Machine Learning for Signal Processing Expectation Maximization Mixture Models

Bhiksha Raj

Learning Distributions for Data

- Problem: Given a collection of examples from some data, estimate its distribution
- Solution: Assign a model to the distribution - Learn parameters of model from data
- Models can be arbitrarily complex
- Mixture densities, Hierarchical models.

A Thought Experiment

63154124 ...

- A person shoots a loaded dice repeatedly
- You observe the series of outcomes
- You can form a good idea of how the dice is loaded
- Figure out what the probabilities of the various numbers are for dice
- P (number) $=$ count(number)/count(rolls)
- This is a maximum likelihood estimate
- Estimate that makes the observed sequence of numbers most probable

The Multinomial Distribution

- A probability distribution over a discrete collection of items is a Multinomial

$$
P(X: X \text { belongs to a discrete set })=P(X)
$$

- E.g. the roll of dice
- X : X in (1,2,3,4,5,6)
- Or the toss of a coin
-X : X in (head, tails)

Maximum Likelihood Estimation

- Basic principle: Assign a form to the distribution
- E.g. a multinomial
- Or a Gaussian
- Find the distribution that best fits the histogram of the data

Defining "Best Fit"

- The data are generated by draws from the distribution
- I.e. the generating process draws from the distribution
- Assumption: The world is a boring place
- The data you have observed are very typical of the process
- Consequent assumption: The distribution has a high probability of generating the observed data
- Not necessarily true
- Select the distribution that has the highest probability of generating the data
- Should assign lower probability to less frequent observations and vice versa

Maximum Likelihood Estimation: Multinomial

- Probability of generating $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}, \mathrm{n}_{5}, \mathrm{n}_{6}\right)$

$$
P\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)=\text { Const } \prod_{i} p_{i}^{n_{i}}
$$

- Find $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}$ so that the above is maximized
- Alternately maximize

$$
\log \left(P\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)\right)=\log (\text { Const })+\sum_{i} n_{i} \log \left(p_{i}\right)
$$

- $\log ()$ is a monotonic function
$-\operatorname{argmax}_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\operatorname{argmax}_{\mathrm{x}} \log (\mathrm{f}(\mathrm{x}))$
- Solving for the probabilities gives us
- Requires constrained optimization to ensure probabilities sum to 1

$$
p_{i}=\frac{n_{i}}{\sum_{j} n_{j}}
$$

Segue: Gaussians

$$
P(X)=N(X ; \mu, \Theta)=\frac{1}{\sqrt{(2 \pi)^{d}|\Theta|}} \exp \left(-0.5(X-\mu)^{T} \Theta^{-1}(X-\mu)\right)
$$

- Parameters of a Gaussian:
- Mean μ, Covariance Θ

Maximum Likelihood: Gaussian

- Given a collection of observations ($\left.X_{1}, X_{2}, \ldots\right)$, estimate mean μ and covariance Θ

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, \ldots\right)=\prod_{i} \frac{1}{\sqrt{(2 \pi)^{d}|\Theta|}} \exp \left(-0.5\left(X_{i}-\mu\right)^{T} \Theta^{-1}\left(X_{i}-\mu\right)\right) \\
& \log \left(P\left(X_{1}, X_{2}, \ldots\right)\right)=C-0.5 \sum_{i}\left(\log (|\Theta|)+\left(X_{i}-\mu\right)^{T} \Theta^{-1}\left(X_{i}-\mu\right)\right)
\end{aligned}
$$

- Maximizing w.r.t μ and Θ gives us

$$
\mu=\frac{1}{N} \sum_{i} X_{i} \quad \Theta=\frac{1}{N} \sum_{i}\left(X_{i}-\mu\right)\left(X_{i}-\mu\right)^{T}
$$

Laplacian

$$
\begin{aligned}
& P(x)=L(x ; \mu, b)=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)
\end{aligned}
$$

- Parameters: Median μ, scale $b(b>0)$
- μ is also the mean, but is better viewed as the median

Maximum Likelihood: Laplacian

- Given a collection of observations ($\left.x_{1}, x_{2}, \ldots\right)$, estimate mean μ and scale b

$$
\log \left(P\left(x_{1}, x_{2}, \ldots\right)\right)=C-N \log (b)-\sum_{i} \frac{\left|x_{i}-\mu\right|}{b}
$$

