# Machine Learning for Signal Processing Hidden Markov Models 

Bhiksha Raj

## A little parable

## You've been kidnapped



## A little parable

## You've been kidnapped



## A little parable

## You've been kidnapped



You can only hear the car
You must find your way back home from wherever they drop you off

## Kidnapped



- Determine automatically, by only listening to a running automobile, if it is:
- Idling; or
- Travelling at constant velocity; or
- Accelerating; or
- Decelerating
- You are super acoustically sensitive and can determine sound pressure level (SPL)
- The SPL is measured once per second


## What you know

- An automobile that is at rest can accelerate, or continue to stay at rest
- An accelerating automobile can hit a steadystate velocity, continue to accelerate, or decelerate
- A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate
- A automobile at a steady-state velocity can stay in steady state, accelerate or decelerate


## What else you know



- The probability distribution of the SPL of the sound is different in the various conditions
- As shown in figure
- In reality, depends on the car
- The distributions for the different conditions overlap
- Simply knowing the current sound level is not enough to know the state of the car

- The state-space model
- Assuming all transitions from a state are equally probable
- We will help you find your way back home in the next class


## What is an HMM

- The model assumes that the process can be in one of a number of states at any time instant
- The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)
- At each instant the process generates an observation from a probability distribution that is specific to the current state
- The generated observations are all that we get to see
- the actual state of the process is not directly observable
- Hence the qualifier hidden


## What is an HMM



- "Probabilistic function of a markov chain"
- Models a dynamical system
- System goes through a number of states
- Following a Markov chain model
- On arriving at any state it generates observations according to a state-specific probability distribution


## Hidden Markov Models



- A Hidden Markov Model consists of two components
- A state/transition backbone that specifies how many states there are, and how they can follow one another
- A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state


Markov chain


Data distributions

## How an HMM models a process

HMM assumed to be generating data

state sequence
state distributions observation sequence


## HMM Parameters

- The topology of the HMM
- Number of states and allowed transitions
- E.g. here we have 3 states and cannot go from the blue state to the red
- The transition probabilities
- Often represented as a matrix as here
$-T_{i j}$ is the probability that when in state $i$, the process will move to $j$
0.6


$$
T=\left(\begin{array}{ccc}
.6 & .4 & 0 \\
0 & .7 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

- The probability $\pi_{i}$ of beginning at any state $s_{i}$
- The complete set is represented as $\pi$
- The state output distributions


## Three Basic HMM Problems

- What is the probability that it will generate a specific observation sequence
- Given a observation sequence, how do we determine which observation was generated from which state
- The state segmentation problem
- How do we learn the parameters of the HMM from observation sequences


# Computing the Probability of an Observation Sequence 

- Two aspects to producing the observation:
- Progressing through a sequence of states
- Producing observations from these states


## Progressing through states

HMM assumed to be generating data

state
sequence


- The process begins at some state (red) here
- From that state, it makes an allowed transition
- To arrive at the same or any other state
- From that state it makes another allowed transition
- And so on


# Probability that the HMM will follow 

 a particular state sequence$$
P\left(s_{1}, s_{2}, s_{3}, \ldots\right)=P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \ldots
$$

- $P\left(s_{1}\right)$ is the probability that the process will initially be in state $s_{1}$
- $P\left(s_{i} / s_{i}\right)$ is the transition probability of moving to state $s_{i}$ at the next time instant when the system is currently in $s_{i}$
- Also denoted by $\mathrm{T}_{\mathrm{ij}}$ earlier


## Generating Observations from States

HMM assumed to be generating data


- At each time it generates an observation from the state it is in at that time

Probability that the HMM will generate
a particular observation sequence given a state sequence (state sequence known)

$$
P\left(o_{1}, o_{2}, o_{3}, \ldots \mid s_{1}, s_{2}, s_{3}, \ldots\right)=P\left(o_{1} \mid s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(o_{3} \mid s_{3}\right) \ldots
$$

