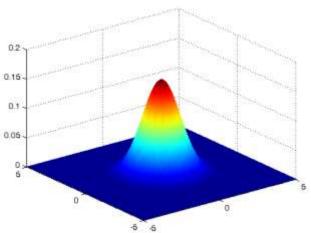
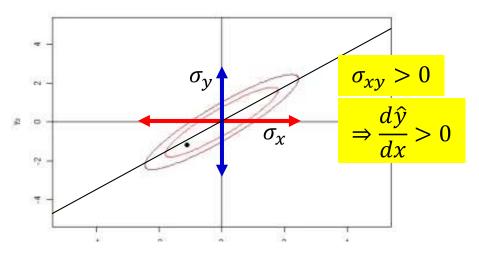


Machine Learning for Signal Processing Supervised Representations (Slides partially by Najim Dehak)

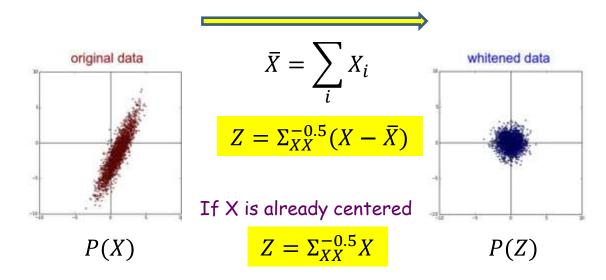
Definitions: Variance and Covariance





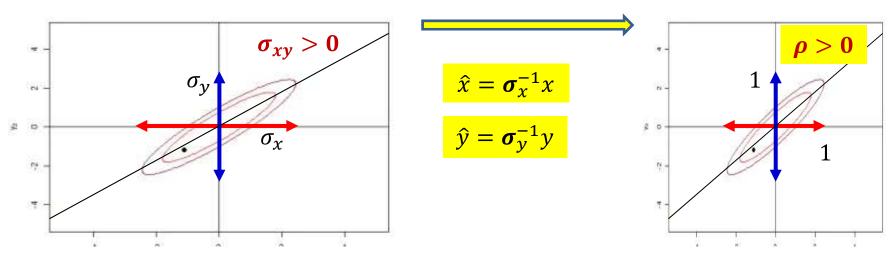
- Variance: $\Sigma_{XX} = E[(X-\mu)(X-\mu)^T]$
 - Estimated as $\Sigma_{XX} = (1/N) (X-avg(X)) (X-avg(X))^T$
 - How "spread" is the data in the direction of X (assuming 0 mean)
 - Scalar version: $\sigma_x^2 = E((x \mu)^2)$
- Covariance: $\Sigma_{XY} = E [(X \mu_X)(X \mu_Y)^T]$
 - Estimated as $\Sigma_{XY} = (1/N) (X-avg(X)) (Y-avg(Y))^T$
 - How much does X predict Y (assuming 0 mean)
 - Scalar version: $\sigma_{xy} = E((x \mu_x)(y \mu_y))$ 11-755/18-797

Definition: Whitening Matrix



- Whitening matrix: $\Sigma_{XX}^{-0.5}$
- Transforms the variable to unit variance
- Scalar version: σ_{χ}^{-1}

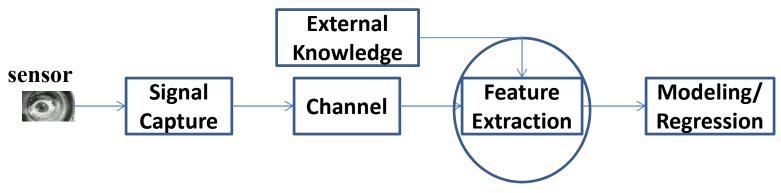
Definition: Correlation Coefficient



- Normalized Correlation: $\Sigma_{XX}^{-0.5} \Sigma_{XY} \Sigma_{YY}^{-0.5}$
- Scalar version: $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
 - Explains how Y varies with X, after *normalizing* out innate variation of X and Y

MLSP

• Application of Machine Learning techniques to the analysis of signals



• Feature Extraction:

- Supervised (Guided) representation

Bases to represent data

- Basic: The bases we considered first were *data agnostic*
 - Fourier / Wavelet type bases, which did not consider the characteristics of the data
- Improvement I: The bases we saw next were data specific
 - PCA, NMF, ICA, ...
 - Different techniques emphasize different aspects of the data
 - The bases changed depending on the data characteristics
 - But do not consider what the data are used for
 - I.e. they are data dependent, but independent of the task
- Improvement II: What if bases are both data specific and task specific?
 - Basis depends on both the data and the task being performed

Bases to represent data

- Basic: The bases we considered first were *data agnostic*
 - Fourier / Wavelet type bases, which did not consider the characteristics of the data
- Improvement I: The bases we saw next were data specific
 - PCA, NMF, ICA, ...
 - Different techniques emphasize different aspects of the data
 - The bases changed depending on the data characteristics
 - But do not consider what the data are used for
 - I.e. they are data dependent, but independent of the task
- Improvement II: What if bases are both data specific and task specific?
 - Basis depends on both the data and the task being performed

Recall: Data-dependent bases

- What is a good basis?
 - Energy Compaction \rightarrow Karkhonen-Loève
 - Retain maximum variance \rightarrow PCA
 - Also uncorrelatedness of representation
 - Sparsity \rightarrow Overcomplete bases
 - Constructive composability \rightarrow NMF
 - Statistical Independence \rightarrow ICA
- We create a narrative about how the data are created

Task-dependent bases?

- Task: Regression
 - We attempt to predict some variable Y using a variable X
 - Via linear regression
- Standard data-driven bases:
 - Find a representation of X that best captures the characteristics of X
 - Without considering Y
 - Find a representation of Y that best captures the characteristics of Y
 - Without considering X
 - The two representations are independently learned
 - Try to predict (learned representation of) Y from the (learned representation of) X
- Can we do better if the bases used to represent X and Y are *jointly* learned?
 - Such that the learned representation of X is now better able to predict the learned representation of Y

Task-dependent bases?