- Maximizing w.r.t μ and b gives us

$$
\mu=\operatorname{median}\left(\left\{x_{i}\right\}\right) \quad b=\frac{1}{N} \sum_{i}\left|x_{i}-\mu\right| \text { Still just counting }
$$

Dirichlet

(from wikipedia)

$K=3$. Clockwise from top left: $\alpha=(6,2,2),(3,7,5),(6,2,6),(2,3,4)$

\log of the density as we change a from $a=(0.3,0.3,0.3)$ to (2.0, 2.0, 2.0), keeping all the individual ai's equal to each other.

$$
P(X)=D(X ; \alpha)=\frac{\prod_{i} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}\right)} \prod_{i} x_{i}^{\alpha_{i}-1}
$$

- Determine mode and curvature
- Defined only of probability vectors
$-\mathrm{X}=\left[\mathrm{x}_{1} \mathrm{x}_{2} . . \mathrm{x}_{\mathrm{K}}\right], \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}>=0$ for all i

Maximum Likelihood: Dirichlet

- Given a collection of observations $\left(X_{1}, X_{2}, \ldots\right)$, estimate α

$$
\log \left(P\left(X_{1}, X_{2}, \ldots\right)\right)=\sum_{j} \sum_{i}\left(\alpha_{i}-1\right) \log \left(X_{j, i}\right)+N \sum_{i} \log \left(\Gamma\left(\alpha_{i}\right)\right)-N \log \left(\Gamma\left(\sum_{i} \alpha_{i}\right)\right)
$$

- No closed form solution for α.
- Needs gradient ascent
- Several distributions have this property: the ML estimate of their parameters have no closed form solution

Continuing the Thought Experiment

63154124 ..

44163212 ...

- Two persons shoot loaded dice repeatedly
- The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
- As indicated by the colors, we know who rolled what number
$645123452214346216 \ldots$

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
- As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red

$645123452214346216 \ldots$	
$652421361 .$.	$413524426 .$.
Collection of "blue" numbers	Collection of "red" numbers

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
- As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red
- From each set compute probabilities for each of the 6 possible outcomes
$P($ number $)=\frac{\text { no. of times number was rolled }}{\text { total number of observed rolls }}$

A Thought Experiment

63154124 ...

44163212 ...

- Now imagine that you cannot observe the dice yourself
- Instead there is a "caller" who randomly calls out the outcomes
- 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
- At any time, you do not know which of the two he is calling out
- How do you determine the probability distributions for the two dice?

A Thought Experiment

$$
63154124 \text {... }
$$

44163212 ...

- How do you now determine the probability distributions for the two sets of dice ...
- .. If you do not even know what fraction of time the blue numbers are called, and what fraction are red?

A Mixture Multinomial

- The caller will call out a number X in any given callout IF
- He selects "RED", and the Red die rolls the number X
- OR
- He selects "BLUE" and the Blue die rolls the number X
- $P(X)=P($ Red $) P(X \mid$ Red $)+P(B l u e) P(X \mid$ Blue $)$
- E.g. $P(6)=P($ Red $) P(6 \mid$ Red $)+P(B l u e) P(6 \mid$ Blue $)$
- A distribution that combines (or mixes) multiple multinomials is a mixture multinomial

Mixture Distributions

$$
P(X)=\sum_{Z} P(Z) P(X \mid Z) \quad P(X)=\sum_{Z}^{\text {Mixture Gaussian }} P(Z) N\left(X ; \mu_{z}, \Theta_{z}\right)
$$

Mixture of Gaussians and Laplacians

$$
P(X)=\sum_{Z} P(Z) N\left(X ; \mu_{z}, \Theta_{z}\right)+\sum_{Z} P(Z) \prod_{i} L\left(X_{i} ; \mu_{z}, b_{z, i}\right)
$$

- Mixture distributions mix several component distributions
- Component distributions may be of varied type
- Mixing weights must sum to 1.0
- Component distributions integrate to 1.0
- Mixture distribution integrates to 1.0

Maximum Likelihood Estimation

- For our problem: $P(X)=\sum_{Z} P(Z) P(X \mid Z)$
$-Z=$ color of dice

$$
P\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)=\text { Const } \prod_{X} P(X)^{n_{X}}=\text { Const } \prod_{X}\left(\sum_{Z} P(Z) P(X \mid Z)\right)^{n_{X}}
$$

- Maximum likelihood solution: Maximize

$$
\log \left(P\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)\right)=\log (\text { Const })+\sum_{X} n_{X} \log \left(\sum_{Z} P(Z) P(X \mid Z)\right)
$$

- No closed form solution (summation inside log)!
- In general ML estimates for mixtures do not have a closed form
- USE EM!