Computed from the Gaussian or Gaussian mixture for state $\mathrm{s}_{1}$

- $P\left(o_{i} \mid s_{i}\right)$ is the probability of generating observation $o_{i}$ when the system is in state $s_{i}$


## Proceeding through States and Producing Observations

HMM assumed to be generating data
state

sequence
state
distributions
observation
sequence

- At each time it produces an observation and makes a transition


## Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

$$
\begin{aligned}
& P\left(o_{1}, o_{2}, o_{3}, \ldots, s_{1}, s_{2}, s_{3}, \ldots\right)= \\
& P\left(o_{1}, o_{2}, o_{3}, \ldots \mid s_{1}, s_{2}, s_{3}, \ldots\right) P\left(s_{1}, s_{2}, s_{3}, \ldots\right)= \\
& P\left(o_{1} \mid s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(o_{3} \mid s_{3}\right) \ldots P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \ldots
\end{aligned}
$$

## Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

$$
P\left(o_{1}, o_{2}, o_{3}, \ldots\right)=\sum_{\text {all.possible }} P\left(o_{1}, o_{2}, o_{3}, \ldots, s_{1}, s_{2}, s_{3}, \ldots\right)=
$$

state.sequences
$\sum_{\text {all.possible }} P\left(o_{1} \mid s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(o_{3} \mid s_{3}\right) \ldots P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \ldots$ state .sequences

## Computing it Efficiently

- Explicit summing over all state sequences is not tractable
- A very large number of possible state sequences
- Instead we use the forward algorithm
- A dynamic programming technique.


## Illustrative Example



- Example: a generic HMM with 5 states and a "terminating state".
- Left to right topology
- $P\left(s_{i}\right)=1$ for state 1 and 0 for others
- The arrows represent transition for which the probability is not 0


## Introducing the Trellis

- Draw grid showing state vs time
- Explain state


## Introducing the Trellis

- Draw grid showing state vs time
- Explain state
- Show a single path and explain how it's a state sequence


## Introducing the Trellis

- Draw grid showing state vs time
- Explain state
- Show a single path and explain how it's a state sequence
- Draw entire trellis and show its all paths


## Introducing the Trellis

- Draw grid showing state vs time
- Explain state
- Show a single path and explain how it's a state sequence
- Draw entire trellis and show its all paths
- Introduce alpha from time 0 in fact


## Introducing the Trellis

- Draw grid showing state vs time
- Explain state
- Show a single path and explain how it's a state sequence
- Draw entire trellis and show its all paths
- Introduce alpha from time 0 in fact
- Explain alpha at next time
- Then recurse

- The trellis is a graphical representation of all possible paths through the HMM to produce a given observation
- The Y -axis represents HMM states, X axis represents observations
- Every edge in the graph represents a valid transition in the HMM over a single time step
- Every node represents the event of a particular observation being generated from a particularstate


## The Forward Algorithm

$$
\alpha(s, t)=P\left(x_{1}, x_{2}, \ldots, x_{t}, \text { state }(t)=s\right)
$$



- $\alpha(s, t)$ is the total probability of ALL state sequences that end at state $s$ at time $t$, and all observations until $x_{t}$


## The Forward Algorithm

$$
\alpha(s, t)=P\left(x_{1}, x_{2}, \ldots, x_{t}, \text { state }(t)=s\right)
$$



- $\alpha(s, t)$ can be recursively computed in terms of $\alpha\left(s^{\prime}, t^{\prime}\right)$, the forward probabilities at time t-1


## The Forward Algorithm

$$
\text { Totalprob }=\sum_{s} \alpha(s, T)
$$

State index


- In the final observation the alpha at each state gives the probability of all state sequences ending at that state
- General model: The total probability of the observation is the sum of the alpha values at all states


## Problem 2: State segmentation

- Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?


