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Learning Distributions for Data

• Problem: Given a collection of examples from 
some data, estimate its distribution

• Solution: Assign a model to the distribution
– Learn parameters of model from data

• Models can be arbitrarily complex
– Mixture densities, Hierarchical models.
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A Thought Experiment

• A person shoots a loaded dice repeatedly
• You observe the series of outcomes
• You can form a good idea of how the dice is loaded

– Figure out what the probabilities of the various numbers are for dice

• P(number) = count(number)/count(rolls)
• This is a maximum likelihood estimate

– Estimate that makes the observed sequence of numbers most probable
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The Multinomial Distribution

• A probability distribution over a discrete 
collection of items is a Multinomial

• E.g. the roll of dice
– X : X in (1,2,3,4,5,6)

• Or the toss of a coin
– X : X in (head, tails)

11755/18797 4

)()set discrete a  tobelongs :( XPXXP 



Maximum Likelihood Estimation

• Basic principle: Assign a form to the distribution
– E.g. a multinomial
– Or a Gaussian

• Find the distribution that best fits the histogram 
of the data
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Defining “Best Fit”
• The data are generated by draws from the distribution

– I.e. the generating process draws from the distribution

• Assumption: The world is a boring place
– The data you have observed are very typical of the process

• Consequent assumption: The distribution has a high probability of 
generating the observed data
– Not necessarily true

• Select the distribution that has the highest probability of generating 
the data
– Should assign lower probability to less frequent observations and vice 

versa

11755/18797 6



Maximum Likelihood Estimation: 
Multinomial

• Probability of generating (n1, n2, n3, n4, n5, n6)

• Find p1,p2,p3,p4,p5,p6 so that the above is maximized
• Alternately maximize

– Log() is a monotonic function
– argmaxx f(x) =  argmaxx log(f(x))

• Solving for the probabilities gives us
– Requires constrained optimization to 

ensure probabilities sum to 1
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Segue:  Gaussians

• Parameters of a Gaussian: 
– Mean m, Covariance Q
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Maximum Likelihood: Gaussian
 Given a collection of observations (X1, X2,…), 

estimate mean m and covariance Q

• Maximizing w.r.t m and Q gives us
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Laplacian

• Parameters: Median m, scale b (b > 0)
– m is also the mean, but is better viewed as the median
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Maximum Likelihood: Laplacian
 Given a collection of observations (x1, x2,…), estimate 

mean m and scale b

• Maximizing w.r.t m and b gives us
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• Parameters are as
– Determine mode and curvature

• Defined only of probability vectors
– X = [x1 x2 .. xK], Si xi = 1,  xi >= 0 for all i
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K=3. Clockwise from top left:
α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)

(from wikipedia)

log of the density as we change α from
α=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), 
keeping all the individual αi's equal to 
each other.
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Maximum Likelihood: Dirichlet
 Given a collection of observations (X1, X2,…), 

estimate a

• No closed form solution for as.
– Needs gradient ascent

• Several distributions have this property: the ML 
estimate of their parameters have no closed form 
solution
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Continuing the Thought Experiment

• Two persons shoot loaded dice repeatedly
– The dice are differently loaded for the two of them

• We observe the series of outcomes for both persons

• How to determine the probability distributions of the two dice?
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Estimating Probabilities

• Observation: The sequence of 
numbers from the two dice
– As indicated by the colors, we 

know who rolled what number
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Estimating Probabilities

• Observation: The sequence of 
numbers from the two dice
– As indicated by the colors, we 

know who rolled what number

• Segregation: Separate the blue 
observations from the red
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Estimating Probabilities
• Observation: The sequence of 

numbers from the two dice
– As indicated by the colors, we 

know who rolled what number

• Segregation: Separate the blue 
observations from the red

• From each set compute 
probabilities for each of the 6 
possible outcomes

rolls observed ofnumber  total

rolled number was  timesof no.
)( numberP
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A Thought Experiment

• Now imagine that you cannot observe the dice yourself
• Instead there is a “caller” who randomly calls out the outcomes

– 40% of the time he calls out the number from the left shooter, and 60% of the 
time, the one from the right (and you know this)

• At any time, you do not know which of the two he is calling out
• How do you determine the probability distributions for the two dice?
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A Thought Experiment

• How do you now determine the probability distributions 
for the two sets of dice …

• .. If you do not even know what fraction of time the blue 
numbers are called, and what fraction are red? 
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A Mixture Multinomial
• The caller will call out a number X in any given callout IF

– He selects “RED”, and the Red die rolls the number X
– OR
– He selects “BLUE” and the Blue die rolls the number X