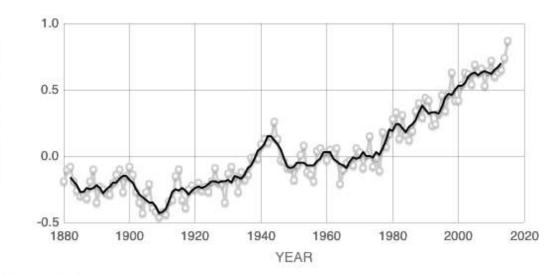
- Task: Classification
 - We attempt to assign a class Y to input data X
- Standard data-driven bases:
 - Find a representation of X that best captures the characteristics of X
 - Without considering Y
 - Try to predict Y from the (learned representation of) X
- Can we do better if the bases used to represent X considering the classes Y?
 - Such that the learned representation of X are more useful for classification of X into Y

Supervised learning of bases

- Problems are instances of *supervised* learning of bases
 - Supervision provided by variable Y
- What is a good basis?
 - Basis that gives best classification performance
 - Basis that results in best regression performance
 - Here bases can be jointly learned for both independent variable X and dependent variable Y
 - In general: Basis that maximizes shared information with another 'view'
 - The second "view" is the task

Regression

- Simplest case
 - Given a bunch of scalar data points predict some value
 - Years are independent
 - Temperature
 - is dependent $Y = \beta^T X$
 - -Y = temperature
 - $-X = \begin{bmatrix} Year \\ 1 \end{bmatrix}$



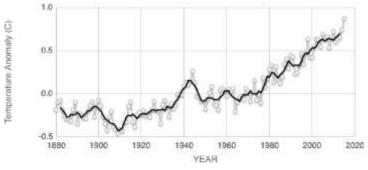
Source: climate.nasa.gov

Temperature Anomaly (C)

Regression

- Formulation of problem $argmin \|\mathbf{Y} - \boldsymbol{\beta}^T \mathbf{X}\|^2$ $-\mathbf{Y} = [Y_1, Y_2, ...]$ $-\mathbf{X} = [X_1, X_2, ...]$
- Solving:

$$-\beta^{T} = \mathbf{Y}\mathbf{X}^{+}$$
$$-\beta = (\mathbf{X}\mathbf{X}^{T})^{-1}\mathbf{X}\mathbf{Y}^{T}$$

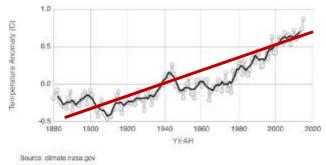


Source: climate.nasa.gov

Regression

- Formulation of problem $\underset{\beta}{\operatorname{argmin}} \|\mathbf{Y} \boldsymbol{\beta}^T \mathbf{X}\|^2$
- Solving:

$$-\beta = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{Y}^T$$



• Note that this looks a lot like $\Sigma_{XX}^{-1}\Sigma_{XY}$

– In the 1-d case where x predicts y this is just …

$$\frac{Cov(x,y)}{\sigma_x^2} = \rho \frac{\sigma_y}{\sigma_x}$$

Multiple Regression

- Robot Archer Example
 - A robot fires defective arrows at a target
 - We don't know how wind might affect their movement, but we'd like to correct for it if possible.
 - Predict the distance from the center of a target of a fired arrow
- Measure wind speed in 3 directions

$$X_i = \begin{bmatrix} 1\\ w_x\\ w_y\\ w_z \end{bmatrix}$$

Multiple Regression

Γ1

Wind speed

$$X_i = \begin{bmatrix} u_x \\ w_y \\ w_y \\ w_z \end{bmatrix}$$

- Offset from center in 2 directions $Y_i = \begin{bmatrix} o_x \\ o_y \end{bmatrix}$
- Model

$$Y_i = \beta^T X_i$$

Multiple Regression

• Answer

$$\beta = (XX^T)^{-1}XY^T$$

- Here Y contains measurements of the distance of the arrow from the center
- $-Y_i = \beta^T X_i \rightarrow$ We are fitting a plane
- Correlation is basically
 just the gradient of the
 plane

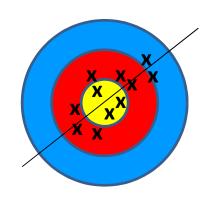
Focusing on what's important

• Do *all* wind factors affect the position

– Or just some low-dimensional combinations $\hat{X} = AX$

• Do they affect both coordinates individually

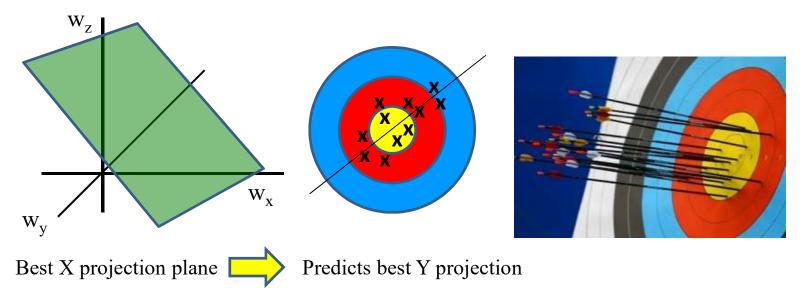
– Or just some of combination $\hat{y} = BY$