## The HMM as a generator

HMM assumed to be generating data


- The process goes through a series of states and produces observations from them


## States are hidden

HMM assumed to be generating data

state sequence
state


- The observations do not reveal the underlying state


## The state segmentation problem

HMM assumed to be generating data

state
sequence


- State segmentation: Estimate state sequence given observations


## Estimating the State Sequence

- Many different state sequences are capable of producing the observation
- Solution: Identify the most probable state sequence
- The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
- i.e $P\left(o_{1}, o_{2}, o_{3}, \ldots, s_{1}, s_{2}, s_{3}, \ldots\right)$ is maximum


## Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

$$
\begin{aligned}
& P\left(o_{1}, o_{2}, o_{3}, \ldots, s_{1}, s_{2}, s_{3}, \ldots\right)= \\
& P\left(o_{1} \mid s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(o_{3} \mid s_{3}\right) \ldots P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \ldots
\end{aligned}
$$

- Needed: $\arg \max _{s_{1}, s_{2}, s_{3}, \ldots} P\left(o_{1} \mid s_{1}\right) P\left(s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(s_{2} \mid s_{1}\right) P\left(o_{3} \mid s_{3}\right) P\left(s_{3} \mid s_{2}\right)$


## Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

$$
\begin{aligned}
& P\left(o_{1}, o_{2}, o_{3}, \ldots, s_{1}, s_{2}, s_{3}, \ldots\right)= \\
& P\left(o_{1} \mid s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(o_{3} \mid s_{3}\right) \ldots P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \ldots
\end{aligned}
$$

- Needed:
$\arg \max _{s_{1}, s_{2}, s_{3}, \ldots} P\left(o_{1} \mid s_{1}\right) P\left(s_{1}\right) P\left(o_{2} \mid s_{2}\right) P\left(s_{2} \mid s_{1}\right) P\left(o_{3} \mid s_{3}\right) P\left(s_{3} \mid s_{2}\right)$


## The HMM as a generator

HMM assumed to be generating data


- Each enclosed term represents one forward transition and a subsequent emission


## The state sequence

- The probability of a state sequence ?,?,?,?,? $\mathrm{s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}$ ending at time $t$, and producing all observations until $o_{\mathrm{t}}$
$-\mathrm{P}\left(o_{1 . t-1}, ?, ?, ?, ?, \mathrm{~s}_{\mathrm{x}}, o_{t}, \mathrm{~s}_{\mathrm{y}}\right)=\mathrm{P}\left(o_{1 . . \mathrm{t}-1}, ?, ?, ?, ?, \mathrm{~s}_{\mathrm{x}}\right) \mathrm{P}\left(o_{t} \mid s_{y}\right) \mathrm{P}\left(s_{y} \mid s_{x}\right)$
- The best state sequence that ends with $s_{x}, s_{y}$ at $t$ will have a probability equal to the probability of the best state sequence ending at $t-1$ at $s_{x}$ times $\mathrm{P}\left(o_{t} \mid s_{y}\right) \mathrm{P}\left(s_{y} \mid s_{x}\right)$


## Extending the state sequence



- The probability of a state sequence ?,?,?,?, $s_{x}, s_{y}$ ending at time $t$ and producing observations until $o_{t}$
$-\mathrm{P}\left(o_{1 . . \mathrm{t}-1}, o_{\mathrm{t}}, ?, ?, ?, ?, \mathrm{~s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}\right)=\mathrm{P}\left(o_{1 . . \mathrm{t}-1}, ?, ?, ?, ?, \mathrm{~s}_{\mathrm{x}}\right) \mathrm{P}\left(o_{t} \mid s_{y}\right) \mathrm{P}\left(s_{y} \mid s_{x}\right)$


## Trellis

- The graph below shows the set of all possible state sequences through this HMM in five time instants



## The cost of extending a state

## sequence

- The cost of extending a state sequence ending at $s_{x}$ is only dependent on the transition from $s_{x}$ to $s_{y}$, and the observation probability at $s_{y}$



## The cost of extending a state

## sequence

- The best path to $s_{y}$ through $s_{x}$ is simply an extension of the best path to $s_{x}$



## The Recursion

- The overall best path to $s_{y}$ is an extension of the best path to one of the states at the previous time



## The Recursion

- Prob. of best path to $s_{y}=$ $\operatorname{Max}_{s_{\mathrm{x}}} \operatorname{BestP}\left(o_{1 . t-1}, ?, ?, ?, ?, \mathrm{~s}_{\mathrm{x}}\right) \mathrm{P}\left(o_{t} \mid s_{y}\right) \mathrm{P}\left(s_{y} \mid s_{x}\right)$



## Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
- After A.J.Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!