• P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
– E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)

• A distribution that combines (or mixes) multiple multinomials 
is a mixture multinomial
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Mixture Distributions

• Mixture distributions mix several component distributions
– Component distributions may be of varied type

• Mixing weights must sum to 1.0
• Component distributions integrate to 1.0
• Mixture distribution integrates to 1.0
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Maximum Likelihood Estimation
• For our problem:

– Z = color of dice

• Maximum likelihood solution: Maximize

• No closed form solution (summation inside log)! 
– In general ML estimates for mixtures do not have a 

closed form
– USE EM!
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Expectation Maximization
• It is possible to estimate all parameters in this setup using the 

Expectation Maximization (or EM) algorithm

• First described in a landmark paper by Dempster, Laird and 
Rubin
– Maximum Likelihood Estimation from incomplete data, via 

the EM Algorithm, Journal of the Royal Statistical Society, 
Series B, 1977

• Much work on the algorithm since then

• The principles behind the algorithm existed for several years 
prior to the landmark paper, however.
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Expectation Maximization
• Iterative solution

• Get some initial estimates for all parameters
– Dice shooter example: This includes probability 

distributions for dice AND the probability with which the 
caller selects the dice

• Two steps that are iterated:
– Expectation Step: Estimate statistically, the values of 

unseen variables
– Maximization Step: Using the estimated values of the 

unseen variables as truth, estimates of the model 
parameters
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EM: The auxiliary function

• EM iteratively optimizes the following auxiliary 
function

• Q(q, q’) = SZ P(Z|X,q’) log(P(Z,X | q))

– Z are the unseen variables
– Assuming Z is discrete (may not be)

• q’ are the parameter estimates from the 
previous iteration

• q are the estimates to be obtained in the 
current iteration
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Expectation Maximization as counting

• Hidden variable: Z
– Dice: The identity of the dice whose number has been called out

• If we knew Z for every observation, we could estimate all terms
– By adding the observation to the right bin

• Unfortunately, we do not know Z – it is hidden from us!

• Solution:  FRAGMENT THE OBSERVATION
11755/18797 26

Collection of “blue”
numbers

Collection of “red”
numbers

6

.. ..
Collection of “blue”
numbers

Collection of “red”
numbers

6

.. ..
Collection of “blue”
numbers

Collection of “red”
numbers

6

6 6

6 6 6 .. 6 ..

Instance from blue dice Instance from red dice Dice unknown



Interpretation
• EM is an iterative algorithm

– At each time there is a current estimate of parameters

• The “size” of the fragments is proportional to the a 
posteriori probability of the component distributions
– The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule:

• Every dice gets a fragment of size P(dice | number)
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Fragmenting the Observation: 
Interpretation

• We don’t know the actual bin 
this observation belongs to
– Red dice or blue dice?

• But under our current estimate, 
if we saw a very large number 
of identical observations, what 
fraction of these would we 
expect belong to each bin?

• Partition the data according to 
this statistical expectation
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Expectation Maximization

• Hypothetical Dice Shooter Example:
• We obtain an initial estimate for the probability distribution of the two 

sets of dice (somehow):  

• We obtain an initial estimate for the probability with which the caller 
calls out the two shooters (somehow)
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Expectation Maximization

• Hypothetical Dice Shooter Example:
• Initial estimate:  

– P(blue) = P(red) = 0.5
– P(4 | blue) = 0.1, for P(4 | red) =  0.05

• Caller has just called out 4
• Posterior probability of colors: 

025.05.005.0)()|4()4|( CCredZPredZXCPXredP 
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• Every observed roll of the dice 
contributes to both “Red” and 
“Blue”
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• Every observed roll of the dice 
contributes to both “Red” and 
“Blue”
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• Every observed roll of the dice 
contributes to both “Red” and 
“Blue”
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• Every observed roll of the dice 
contributes to both “Red” and 
“Blue”
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• Every observed roll of the dice 
contributes to both “Red” and 
“Blue”
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• Every observed roll of the dice 
contributes to both “Red” and 
“Blue”

• Total count for “Red” is the sum 
of all the posterior probabilities 
in the red column
– 7.31

• Total count for “Blue” is the sum 
of all the posterior probabilities 
in the blue column
– 10.69
– Note: 10.69 + 7.31 = 18 = the total 

number of instances

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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Expectation Maximization



• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71
– Total count for 2:  0.56

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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Expectation Maximization



• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71
– Total count for 2:  0.56
– Total count for 3:  0.66