IOHNS HOPKINS

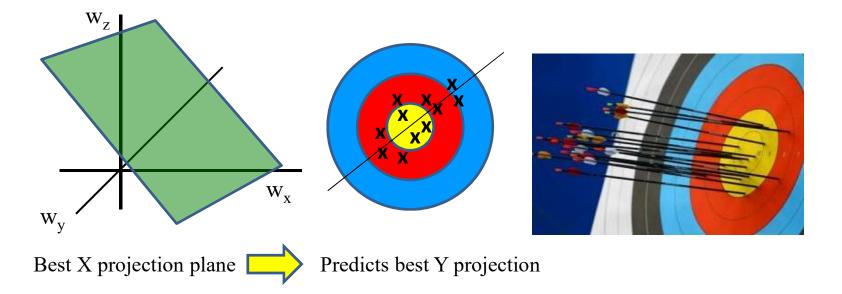
Canonical Correlation Analysis

- Find a projection of wind vector X, and a projection of arrow location vector Y such that the projection of X best predicts the projection of Y
 - The projection of the vectors for Y and X respectively that are most correlated



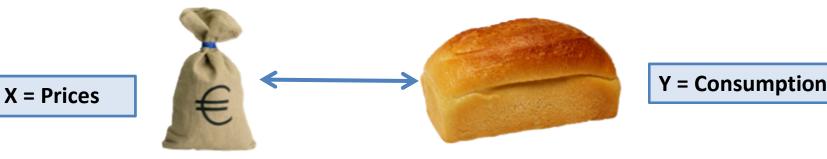
Canonical Correlation Analysis

- What do these vectors represent?
 - Direction of max correlation ignores parts of wind and location data that do not affect each other
 - Only information about the defective arrow remains!



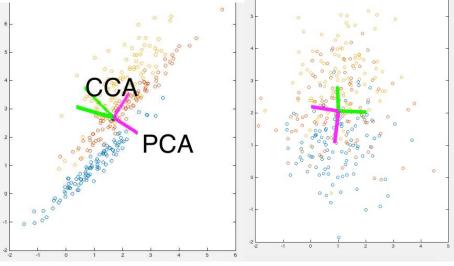
CCA Motivation and History

- Proposed by Hotelling (1936)
- Many real world problems involve 2 'views' of data
- Economics
 - Consumption of wheat is related to the price of potatoes, rice and barley ... and wheat
 - Random vector of prices X
 - Random vector of consumption Y



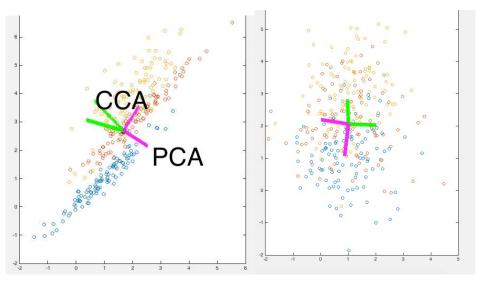
CCA Motivation and History

- Magnus Borga, David Hardoon popularized CCA as a technique in signal processing and machine learning
- Better for dimensionality reduction in many cases



CCA Dimensionality Reduction

- We keep only the correlated subspace
- Is this always good?
 - If we have measured things we care about then we have removed useless information

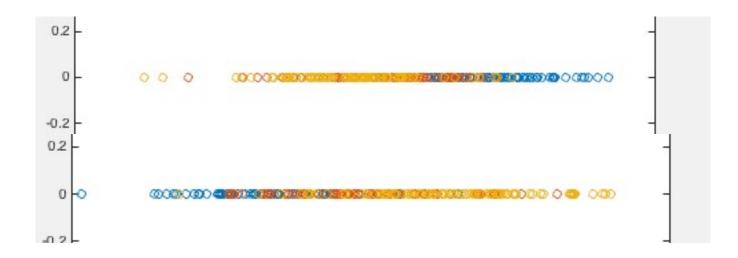


CCA Dimensionality Reduction

- In this case:
 - CCA found a basis component that preserved class distinctions while reducing dimensionality
 - Able to preserve class in both views

Comparison to PCA

• PCA fails to preserve class distinctions as well



Failure of PCA

- PCA is unsupervised
 - Captures the direction of greatest variance (Energy)
 - No notion of task or hence what is good or bad information
 - The direction of greatest variance can sometimes be noise
 - Ok for reconstruction of signal
 - Catastrophic for preserving class information in some cases

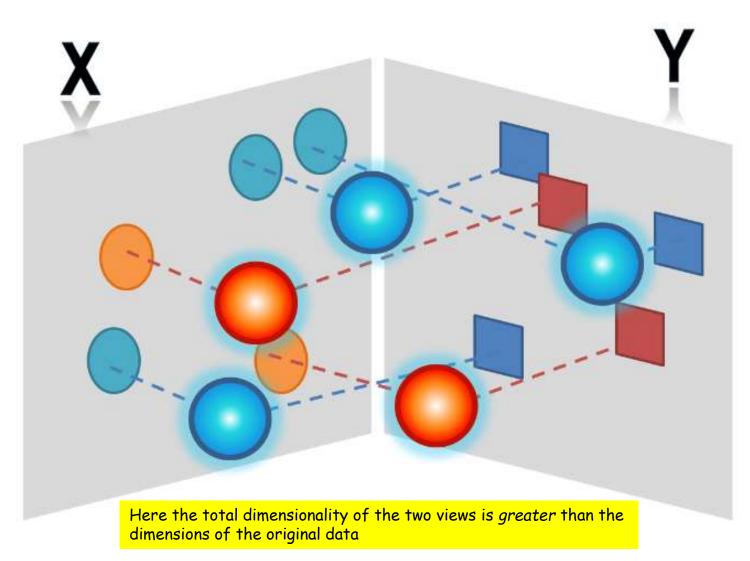
Benefits of CCA

- Why did CCA work?
 - Supervision
 - External Knowledge
 - The 2 views track each other in a direction that does not correspond to noise
 - Noise suppression (sometimes)
- Preview
 - If one of the sets of signals are true labels, CCA is equivalent to Linear Discriminant Analysis
 - Hard Supervision