## Viterbi Search (contd.)



Initial state initialized with path-score $=P\left(s_{l}\right) b_{l}(l)$
$\rightarrow$ time
In this example all other states shave score $^{\text {since }} P\left(s_{i}\right)=0$ for them

## Viterbi Search (contd.)



State with best path-score
State with path-score < best
State without a valid path-score

$$
P_{j}(t)=\max _{i}\left[P_{i}(t-1) t_{i j} b_{j}(t)\right]
$$

State transition probability, $i$ to $j$
Score for state $j$, given the input at time $t$ Total path-score ending up at state $j$ at time $t$

## Viterbi Search (contd.)



$$
P_{j}(t)=\max _{i}\left[P_{i}(t-1) t_{i j} b_{j}(t)\right]
$$

State transition probability, $i$ to $j$
Score for state $j$, given the input at time $t$
Total path-score ending up at state $j$ at time $t$

## Viterbi Search (contd.)


time

## Viterbi Search (contd.)


time

## Viterbi Search (contd.)


time

## Viterbi Search (contd.)



## Viterbi Search (contd.)



## Viterbi Search (contd.)



## Viterbi Search (contd.)



## Viterbi Search (contd.)

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION


## Problem3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM's parameters
- But where do the HMM parameters come from?
- They must be learned from a collection of observation sequences


# Learning HMM parameters: Simple procedure - counting 

- Given a set of training instances
- Iteratively:

1. Initialize HMM parameters
2. Segment all training instances
3. Estimate transition probabilities and state output probability parameters by counting

## Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
- How to count after state sequences are obtained



## Example: Learning HMM Parameters

- We have an HMM with two states s1 and s2.
- Observations are vectors $\mathrm{x}_{\mathrm{ij}}$
- i-th sequence, j-th vector

- We are given the following three observation sequences
- And have already estimated state sequences

Observation 1

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{\mathrm{a} 1}$ | $\mathbf{X}_{\mathrm{a} 2}$ | $\mathbf{X}_{\mathrm{a3}}$ | $\mathbf{X}_{a 4}$ | $\mathbf{X}_{\mathrm{a} 5}$ | $\mathbf{X}_{\mathrm{a} 6}$ | $\mathbf{X}_{\mathrm{a} 7}$ | $\mathbf{X}_{\mathrm{a} 8}$ | $\mathbf{X}_{\mathrm{a} 9}$ | $\mathbf{X}_{a 10}$ |


| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{\mathrm{b} 1}$ | $\mathbf{X}_{\mathrm{b} 2}$ | $\mathbf{X}_{\mathrm{h} 3}$ | $\mathbf{X}_{\mathrm{h} 4}$ | $\mathbf{X}_{\mathrm{h} 5}$ | $\mathbf{X}_{\mathrm{b} 6}$ | $\mathbf{X}_{\mathrm{h} 7}$ | $\mathbf{X}_{\mathrm{h} 8}$ | $\mathbf{X}_{\mathrm{b} 9}$ |

Observation 3

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ | $\mathbf{S} 2$ |
| Obs | $\mathbf{X}_{\mathrm{c} 1}$ | $\mathbf{X}_{\mathrm{c} 2}$ | $\mathbf{X}_{\mathrm{c} 3}$ | $\mathbf{X}_{\mathrm{c} 4}$ | $\mathbf{X}_{\mathrm{c} 5}$ | $\mathbf{X}_{\mathrm{cb}}$ | $\mathbf{X}_{\mathrm{c} 7}$ | $\mathbf{X}_{\mathrm{c} 8}$ |