Expectation Maximization

- It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm
- First described in a landmark paper by Dempster, Laird and Rubin
- Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977
- Much work on the algorithm since then
- The principles behind the algorithm existed for several years prior to the landmark paper, however.

Expectation Maximization

- Iterative solution
- Get some initial estimates for all parameters
- Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- Two steps that are iterated:
- Expectation Step: Estimate statistically, the values of unseen variables
- Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

EM: The auxiliary function

- EM iteratively optimizes the following auxiliary function
- $\mathrm{Q}\left(\theta, \theta^{\prime}\right)=\Sigma_{\mathrm{Z}} \mathrm{P}\left(\mathrm{Z} \mid \mathrm{X}, \theta^{\prime}\right) \log (\mathrm{P}(\mathrm{Z}, \mathrm{X} \mid \theta))$
-Z are the unseen variables
- Assuming Z is discrete (may not be)
- θ^{\prime} are the parameter estimates from the previous iteration
- θ are the estimates to be obtained in the current iteration

Expectation Maximization as counting

- Hidden variable: Z
- Dice: The identity of the dice whose number has been called out
- If we knew Z for every observation, we could estimate all terms
- By adding the observation to the right bin
- Unfortunately, we do not know Z - it is hidden from us!
- Solution: FRAGMENT THE OBSERVATION

Interpretation

- EM is an iterative algorithm
- At each time there is a current estimate of parameters
- The "size" of the fragments is proportional to the a posteriori probability of the component distributions
- The a posteriori probabilities of the various values of Z are computed using Bayes' rule:

$$
P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{P(X)}=C P(X \mid Z) P(Z)
$$

- Every dice gets a fragment of size P (dice \| number)

Fragmenting the Observation: Interpretation

- We don't know the actual bin this observation belongs to
- Red dice or blue dice?
- But under our current estimate, if we saw a very large number of identical observations, what fraction of these would we expect belong to each bin?
- Partition the data according to this statistical expectation

$$
P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{P(X)}=C P(X \mid Z) P(Z)
$$

(6) (6) (6) (6) (6) (6) (6) (6) (6)(6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
(6)(6) (6) (6) (6) (6) (6) (6) (6) (6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) 6
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)

Expectation Maximization

- Hypothetical Dice Shooter Example:
- We obtain an initial estimate for the probability distribution of the two sets of dice (somehow):

- We obtain an initial estimate for the probability with which the caller calls out the two shooters (somehow)

Expectation Maximization

- Hypothetical Dice Shooter Example:
- Initial estimate:
$-P($ blue $)=P($ red $)=0.5$
$-P(4 \mid$ blue $)=0.1$, for $P(4 \mid$ red $)=0.05$
- Caller has just called out 4
- Posterior probability of colors:

$$
\begin{aligned}
& P(\text { red } \mid X=4)=C P(X=4 \mid Z=\text { red }) P(Z=\text { red })=C \times 0.05 \times 0.5=C 0.025 \\
& P(\text { blue } \mid X=4)=C P(X=4 \mid Z=\text { blue }) P(Z=\text { blue })=C \times 0.1 \times 0.5=C 0.05
\end{aligned}
$$

$$
\begin{gathered}
P(\text { red } \mid X=4)=\frac{C 0.025}{C 0.025+C 0.05} \\
P(\text { red } \mid X=4)=0.33 \quad P(\text { blue } \mid X=4)=0.67
\end{gathered}
$$

Expectation Maximization

Expectation Maximization

- Every observed roll of the dice contributes to both "Red" and "Blue"

Expectation Maximization

- Every observed roll of the dice contributes to both "Red" and "Blue"

Expectation Maximization

- Every observed roll of the dice contributes to both "Red" and "Blue"

Expectation Maximization

- Every observed roll of the dice contributes to both "Red" and "Blue"

Expectation Maximization

- Every observed roll of the dice contributes to both "Red" and "Blue"