Multiview Assumption

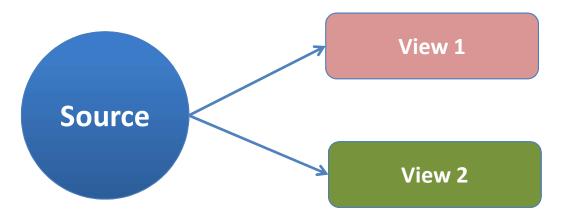
- CCA models both variables as different views of a common reality
 - X and Y are obtained from different views of the same common space
 - The two views are correlated
 - But each of the views also loses some information
 - E.g the total dimensions of the views of X and Y may be fewer than the total dimensions of the space
 - Each view locally perturbed by noise
- Challenge: Extract the correlated subspaces of X and Y from their noise

Multiview Examples



Multiview Assumption

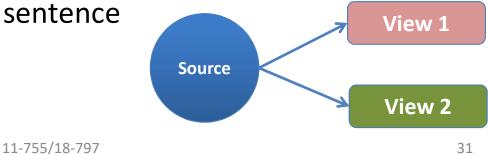
 We can sort of think of a model for how our data might be generated



- We want View 1 independent of View 2 conditioned on knowledge of the source
 - All correlation is due to source

Multiview Examples

- Look at many stocks from different sectors of the economy
 - Conditioned on the fact that they are part of the same economy they might be independent of one another
- Multiple Speakers saying the same sentence
 - The sentence generates signals from many speakers. Each speaker might be independent of each other conditioned on the sentence

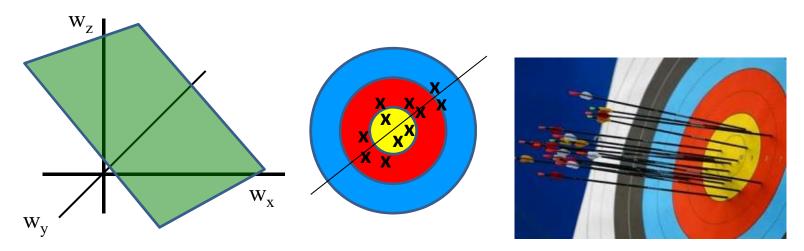


Multiview Assumption

- When does CCA work?
 - The correlated subspace must actually have interesting signal
 - If two views have correlated noise then we will learn a bad representation
- Sometimes the correlated subspace can be noise
 - Correlated noise in both sets of views

Why two views?

- Why not just concatenate both views?
 - E.g. create $Z = [X^T Y^T]^T$ and just perform PCA on Z
- It does not exploit the extra structure of the signal (more on this shortly)
 - PCA on joint data will decorrelate *all variables*
 - Also mixes X and Y, whereas we want to predict Y from X
 - We want to decorrelate X and Y, but maximize cross-correlation between X and Y



Recall: Least squares formulae

$$E = \sum_{i} (X_{i} - Y_{i})^{2}$$
$$\mathbf{X} = [X_{1}, X_{2}, \dots, X_{N}] \qquad \mathbf{Y} = [Y_{1}, Y_{2}, \dots, Y_{N}]$$

$$E = \|\mathbf{X} - \mathbf{Y}\|_F^2$$

• Expressing total error as a matrix operation

Recall: Objective Functions

• Least Squares

 $\underset{Y \in \mathbb{R}^{kxN}}{\arg \min} \|X - UY\|_F \quad s.t. \quad U \in \mathbb{R}^{dxk} \quad rank(U) = k$

Older theories of "good" bases

- Energy Compaction \rightarrow Karhonen-Loève

 $\underset{Y \in \mathbb{R}^{kxN}, U \in \mathbb{R}^{dxk}}{\arg \min} \|X - UY\|_F \quad s.t. \quad U^T U = I_k$

– Positive Sparse \rightarrow NMF

 $\label{eq:constraint} \mathop{\arg\min}_{Y\in\mathbb{R}^{kxN},U\in\mathbb{R}^{dxk}}\|X-UY\|_F \ s.t. \ U,Y\geq 0$

– Regression

 $\argmin_{\beta} \|Y - \beta^T X\|_F^2$

A Quick Review

• The effect of a transform on the covariance of an RV

Z = UX

$$C_{XX} = E[XX^T]$$

$$C_{ZZ} = E[ZZ^T] = UC_{XX}U^T$$

Recall: Objective Functions

- So far our objective needs no external data
 - No knowledge of task

 $\underset{\mathbf{Y}\in\mathbb{R}^{k\times N}}{\operatorname{argmin}} \|\mathbf{X} - U\mathbf{Y}\|_{F}^{2}$

s.t. $U \in \mathbb{R}^{d \times k}$ rank(U) = k

- CCA requires an extra view
 - We force both views to look like each other

$$\min_{U \in \mathbb{R}^{d_{X} \times k}, V \in \mathbb{R}^{d_{Y} \times k}} \| U^{T} \mathbf{X} - V^{T} \mathbf{Y} \|_{F}^{2}$$

s.t. $U^{T} C_{XX} U = I_{k}, V^{T} C_{YY} V = I_{k}$

Interpreting the CCA Objective

- Minimize the reconstruction error between the projections of both views of data
- Find the subspaces *U*, *V* onto which we project views *X* and *Y* such that their correlation is maximized
- Find combinations of both views that best predict each other

A Quick Review

Cross Covariance

$$\mathbb{E}\left[\begin{bmatrix}X\\Y\end{bmatrix}\begin{bmatrix}X\\Y\end{bmatrix}^T\right] \approx \frac{1}{N} \sum_i \begin{bmatrix}X_i\\Y_i\end{bmatrix}\begin{bmatrix}X_i\\Y_i\end{bmatrix}^T$$

$$= \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix}$$

40

A Quick Review

• Matrix representation

$$\mathbf{X} = [X_1, X_2, \dots, X_N] \qquad \mathbf{Y} = [Y_1, Y_2, \dots, Y_N]$$
$$C_{XX} = \frac{1}{N} \sum_{i}^{N} X_i X_i^T = \frac{1}{N} \mathbf{X} \mathbf{X}^T$$
$$C_{YY} = \frac{1}{N} \sum_{i}^{i} Y_i Y_i^T = \frac{1}{N} \mathbf{Y} \mathbf{Y}^T$$
$$C_{XY} = \frac{1}{N} \sum_{i}^{N} X_i Y_i^T = \frac{1}{N} \mathbf{X} \mathbf{Y}^T$$