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71
– Total count for 2:  0.56
– Total count for 3:  0.66
– Total count for 4:  1.32

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71
– Total count for 2:  0.56
– Total count for 3:  0.66
– Total count for 4:  1.32
– Total count for 5:  0.66

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71
– Total count for 2:  0.56
– Total count for 3:  0.66
– Total count for 4:  1.32
– Total count for 5:  0.66
– Total count for 6:  2.4

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Red” : 7.31
• Red:

– Total count for 1:  1.71
– Total count for 2:  0.56
– Total count for 3:  0.66
– Total count for 4:  1.32
– Total count for 5:  0.66
– Total count for 6:  2.4

• Updated probability of Red dice:
– P(1 | Red) = 1.71/7.31 = 0.234
– P(2 | Red) = 0.56/7.31 = 0.077
– P(3 | Red) = 0.66/7.31 = 0.090
– P(4 | Red) = 1.32/7.31 = 0.181
– P(5 | Red) = 0.66/7.31 = 0.090
– P(6 | Red) = 2.40/7.31 = 0.328

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29

Expectation Maximization



Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29
– Total count for 2:  3.44

Expectation Maximization



Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29
– Total count for 2:  3.44
– Total count for 3:  1.34

Expectation Maximization



Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29
– Total count for 2:  3.44
– Total count for 3:  1.34
– Total count for 4:  2.68

Expectation Maximization



Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29
– Total count for 2:  3.44
– Total count for 3:  1.34
– Total count for 4:  2.68
– Total count for 5:  1.34

Expectation Maximization



• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29
– Total count for 2:  3.44
– Total count for 3:  1.34
– Total count for 4:  2.68
– Total count for 5:  1.34
– Total count for 6:  0.6

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Blue” : 10.69
• Blue:

– Total count for 1:  1.29
– Total count for 2:  3.44
– Total count for 3:  1.34
– Total count for 4:  2.68
– Total count for 5:  1.34
– Total count for 6:  0.6

• Updated probability of Blue dice:
– P(1 | Blue) = 1.29/11.69 = 0.122
– P(2 | Blue) = 0.56/11.69 = 0.322
– P(3 | Blue) = 0.66/11.69 = 0.125
– P(4 | Blue) = 1.32/11.69 = 0.250
– P(5 | Blue) = 0.66/11.69 = 0.125
– P(6 | Blue) = 2.40/11.69 = 0.056

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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• Total count for “Red” : 7.31
• Total count for “Blue” : 10.69
• Total instances = 18 

– Note 7.31+10.69 = 18

• We also revise our estimate for the 
probability that the caller calls out 
Red or Blue
– i.e the fraction of times that he calls Red 

and the fraction of times he calls Blue

• P(Z=Red) = 7.31/18 = 0.41
• P(Z=Blue) = 10.69/18 = 0.59

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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The updated values

• P(Z=Red) = 7.31/18 = 0.41
• P(Z=Blue) = 10.69/18 = 0.59

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2
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 Probability of Blue dice:
 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322
 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125
 P(6 | Blue) = 2.40/11.69 = 0.056

 Probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077
 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090
 P(6 | Red) = 2.40/7.31 = 0.328

THE UPDATED VALUES CAN BE USED TO REPEAT THE 
PROCESS. ESTIMATION IS AN ITERATIVE PROCESS
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The Dice Shooter Example

1. Initialize P(Z),  P(X | Z)
2. Estimate P(Z | X) for each Z, for each called out number

• Associate X with each value of Z, with weight P(Z | X)

3. Re-estimate P(X | Z) for every value of X and Z
4. Re-estimate P(Z)
5. If not converged, return to 2
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In Squiggles
• Given a sequence of observations O1, O2, ..

– NX is the number of observations of number X

• Initialize P(Z), P(X|Z) for dice Z and numbers X
• Iterate:

– For each number X:

– Update:
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Solutions may not be unique
• The EM algorithm will give us one of many solutions, all 

equally valid!
– The probability of 6 being called out:

• Assigns Pr as the probability of 6 for the red die
• Assigns Pb as the probability of 6 for the blue die

– The following too is a valid solution [FIX]

• Assigns 1.0 as the a priori probability of the red die
• Assigns 0.0 as the probability of the blue die

• The solution is NOT unique
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A more complex model: Gaussian 
mixtures

• A Gaussian mixture can represent data 
distributions far better than a simple 
Gaussian

• The two panels show the histogram of an 
unknown random variable

• The first panel shows how it is modeled by 
a simple Gaussian

• The second panel models the histogram 
by a mixture of two Gaussians

• Caveat: It is hard to know the optimal 
number of Gaussians in a mixture
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A More Complex Model