645123452214346216	
$6(0.8), 4(0.33)$,	$6(0.2), 4(0.67)$,
$5(0.33), 1(0.57)$,	$5(0.67), 1(0.43)$,
$2(0.14), 3(0.33)$,	$2(0.86), 3(0.67)$,
$4(0.33), 5(0.33)$,	$4(0.67), 5(0.67)$,
$2(0.14), 2(0.14)$,	$2(0.86), 2(0.86)$,
$1(0.57), 4(0.33)$,	$1(0.43), 4(0.67)$,
$3(0.33), 4(0.33)$,	$3(0.67), 4(0.67)$,
$6(0.8), 2(0.14)$,	$6(0.2), 2(0.86)$,
$1(0.57), 6(0.8)$	$1(0.43), 6(0.2)$

Expectation Maximization

- Every observed roll of the dice contributes to both "Red" and "Blue"
- Total count for "Red" is the sum of all the posterior probabilities in the red column
- 7.31
- Total count for "Blue" is the sum of all the posterior probabilities in the blue column
- 10.69
- Note: $10.69+7.31=18$ = the total number of instances

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	P (blue\|X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71
- Total count for 2: 0.56

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71
- Total count for 2: 0.56
- Total count for 3: 0.66

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71
- Total count for 2: 0.56
- Total count for 3: 0.66
- Total count for 4: 1.32

Called	$P($ red $\mid X)$	$P($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71
- Total count for 2: 0.56
- Total count for 3: 0.66
- Total count for 4: 1.32
- Total count for 5: 0.66

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71
- Total count for 2: 0.56
- Total count for 3: 0.66
- Total count for 4: 1.32
- Total count for 5: 0.66
- Total count for 6: 2.4

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Red:
- Total count for 1: 1.71
- Total count for 2: 0.56
- Total count for 3: 0.66
- Total count for 4: 1.32
- Total count for 5: 0.66
- Total count for 6: 2.4
- Updated probability of Red dice:
$-P(1 \mid R e d)=1.71 / 7.31=0.234$
$-P(2 \mid R e d)=0.56 / 7.31=0.077$
$-P(3 \mid R e d)=0.66 / 7.31=0.090$
$-P(4 \mid R e d)=1.32 / 7.31=0.181$
$-P(5 \mid R e d)=0.66 / 7.31=0.090$
$-P(6 \mid R e d)=2.40 / 7.31=0.328$

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	P (blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29

Called	$P($ red $\mid X)$	$P($ blue $\mid \mathrm{X})$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29
- Total count for 2: 3.44

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29
- Total count for 2: 3.44
- Total count for 3: 1.34

Called	$P($ red X X)	P (blue\|X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29
- Total count for 2: 3.44
- Total count for 3: 1.34
- Total count for 4: 2.68

Called	$P($ red $\mid X)$	$P($ blue $\mid X)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29
- Total count for 2: 3.44
- Total count for 3: 1.34
- Total count for 4: 2.68
- Total count for 5: 1.34

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	P (blue X$)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29
- Total count for 2: 3.44
- Total count for 3: 1.34
- Total count for 4: 2.68
- Total count for 5: 1.34
- Total count for 6: 0.6

Called	$P($ red \mid X)	$P\left(\right.$ blue X $\left.^{\prime}\right)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue" : 10.69
- Blue:
- Total count for 1: 1.29
- Total count for 2: 3.44
- Total count for 3: 1.34
- Total count for 4: 2.68
- Total count for 5: 1.34
- Total count for 6: 0.6
- Updated probability of Blue dice:
- $P(1 \mid$ Blue $)=1.29 / 11.69=0.122$
$-P(2 \mid$ Blue $)=0.56 / 11.69=0.322$
$-P(3 \mid$ Blue $)=0.66 / 11.69=0.125$
$-P(4 \mid$ Blue $)=1.32 / 11.69=0.250$
$-P(5 \mid$ Blue $)=0.66 / 11.69=0.125$
$-P(6 \mid$ Blue $)=2.40 / 11.69=0.056$

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	P (blue\|X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red" : 7.31
- Total count for "Blue" : 10.69
- Total instances = 18
- Note 7.31+10.69 = 18
- We also revise our estimate for the probability that the caller calls out Red or Blue
- i.e the fraction of times that he calls Red and the fraction of times he calls Blue
- $\mathrm{P}(\mathrm{Z}=$ Red $)=7.31 / 18=0.41$
- $\mathrm{P}(\mathrm{Z}=$ Blue $)=10.69 / 18=0.59$