Interpreting the CCA Objective

- CCA maximizes correlation between two views
- While keeping individual views uncorrelated
 - Uncorrelated measurements are easy to model

$$\min_{U \in \mathbb{R}^{d_{x} \times k}, V \in \mathbb{R}^{d_{y} \times k}} \| U^{T} \mathbf{X} - V^{T} \mathbf{Y} \|_{F}^{2}$$

s.t.
$$U^T \mathbf{X} \mathbf{X}^T U = I_k$$
, $V^T \mathbf{Y} \mathbf{Y}^T V = NI_k$

s.t.
$$U^T C_{XX} U = I_k, V^T C_{YY} V = I_k$$

$$\min_{U \in \mathbb{R}^{d_{x} \times k}, V \in \mathbb{R}^{d_{y} \times k}} \|U^{T}\mathbf{X} - V^{T}\mathbf{Y}\|_{F}^{2}$$

s.t. $U^{T}\mathbf{X}\mathbf{X}^{T}U = I_{k}, V^{T}\mathbf{Y}\mathbf{Y}^{T}V = NI_{k}$
s.t. $U^{T}C_{XX}U = I_{k}, V^{T}C_{YY}V = I_{k}$

- Assume C_{XX} , C_{XX} are invertible
- Create the Lagrangian and differentiate

$$\|U^{T}\mathbf{X} - V^{T}\mathbf{Y}\|_{F}^{2} = trace(U^{T}\mathbf{X} - V^{T}\mathbf{Y})(U^{T}\mathbf{X} - V^{T}\mathbf{Y})^{T}$$
$$= trace(U^{T}\mathbf{X}\mathbf{X}^{T}U + V^{T}\mathbf{Y}\mathbf{Y}^{T}V - U^{T}\mathbf{X}\mathbf{Y}^{T}V - V^{T}\mathbf{Y}\mathbf{X}^{T}U)$$
$$= 2Nk - 2trace(U^{T}\mathbf{X}\mathbf{Y}^{T}V)$$

• So we can solve the equivalent problem below $\max_{U,V} trace(U^T C_{XY} V)$ s.t. $U^T C_{XX} U = I_k, V^T C_{YY} V = I_k$

• Incorporating Lagrangian, maximize

$$\mathcal{L}(\Lambda_X, \Lambda_Y) = tr(U^T C_{XY} V)$$
$$-tr\left(\left((U^T C_{XX} U) - NI_k\right)\Lambda_X\right)$$
$$-tr(\left((V^T C_{YY} V) - NI_k\right)\Lambda_Y$$

- Remember that the constraints matrices are symmetric
- Also for any A, B,

$$\nabla_A tr(AB) = B^T$$
$$\nabla_A tr(ABA^T) = A(B + B^T)$$

• Taking derivatives and after a few manipulations

$$N\Lambda_X = N\Lambda_Y = \Lambda$$

• We arrive at the following system of equation

$$C_{YX}\tilde{U} = C_{YY}\tilde{V}D$$
$$C_{XY}\tilde{V} = C_{XX}\tilde{U}D$$

• We isolate \tilde{V}

$$\tilde{V} = C_{YY}^{-1} C_{YX} \tilde{U} D^{-1}$$

• We arrive at the following system of equation

$$\begin{split} C_{XX}^{-1}C_{XY}C_{YY}^{-1}C_{YX}\tilde{U} &= \tilde{U}D^2\\ C_{YY}^{-1}C_{YX}C_{XX}^{-1}C_{XY}\tilde{V} &= \tilde{V}D^2 \end{split}$$

• For \widetilde{U} we just have to find eigenvectors for

 $C_{XX}^{-1}C_{XY}C_{YY}^{-1}C_{YX}$

- Basically, the Eigen vectors for the correlation of the vector obtained by transforming X to Y and back to X
- After normalizing out the local variance
- We then solve for the other view using the expression for \tilde{V} on the previous slide.
- In PCA the eigenvalues were the variances in the PCA bases directions
- In CCA the eigenvalues are the squared correlations in the canonical correlation directions

JOHNS HOPKINS WHITING SCHOOL CCA as Generalized Eigenvalue Problem

Combine the system of eigenvalue eigenvector equations

$$\begin{bmatrix} 0 & C_{XY} \\ C_{YX} & 0 \end{bmatrix} \begin{bmatrix} \tilde{U} \\ \tilde{V} \end{bmatrix} = \begin{bmatrix} C_{XX} & 0 \\ 0 & C_{YY} \end{bmatrix} \begin{bmatrix} \tilde{U} \\ \tilde{V} \end{bmatrix} D$$

• Generalized eigenvalue problem

 $AU = BU\Lambda$

- We assumed invertible $C_{XX}, C_{YY} \rightarrow \exists B^{-1}$
- Solve a single eigenvalue/vector equation $B^{-1}A\tilde{U} = \tilde{U}D$

VITTING SCHOOL CCA as Generalized Eigenvalue Problem

• Rayleigh Quotient

$$\lambda_{max}(B^{-1}A) = \max_{x} \frac{x^{T}Ax}{x^{T}Bx}$$
$$\frac{\delta}{\delta x} \frac{x^{T}Ax}{x^{T}Bx} = \frac{\delta}{\delta x} x^{T}Ax(x^{T}Bx)^{-1} = 0$$
$$= 2Ax(x^{T}Bx)^{-1} - x^{T}Ax(x^{T}Bx)^{-2}2Bx = 0$$
$$\implies \frac{1}{x^{T}Bx}(Ax - \frac{x^{T}Ax}{x^{T}Bx}Bx) = 0$$
$$\implies Ax = \frac{x^{T}Ax}{x^{T}Bx}Bx$$