## Example: Learning HMM Parameters

- Initial state probabilities (usually denoted as $\pi$ ):
- We have 3 observations
- 2 of these begin with S1, and one with S2
- $\pi(\mathrm{S} 1)=2 / 3, \pi(\mathrm{~S} 2)=1 / 3$

Observation 1

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| stat | $\mathbf{S 1}$ | $\mathbf{1}$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{01}$ | $\mathbf{X}_{a 2}$ | $\mathbf{X}_{03}$ | $\mathbf{X}_{a 4}$ | $\mathbf{X}_{05}$ | $\mathbf{X}_{a 6}$ | $\mathbf{X}_{a 7}$ | $\mathbf{X}_{a 8}$ | $\mathbf{X}_{99}$ | $\mathbf{X}_{a 10}$ |

Observation 2


Observation 3

| Time |  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| stat | $\mathbf{S 1}$ | $\mathbf{2}$ | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ |
| Obs | $\mathbf{X d}_{c 1}$ | $\mathbf{X}_{c 2}$ | $\mathbf{X}_{c 3}$ | $\mathbf{X}_{c 4}$ | $\mathbf{X}_{c 5}$ | $\mathbf{X}_{c 6}$ | $\mathbf{X}_{c 7}$ | $\mathbf{X}_{c 8}$ |

## Example: Learning HMM Parameters

- Transition probabilities:
- State S1 occurs 11 times in non-terminal locations

Observation 1

| Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S1 | S1 | S2 | S2 | S2 | S1 | S1 | S2 | S1 | S1 |
| Obs | al | K | $\mathbf{X}_{33}$ | $\mathbf{X}_{94}$ | $\mathrm{X}_{\text {a }}$ |  | ${ }_{5}$ | $\mathrm{X}_{3}$ | $\pm$ | K |

Observation 2

| Time | 1 | 2 | 2 |  | 5 | 6 | 7 | 8 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{5} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ |
| Obs | $\mathrm{X}_{\mathrm{h} 1}$ | $\mathrm{X}_{\mathrm{h} 2}$ | $\mathrm{X}_{\mathrm{h} 3}$ | $\mathrm{X}_{\mathrm{h} 4}$ | $\mathrm{X}_{\mathrm{h} 5}$ | $\mathrm{X}_{\mathrm{h} 6}$ | $\mathrm{X}_{\mathrm{h} 7}$ | $\mathrm{X}_{\mathrm{h} 8}$ | $\mathrm{X}_{\mathrm{h} 9}$ |

Observation 3


## EMa

- Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times

Observation 1


Observation 2


Observation 3

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ |  |  | $\mathbf{X}$ | $\mathbf{7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Example: Learning HMM Parameters

- Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times

Observation 1


Observation 2


Observation 3


## Example: Learning HMM Parameters

- Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times
- $\quad P(S 1 \mid S 1)=6 / 11 ; P(S 2 \mid S 1)=5 / 11$

Observation 1

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{a 1}$ | $\mathbf{X}_{\mathrm{a} 2}$ | $\mathbf{X}_{\mathrm{a3}}$ | $\mathbf{X}_{a 4}$ | $\mathbf{X}_{\mathrm{a} 5}$ | $\mathbf{X}_{\mathrm{a} 6}$ | $\mathbf{X}_{\mathrm{a} 7}$ | $\mathbf{X}_{\mathrm{a} 8}$ | $\mathbf{X}_{a 9}$ | $\mathbf{X}_{a 10}$ |

Observation 2

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{\mathrm{h} 1}$ | $\mathbf{X}_{\mathrm{h} 2}$ | $\mathbf{X}_{\mathrm{h} 3}$ | $\mathbf{X}_{\mathrm{h} 4}$ | $\mathbf{X}_{\mathrm{h} 5}$ | $\mathbf{X}_{\mathrm{h} 6}$ | $\mathbf{X}_{\mathrm{h} 7}$ | $\mathbf{X}_{\mathrm{h} 8}$ | $\mathbf{X}_{\mathrm{h} 9}$ |