Called	$\mathrm{P}($ red $\mid \mathrm{X})$	P (blue X$)$
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

The updated values

- Probability of Red dice:

$$
\begin{array}{ll}
\quad \mathrm{P}(1 \mid \text { Red })=1.71 / 7.31=0.234 \\
& \mathrm{P}(2 \mid \text { Red })=0.56 / 7.31=0.077 \\
& \mathrm{P}(3 \mid \text { Red })=0.66 / 7.31=0.090 \\
0 & \mathrm{P}(4 \mid \text { Red })=1.32 / 7.31=0.181 \\
0 & \mathrm{P}(5 \mid \text { Red })=0.66 / 7.31=0.090 \\
& \mathrm{P}(6 \mid \text { Red })=2.40 / 7.31=0.328
\end{array}
$$

- Probability of Blue dice:
- $\quad P(1 \mid$ Blue $)=1.29 / 11.69=0.122$
- $\quad P(2 \mid$ Blue $)=0.56 / 11.69=0.322$
- $P(3 \mid$ Blue $)=0.66 / 11.69=0.125$
- $\quad P(4 \mid$ Blue $)=1.32 / 11.69=0.250$
- $\quad P(5 \mid$ Blue $)=0.66 / 11.69=0.125$
- $P(6 \mid$ Blue $)=2.40 / 11.69=0.056$
- $\mathrm{P}(\mathrm{Z}=$ Red $)=7.31 / 18=0.41$
- $P(Z=B l u e)=10.69 / 18=0.59$

Called	$P($ red \mid X)	$P($ blue \mid X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATIION I' is AN ITERATIVE PROCESS

The Dice Shooter Example

63154124 ...
$44163212 \ldots$

1. Initialize $P(Z), P(X \mid Z)$
2. Estimate $P(Z \mid X)$ for each Z, for each called out number - Associate X with each value of Z, with weight $P(Z \mid X)$
3. Re-estimate $P(X \mid Z)$ for every value of X and Z
4. Re-estimate $P(Z)$
5. If not converged, return to 2_{27}

In Squiggles

- Given a sequence of observations $\mathrm{O}_{1}, \mathrm{O}_{2}$, ..
$-N_{x}$ is the number of observations of number X
- Initialize $P(Z), P(X \mid Z)$ for dice Z and numbers X
- Iterate:
- For each number X:

$$
P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{\sum_{Z^{\prime}} P\left(Z^{\prime}\right) P\left(X \mid Z^{\prime}\right)}
$$

- Update:

$$
P(X \mid Z)=\frac{\sum_{\text {sunhthato }=X} P(Z \mid X)}{\sum_{0} P(Z \mid O)}=\frac{N_{X} P(Z \mid X)}{\sum_{X} N_{X} P(Z \mid X)}
$$

$$
P(Z)=\frac{\sum_{X} N_{X} P(Z \mid X)}{\sum_{Z^{\prime}} \sum_{X} N_{X} P\left(Z^{\prime} \mid X\right)}
$$

Solutions may not be unique

- The EM algorithm will give us one of many solutions, all equally valid!
- The probability of 6 being called out:

$$
P(6)=\alpha P(6 \mid \text { red })+\beta P(6 \mid \text { blue })=\alpha P_{r}+\beta P_{b}
$$

- Assigns P_{r} as the probability of 6 for the red die
- Assigns P_{b} as the probability of 6 for the blue die
- The following too is a valid solution [FIX]

$$
P(6)=1.0\left(\alpha P_{r}+\beta P_{b}\right)+0.0 \text { anything }
$$

- Assigns 1.0 as the a priori probability of the red die
- Assigns 0.0 as the probability of the blue die
- The solution is NOT unique

A more complex model: Gaussian mixtures

- A Gaussian mixture can represent data distributions far better than a simple Gaussian
- The two panels show the histogram of an
 unknown random variable
- The first panel shows how it is modeled by a simple Gaussian
- The second panel models the histogram by a mixture of two Gaussians