JOHNS HOPKINS WHITING SCHOOL CCA as Generalized Eigenvalue Problem

- So the solutions to CCA are the same as those to the Rayleigh quotient
- PCA is actually also this problem with

$$A = C_{XX}, \ B = I$$

• We will see that Linear Discriminant Analysis also takes this form, but first we need to fix a few CCA things

CCA Fixes

- We assumed invertibility of covariance matrices.
 - Sometimes they are close to singular and we would like stable matrix inverses
 - If we added a small positive diagonal element to the covariances then we could guarantee invertibility.
- It turns out this is equivalent to regularization

- The following problems are equivalent
 - They have the same gradients

 $\min_{U,V} \| U^T \mathbf{X} - V^T \mathbf{Y} \|_F^2 + \lambda_x \| U \|_F^2 + \lambda_y \| V \|_F^2$

$$\max_{U,V} trace(U^T \mathbf{X} \mathbf{Y}^T V)$$

s.t. $U^T (C_{XX} + \lambda_x I) U = I_k, V^T (C_{YY} + \lambda_y I) V = I_k$

- The previous solution still applies but with slightly different autocovariance matrices
 - "Diagonal load" the autocovariances

 Since we now have strictly positive autocovariance matrices, we know they have Cholesky decompositions.

$$(C_{XX} + \lambda_x I) = L_{XX} L_{XX}^T$$

• This results in the following problem

$$L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY} + \lambda_y I)^{-1}C_{YX}(L_{XX}^{-\frac{1}{2}})^T \tilde{U} = \tilde{U}D$$

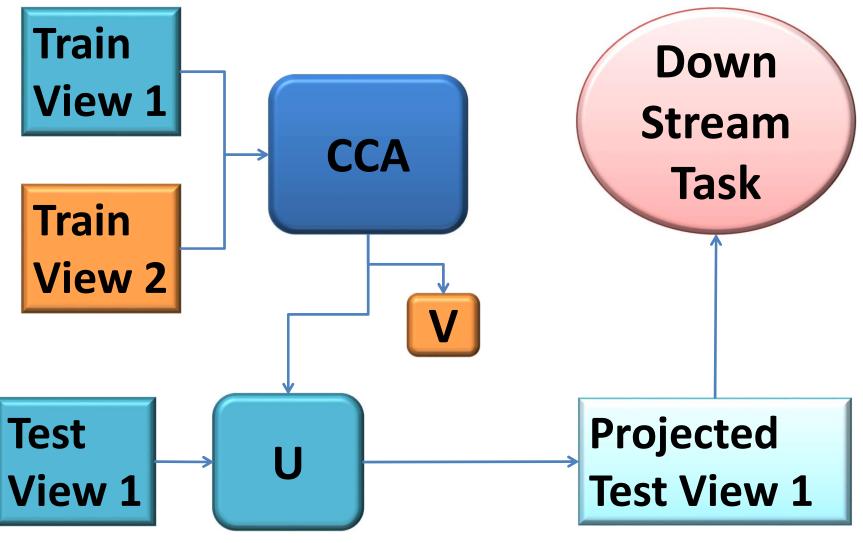
- We note that the matrix is symmetric and
- So the problem is solved by SVD on the matrix M

 $L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY} + \lambda_y I)^{-1}C_{YX}(L_{XX}^{-\frac{1}{2}})^T = MM^T \text{ with } M = L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY} + \lambda_y I)^{-\frac{1}{2}}$

What to do with the CCA Bases?

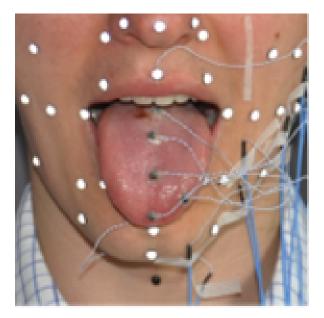
- The CCA Bases are important in their own right.
 - Allow us a generalized measure of correlation
 - Compressing data into a compact correlative basis
- For machine learning we generally ...
 - Learn a CCA basis for a class of data
 - Project new instances of data from that class onto the learned basis
 - This is called multi-view learning

Multiview Setup



Multiview Setup

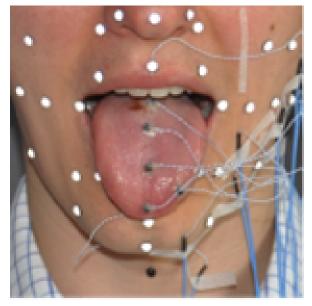
- Often one view consists of measurements that are very hard to collect
 - Speakers all saying the same sentence
 - Articulatory measurements along with speech
 - Odd camera angles
 - Etc.