• Gaussian mixtures are often good models for the 
distribution of multivariate data

• Problem: Estimating the parameters, given a 
collection of data
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Gaussian Mixtures: Generating model

• The caller now has two Gaussians
– At each draw he randomly selects a Gaussian, by 

the mixture weight distribution

– He then draws an observation from that Gaussian

– Much like the dice problem (only the outcomes are 
now real numbers and can be anything)
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Estimating GMM with complete information
• Observation: A collection of 

numbers drawn from a mixture 
of 2 Gaussians
– As indicated by the colors, we 

know which Gaussian generated 
what number

• Segregation: Separate the blue 
observations from the red

• From each set compute 
parameters for that Gaussian

N

N
redP red)(
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Gaussian Mixtures: Generating model

• Problem:  In reality we will not know which 
Gaussian any observation was drawn from..
– The color information is missing
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Fragmenting the observation

• The identity of the Gaussian is not known!
• Solution:  Fragment the observation
• Fragment size proportional to a posteriori probability
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• Initialize P(k), mk and Qk for both 
Gaussians
– Important how we do this
– Typical solution: Initialize means 

randomly, Qk as the global covariance of 
the data and P(k) uniformly

• Compute fragment sizes for each 
Gaussian, for each observation

Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .57
4.9 .66 .34
0.5 .05 .95
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• Each observation contributes only as 
much as its fragment size to each 
statistic

• Mean(red) =  
(6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 
1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 4.9*0.66 
+ 0.5*0.05 )  /
(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 
0.66 + 0.05)
= 17.05 / 4.08 = 4.18

Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .57
4.9 .66 .34
0.5 .05 .95
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4.08 3.92

 Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 + 
(5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 + 
(4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 + 
(4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) /

(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)
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EM for Gaussian Mixtures
1. Initialize P(k), mk and Qk for all Gaussians
2. For each observation X compute a posteriori

probabilities for all Gaussian

3. Update mixture weights, means and variances for all 
Gaussians

4. If not converged, return to 2
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EM estimation of Gaussian Mixtures
• An Example
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Histogram of 4000
instances of a randomly
generated data

Individual parameters
of a two-Gaussian
mixture estimated by EM

Two-Gaussian mixture
estimated by EM



Expectation Maximization
• The same principle can be extended to mixtures of other 

distributions.

• E.g. Mixture of Laplacians:  Laplacian parameters become

• In a mixture of Gaussians and Laplacians, Gaussians  use the 
Gaussian update rules, Laplacians use the Laplacian rule
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Expectation Maximization
• The EM algorithm is used whenever proper statistical analysis of 

a phenomenon requires the knowledge of a hidden or missing 
variable (or a set of hidden/missing variables)
– The hidden variable is often called a “latent” variable

• Some examples:
– Estimating mixtures of distributions

• Only data are observed. The individual distributions and mixing proportions 
must both be learnt.

– Estimating the distribution of data, when some attributes are missing
– Estimating the dynamics of a system, based only on observations that 

may be a complex function of system state
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Solve this problem:
• Problem 1:

– Caller rolls a dice and flips a coin
– He calls out the number rolled if the coin shows head
– Otherwise he calls the number+1
– Determine p(heads) and p(number) for the dice from 

a collection of outputs

• Problem 2:
– Caller rolls two dice
– He calls out the sum
– Determine P(dice) from a collection of ouputs
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The dice and the coin

• Unknown: Whether it was head or tails

11755/18797 70

4

4 3

4. 3

Heads or tail?

..

“Heads” count
“Tails” count



The dice and the coin

• Unknown: Whether it was head or tails
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The two dice

• Unknown: How to partition the number
• Countblue(3) += P(3,1 | 4)
• Countblue(2) += P(2,2 | 4)
• Countblue(1) += P(1,3 | 4)
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The two dice

• Update rules
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Fragmentation can be hierarchical

• E.g. mixture of mixtures
• Fragments are further fragmented..

– Work this out
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More later

• Will see a couple of other instances of the use 
of EM

• EM for signal representation: PCA and factor 
analysis

• EM for signal separation
• EM for parameter estimation

• EM for homework..
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Speaker Diarization
• “Who is speaking when?”
• Segmentation

– Determine when speaker change has occurred in the speech 
signal 

• Clustering
– Group together speech segments from the same speaker

Speaker B

Speaker A

Which segments are 
from the same speaker?

Where are speaker 
changes?
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Speaker representation 

Clustering
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Speaker clustering 
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PCA Visualization
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