- Caveat: It is hard to know the optimal number of Gaussians in a mixture

A More Complex Model

$$
P(X)=\sum_{k} P(k) N\left(X ; \mu_{k}, \Theta_{k}\right)=\sum_{k} \frac{P(k)}{\sqrt{(2 \pi)^{d}\left|\Theta_{k}\right|}} \exp \left(-0.5\left(X-\mu_{k}\right)^{T} \Theta_{k}^{-1}\left(X-\mu_{k}\right)\right)
$$

- Gaussian mixtures are often good models for the distribution of multivariate data
- Problem: Estimating the parameters, given a collection of data

Gaussian Mixtures: Generating model

$$
P(X)=\sum_{k} P(k) N\left(X ; \mu_{k}, \Theta_{k}\right)
$$

- The caller now has two Gaussians
- At each draw he randomly selects a Gaussian, by the mixture weight distribution
- He then draws an observation from that Gaussian
- Much like the dice problem (only the outcomes are now real numbers and can be anything)

Estimating GMM with complete information

- Observation: A collection of numbers drawn from a mixture of 2 Gaussians
- As indicated by the colors, we know which Gaussian generated what number

- Segregation: Separate the blue observations from the red
- From each set compute parameters for that Gaussian
$\mu_{\text {red }}=\frac{1}{N_{\text {red }}} \sum_{\text {tered }} X_{i}$
$\Theta_{\text {red }}=\frac{1}{N_{\text {red }}} \sum_{\text {tered }}\left(X_{i}-\mu_{\text {red }}\right)\left(X_{i}-\mu_{\text {red }}\right)^{T}$

$$
P(r e d)=\frac{N_{r e d}}{N}
$$

Gaussian Mixtures: Generating model

$$
P(X)=\sum_{k} P(k) N\left(X ; \mu_{k}, \Theta_{k}\right)
$$

- Problem: In reality we will not know which Gaussian any observation was drawn from..
- The color information is missing

Fragmenting the observation

- The identity of the Gaussian is not known!
- Solution: Fragment the observation
- Fragment size proportional to a posteriori probability

$$
P(k \mid X)=\frac{P(X \mid k) P(k)}{\sum_{k^{\prime}} P\left(k^{\prime}\right) P\left(X \mid k^{\prime}\right)}=\frac{P(k) N\left(X ; \mu_{k}, \Theta_{k}\right)}{\sum_{k^{\prime}} P\left(k^{\prime}\right) N\left(X ; \mu_{k^{\prime}}, \Theta_{k^{\prime}}\right)}
$$

Expectation Maximization

- Initialize $\mathrm{P}(\mathrm{k}), \mu_{\mathrm{k}}$ and Θ_{k} for both Gaussians
- Important how we do this
- Typical solution: Initialize means randomly, Θ_{k} as the global covariance of the data and $P(k)$ uniformly
- Compute fragment sizes for each

Number	P (red\|X)	P (blue\|X)
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

$$
P(k \mid X)=\frac{P(k) N\left(X ; \mu_{k}, \Theta_{k}\right)}{\sum_{k^{\prime}} P\left(k^{\prime}\right) N\left(X ; \mu_{k^{\prime}}, \Theta_{k^{\prime}}\right)}
$$

Expectation Maximization

- Each observation contributes only as much as its fragment size to each

statistic

- $\operatorname{Mean}($ red $)=$

$$
\begin{aligned}
& (6.1 * 0.81+1.4 * 0.33+5.3 * 0.75+ \\
& 1.9 * 0.41+4.2 * 0.64+2.2 * 0.43+4.9 * 0.66 \\
& +0.5 * 0.05) / \\
& (0.81+0.33+0.75+0.41+0.64+0.43+ \\
& 0.66+0.05) \\
& =17.05 / 4.08=4.18
\end{aligned}
$$

Number	$\mathrm{P}($ red $\mid \mathrm{X})$	$\mathrm{P}($ blue $\mid \mathrm{X})$
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