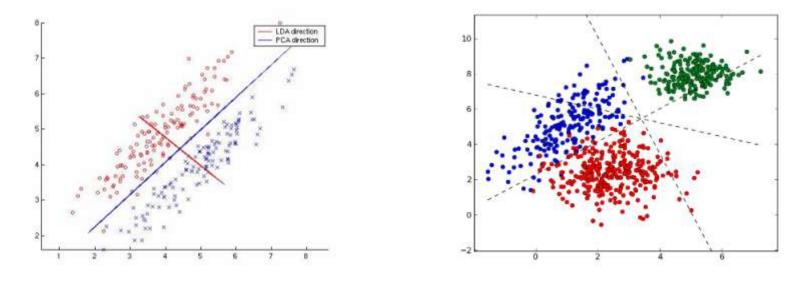
Multiview Setup

- We learn the correlated direction from data during training
- Constrain the common view to lie in the correlated subspace at test time

Removes useless
 information (Noise)



Linear Discriminant Analysis



- Given data from two classes
- Find the projection U
- Such that the separation between the classes is maximum along U
 - $Y = U^T X$ is the projection bases in U
 - No other basis separates the classes as much as U

Linear Discriminant Analysis

- We have 2 views as in CCA
- One of the views is the class labels of the data
 - Learn the direction that is maximally correlated with the class labels!
- It turns out that LDA and CCA are equivalent when the situation above is true

- LDA setup
 - Assume classes are roughly Gaussian
 - Still works if they are not, but not as well
 - We know the class membership of our training data
 - Classes are distinguishable by ...
 - Big gaps between classes with no data points
 - Relatively compact clusters

• LDA setup



- We define a few Quantities
 - Within-class scatter

$$\mathbf{S}_{W} = \sum_{k=1}^{K} \mathbf{S}_{k}$$
 $\mathbf{S}_{k} = \sum_{n \in \mathcal{C}_{k}} (\mathbf{x}_{n} - \mathbf{m}_{k}) (\mathbf{x}_{n} - \mathbf{m}_{k})^{\mathrm{T}}$

- Minimize how far points can stray from the mean
- Compact classes
- Between-class scatter
 - Maximize the variance of the class means (distance between means)

$$\mathbf{S}_{\mathrm{B}} = \sum_{k=1}^{K} N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^{\mathrm{T}}$$

11-755/18-797

- We want a small within-class variance
- We want a high between-class variance
- Let's maximize the ratio of the two!!
- Remember we are looking for the basis W onto which projections maximize this ratio
 - Key concept: what is the covariance of $Y = W^T X$ given C_{Xx} ?

Recall: Effect of projection on scatter

- Let $Y = W^T X$
- Let S_B and S_W be the between and within class scatter of X
- Within class scatter of Y: $S_W^Y = W^T S_W W$
- Between class scatter of Y: $S_B^Y = W^T S_B W$
- Must maximize S_B^Y while minimizing S_W^Y .

- We actually have too much freedom
 - Without any constraints on W
 - Let's fix the within-class variance to be 1.

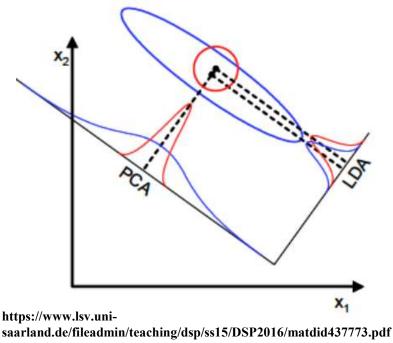
 $\underset{W \in \mathbb{R}^{dxk}}{\arg \max Tr} (W^T S_B W) \quad s.t. \quad W^T S_W W = I$

– The Lagrangian is ...

$$\mathcal{L}(\Lambda) = rgmax_{W \in \mathbb{R}^{dxk}} Tr \ (W^T S_B W) - Tr((W^T S_W W - I)\Lambda)$$

- So we see that we have a generalized eigenvalue solution $S_B w = \lambda S_W w$
 - w is any column of W and λ is a diagonal entry of Λ

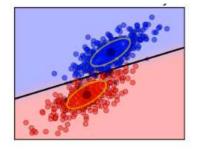
- When does LDA fail?
 - When classes do not fit into our model of a blob
 - We assumed classes are separated by means
 - They might be separated by variance
 - We can fix this using heteroscedastic LDA
 - Fixes the assumption of shared covariance across class.



LDA for classification

- For each class assume a Gaussian Distribution
 - Estimate parameters of the Gaussian
 - We want argmax P(Y = K | X)
 - We use Bayes rule
 - P(Y = K | X) = P(X | Y = K)P(Y = K)
 - We end up with linear decision surfaces between classes

$$\log\left(\frac{P(y=k|X)}{P(y=l|X)}\right) = 0 \Leftrightarrow (\mu_k - \mu_l)\Sigma^{-1}X = \frac{1}{2}(\mu_k^t\Sigma^{-1}\mu_k - \mu_l^t\Sigma^{-1}\mu_l)$$

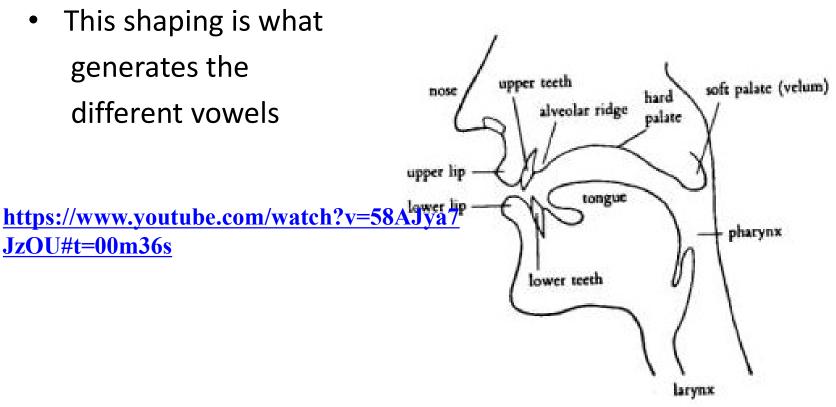


For the best classification, perform Bayes classification on the LDA projections

11-755/18-797

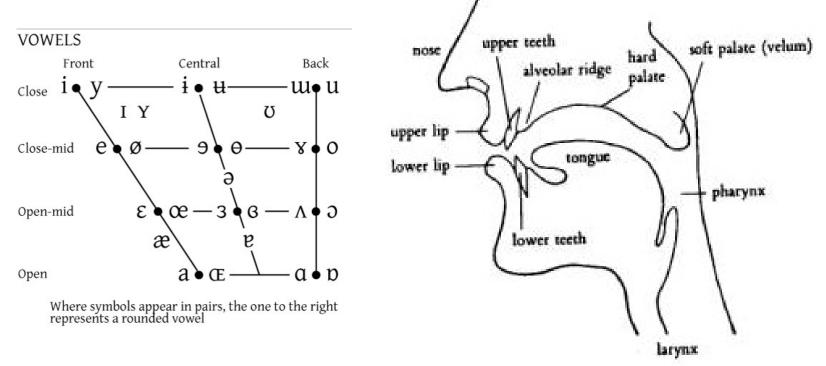
Bakeoff – PCA, CCA, LDA on Vowe Classification

- Speech is produced by an excitation in the glottis (vocal folds)
- Sound is then shaped with the tongue, teeth, soft palate ...



