require less data
- Solution: Find the key subspaces in the data
 - Capture the complete correlations in these subspaces
 - Assume data is otherwise uncorrelated

Factor Analysis
$$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$$
 $\mathbf{w} \sim N(0, I)$
 $\mathbf{e} \sim N(0, E)$ $\mathbf{x} \sim N(0, \mathbf{V}\mathbf{V}^T + E)$

- *E* is a full rank diagonal matrix
- V has K columns: K-dimensional subspace
 - We will capture all the correlations in the subspace represented by V
- Estimated covariance: Diagonal covariance *E* plus the covariance between dimensions in **V**

Factor Analysis

- Initialize \mathbf{V} and E
- E step:

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] = \mathbf{V}^{T} (\mathbf{V}\mathbf{V}^{T} + E)^{-1} \mathbf{x}_{i}$$
$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T} (\mathbf{V}\mathbf{V}^{T} + E)^{-1} \mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} diag \left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}] \mathbf{x}_{i}^{T}\right)$$

FA Gaussian

- Will get a full covariance matrix
- But only estimate DK terms
- Data insufficiency less of a problem

The Factor Analysis Model $\mathbf{x} = \mathbf{v} \mathbf{w} + \mathbf{e}$ LOADINGS FACTORS

- Often used to learn distribution of data when we have insufficient data
- Often used in psychometrics
 - Underlying model: The actual systematic variations in the data are totally explained by a small number of "factors"
 - FA uncovers these factors

- Note: distinction between PCA and FA is only in the assumptions about e
- FA looks a lot like PCA with noise
- FA can also be performed with incomplete data

- PCA: Error is always at 90 degrees to the bases in ${\bf V}$
- FA: Error may be at any angle
- PCA used mainly to find *principal* directions that capture most of the variance
 - Bases in V will be orthogonal to one another
- FA tries to capture most of the covariance

FA: A very successful use

- Voice biometrics: Speaker recognition
- Given: Only a small amount of training data from a speaker to learn its model
 - Use to verify speaker later
- Problem: Immense variation in ways people can speak
 - Less than 1 minute of training data; totally insufficient!

Speaker Recognition

Gaussian Mixture Models

• For most recognition tasks, we need to model the distribution of feature vector sequences

Why GMMs

• Vowel Classification

PCA

Where symbols appear in pairs, the one to the right represents a rounded vowel

Speaker Verification

- A model represents distribution of cepstral vectors for the speaker
- A second model represents everyone else (potential imposters)
- The cepstra computed from a test recording are "scored" against both models
 - Accept the speaker if the speaker model scores higher

• We enroll a given speaker by adapting the UBM using the speaker's input speech. [Reynolds 2000]

- Problem: One typically has only a few seconds or minutes of training data from the speaker
- Hard to estimate speaker model
- Test data may be spoken differently, or come over a different channel, or in noise
 - Wont really match

Gaussian Mixture Models

• For most recognition tasks, we need to model the distribution of feature vector sequences

- Supervectors are obtained for each training speaker by adapting a "Universal background model" trained from large amounts of data
 - Few data by each speaker to train a GMM based on Maximum likelihood

- The supervectors are assumed to be the output of a linear Gaussian process
- Use FA to estimate ${\bf V}$
 - $-\mathbf{V}$ are the directions of main variations
 - The *real* information is in the factor w

Identification

$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)$

- Enrollment: Derive one or more \mathbf{w}_{spkr} vectors from speaker recordings
 - Using V and E learned during the "training phase"
 - Also use $\mathbf{w}_{imposter}$ from recordings from other speakers to train a binary classifier, e.g. an SVM
- Verification: Derive \mathbf{w}_{verif} from test recording
 - Classify using SVM
 - Alternately, compare to \mathbf{w}_{spkr} vectors from enrollment recordings

I-Vector

- Factor analysis as feature extractor
- Speaker and channel dependent supervector

$$\mathbf{M} = \boldsymbol{m} + T\boldsymbol{w}$$

- *T* is rectangular, low rank (total variability matrix)
- w standard Normal random (total factors intermediate vector or i-vector)

 $\mathbf{X} = \mathbf{V}\mathbf{W} + \mathbf{e}$ $\mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)$

• Use Linear Discriminant Analysis to maximize the discrimination between the speakers

- Nice performance of the cosine similarity for speaker recognition
- Data visualization using the Graph Exploration System (GUESS)
- Represent segment as a node with connections (edges) to nearest neighbors (3 NN used)
 - NN computed using blind TV system (with and without channel normalization)
- Applied to 5438 utterances from the NIST SRE10 core
 - Multiple telephone and microphone channels
- Absolute locations of nodes not important
- Relative locations of nodes to one another is important:
 - The visualization clusters nodes that are highly connected together
- Meta data (speaker ID, channel info) not used in layout
- Colors and shapes of nodes used to highlight interesting phenomena

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 \triangle = high VE $\blacksquare = low VE$ $\bullet = normal VE$ ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 \triangle = high VE = low VE ●= normal VE **♦=room LDC** * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 \triangle = high VE $\blacksquare = low VE$ ●= normal VE **♦=room LDC** * =room HIVE

Mic_CH08 Mic_CH04 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH07 Mic_CH05 ▲= high VE ■= low VE ●= normal VE ◆=room LDC * =room HIVE

* =room HIVE

MIC

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE $\blacksquare = low VE$ ●= normal VE ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE = low VE ●= normal VE ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 $\triangle = high VE$ $\blacksquare = low VE$ ●= normal VE ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic CH13 Mic_CH02 Mic_CH07 Mic_CH05 \triangle = high VE = low VE ●= normal VE **♦=room LDC** * =room HIVE

♦=room LDC

MIC

Speaker representation

Speaker clustering

PCA Visualization

520-412/520-612