- $\operatorname{Var}(\mathrm{red})=\left((6.1-4.18)^{2 *} 0.81+(1.4-4.18)^{2 *} 0.33+\right.$ $(5.3-4.18)^{2 *} 0.75+(1.9-4.18)^{2 *} 0.41+$ $(4.2-4.18)^{2 *} 0.64+(2.2-4.18)^{2 *} 0.43+$ $\left.(4.9-4.18)^{2 *} 0.66+(0.5-4.18)^{2 *} 0.05\right) /$ $(0.81+0.33+0.75+0.41+0.64+0.43+0.66+0.05)$

$$
P(\text { red })=\frac{4.08}{8}
$$

EM for Gaussian Mixtures

1. Initialize $P(k), \mu_{k}$ and Θ_{k} for all Gaussians
2. For each observation X compute a posteriori probabilities for all Gaussian

$$
P(k \mid X)=\frac{P(k) N\left(X ; \mu_{k}, \Theta_{k}\right)}{\sum_{k^{\prime}} P\left(k^{\prime}\right) N\left(X ; \mu_{k^{\prime}}, \Theta_{k^{\prime}}\right)}
$$

3. Update mixture weights, means and variances for all Gaussians

$$
P(k)=\frac{\sum_{X} P(k \mid X)}{N} \quad \mu_{k}=\frac{\sum_{X} P(k \mid X) X}{\sum_{X} P(k \mid X)} \quad \Theta_{k}=\frac{\sum_{X} P(k \mid X)\left(X-\mu_{k}\right)^{2}}{\sum_{X} P(k \mid X)}
$$

4. If not converged, return to 2

EM estimation of Gaussian Mixtures

- An Example

Histogram of 4000 instances of a randomly generated data

Individual parameters of a two-Gaussian mixture estimated by EM

Two-Gaussian mixture estimated by EM

Expectation Maximization

- The same principle can be extended to mixtures of other distributions.
- E.g. Mixture of Laplacians: Laplacian parameters become

$$
\mu_{k}=\operatorname{median}(P(k \mid x)) \quad b_{k}=\frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x)\left|x-\mu_{k}\right|
$$

- In a mixture of Gaussians and Laplacians, Gaussians use the Gaussian update rules, Laplacians use the Laplacian rule

Expectation Maximization

- The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
- The hidden variable is often called a "latent" variable
- Some examples:
- Estimating mixtures of distributions
- Only data are observed. The individual distributions and mixing proportions must both be learnt.
- Estimating the distribution of data, when some attributes are missing
- Estimating the dynamics of a system, based only on observations that may be a complex function of system state

Solve this problem:

- Problem 1:
- Caller rolls a dice and flips a coin

- He calls out the number rolled if the coin shows head
- Otherwise he calls the number+1
- Determine p (heads) and p (number) for the dice from a collection of outputs
- Problem 2:
- Caller rolls two dice
- He calls out the sum

- Determine P(dice) from a collection of ouputs

The dice and the coin

- Unknown: Whether it was head or tails

The dice and the coin

- Unknown: Whether it was head or tails

$$
\begin{gathered}
P(\text { heads } \mid N)=\frac{P(N) P(\text { heads })}{P(N) P(\text { heads })+P(N-1) P(\text { tails })} \\
\operatorname{count}(N)=\# N \cdot P(\text { heads } \mid N)+\#(N-1) \cdot P(\text { tails } \mid N-1)
\end{gathered}
$$

The two dice

- Unknown: How to partition the number
- Count $_{\text {blue }}(3)+=P(3,1 \mid 4)$
- Count $_{\text {blue }}(2)+=P(2,2 \mid 4)$
- Count $_{\text {blue }}(1)+=P(1,3 \mid 4)$

The two dice

- Update rules

$$
\begin{aligned}
& P(N, K-N \mid K)=\frac{P_{1}(N) P_{2}(K-N)}{\sum_{J=1}^{6} P_{1}(J) P_{2}(K-J)} \\
& \operatorname{count}_{1}(N)=\sum_{K=2}^{12} \# K \cdot P(N, K-N \mid K)
\end{aligned}
$$

Fragmentation can be hierarchical

$$
P(X)=\sum_{k} P(k) \sum_{Z} P(Z \mid k) P(X \mid Z, k)
$$

- E.g. mixture of mixtures
- Fragments are further fragmented..
- Work this out

More later

- Will see a couple of other instances of the use of EM
- EM for signal representation: PCA and factor analysis
- EM for signal separation
- EM for parameter estimation
- EM for homework..

Speaker Diarization

- "Who is speaking when?"
- Segmentation
- Determine when speaker change has occurred in the speech signal
- Clustering
- Group together speech segments from the same speaker

Speaker representation

Speaker clustering

PCA Visualization

Three-Speaker Conversation
(First Two Principal Components After i-vector Length-Normalization)