Bakeoff – PCA, CCA, LDA on Vowe Classification

- To represent where in the mouth the vowels are being shaped linguists have something called a vowel diagram
- It classifies vowels as front-back, open-closed depending on tongue position

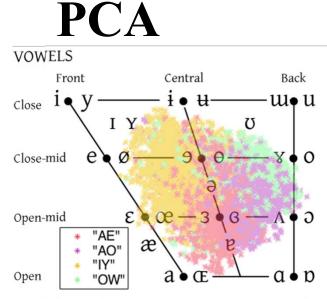


Bakeoff – PCA, CCA, LDA on Vowel Classification

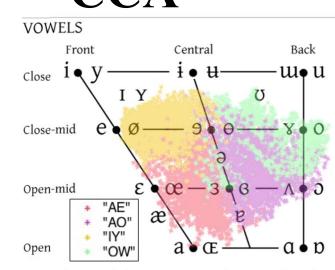
• Task:

- Discover the vowel chart from data

- CCA on Acoustic and Articulatory View
 - Project Acoustic data onto top 3 dimensions

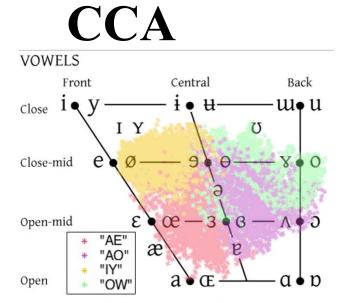


Where symbols appear in pairs, the one to the right represents a rounded vowel

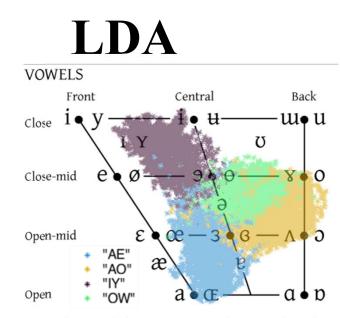


'Δ

Using a one hot encoding of labels as a view gives LDA



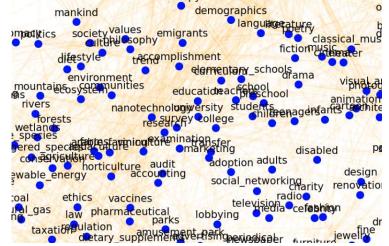
Where symbols appear in pairs, the one to the right represents a rounded vowel



Where symbols appear in pairs, the one to the right represents a rounded vowel

Multilingual CCA

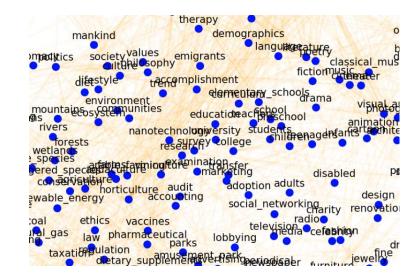
- Another Example of CCA
 - Word is mapped into some vector space
 - A notion of distance between words is defined and the mapping is such that words that are semantically similar are mapped to near to each other (hopefully)



http://www.4niyjad.jo/word2vec-on-databricks/ 11-755/18-797

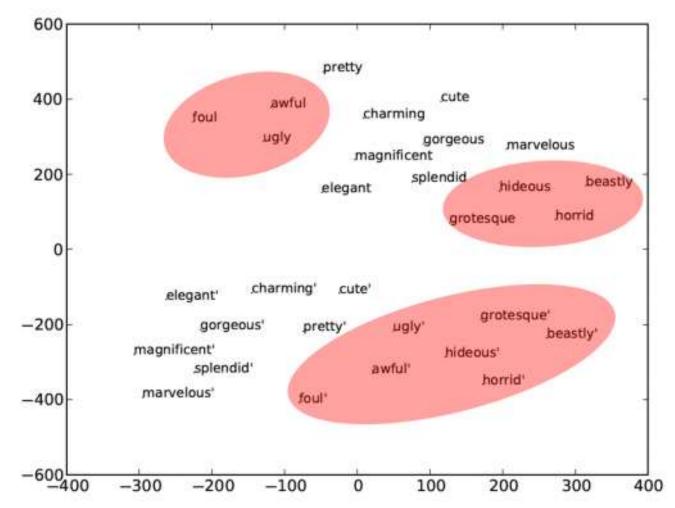
Multilingual CCA

- What if parallel text in another language exists?
- What if we could generate words in another language?
- Use different
 languages as
 different views



http://www.trivial.io/word2vec-on-databricks/ 11-755/18-797

Multilingual CCA



Faruqui, Manaal, and Chris Dyer. "Improving vector space word representations using multilingual correlation." Association for Computational Linguistics, 2014.

Fisher Faces

- We can apply LDA to the same faces we all know and love.
 - The details, especially stranger ones such as eye depth emerge as discriminating
 - features

Conclusions

- LDA learns discriminative representations by using supervision
 - Knowledge of Labels
- CCA is equivalent to LDA when one view is labels
 - CCA provides soft supervision by exploiting redundant view of data