Observation 3

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ | $\mathbf{S} 2$ |
| Obs | $\mathbf{X}_{\mathrm{c} 1}$ | $\mathbf{X}_{\mathrm{c} 2}$ | $\mathbf{X}_{\mathrm{c} 3}$ | $\mathbf{X}_{\mathrm{c} 4}$ | $\mathbf{X}_{\mathrm{c} 5}$ | $\mathbf{X}_{\mathrm{cb}}$ | $\mathbf{X}_{\mathrm{c} 7}$ | $\mathbf{X}_{\mathrm{c} 8}$ |

## Example: Learning HMM Parameters

- Transition probabilities:

- $\quad$ State S2 occurs 13 times in non-terminal locations

Observation 1

| Time | 1 | 2 |  |  |  | 6 |  | O | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S1 | S1 | S2 | S2 | S2 | S1 | S1 | S2 | S1 | S1 |
| Obs. | $\mathrm{X}_{\mathrm{a} 1}$ | $\mathrm{X}_{\mathrm{a} 2}$ | $\mathrm{X}_{\text {a3 }}$ | $\mathrm{X}^{4}$ | $\mathrm{X}_{\mathrm{a5}}$ | $\mathrm{X}_{36}$ | $\mathrm{X}_{\mathrm{a} 7}$ | $\mathrm{X}_{38}$ | $\mathrm{X}_{09}$ | $\mathbf{X}_{\text {a } 10}$ |

Observation 2

| Time | L | - | 3 | 4 |  |  |  |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S2 | S2 | S1 | S1 | S2 | S | 1) S 2 | S | S1 |
| Obs | $\lambda_{\text {h }}$ | $\mathrm{X}_{\mathrm{h} 2}$ | $\mathrm{X}_{\mathrm{h} 3}$ | $\mathrm{X}_{\mathrm{b} 4}$ | R |  | $\mathrm{\lambda}_{\mathrm{h} 7}$ | $\mathrm{Nh}^{2}$ | $\mathrm{X}_{\mathrm{b} 9}$ |

Observation 3


## EMa

- Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times

Observation 1


Observation 2


Observation 3

| Time | 1 | 3 | 4 | 5 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S1 | S 1 | S 1 | S1 | S2 |  |  |  |
| Obs | $\mathrm{X}_{\text {cl }}$ | $\mathrm{X}_{\mathrm{c} 2} \mathrm{X}$ | $\mathrm{X}_{c}$ | $\mathrm{X}_{\text {c }}$ | ${ }_{\text {K }}$ |  |  |  |

## EMan

- Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times

Observation 1

| Ti | 1 | 2 |  | 7 |  | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S1 | S1 | S. $\mathrm{SLO}_{52} 1$ | S1 | S2 | S1 | 1 |
| Obs | $\mathrm{X}_{3}$ | $\mathrm{X}_{3}$ | $\mathrm{X}_{03} \mathrm{~F}_{14}$ | $\mathrm{X}_{07}$ | $\mathrm{X}_{38}$ | $\mathrm{X}_{0}$ |  |

Observation 2


Observation 3


## Example: Learning HMM Parameters

- Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times
- $\quad \mathrm{P}(\mathrm{S} 1 \mid \mathrm{S} 2)=5 / 13 ; \mathrm{P}(\mathrm{S} 2 \mid \mathrm{S} 2)=8 / 13$

Observation 1

| Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S1 | S1 | S2 | S2 | S2 | S1 | S1 | S2 | S1 | S1 |
| Obs | $\mathrm{X}_{\mathrm{a}}$ | $\mathrm{X}_{02}$ | X | $\mathrm{X}_{34}$ | $\mathrm{X}_{35}$ | $\mathrm{X}_{36}$ | $\mathrm{X}_{\mathrm{a} 7}$ | $\mathrm{X}_{3}$ | X |  |

Observation 2

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{\mathrm{h} 1}$ | $\mathbf{X}_{\mathrm{h} 2}$ | $\mathbf{X}_{\mathrm{h} 3}$ | $\mathbf{X}_{\mathrm{h} 4}$ | $\mathbf{X}_{\mathrm{h} 5}$ | $\mathbf{X}_{\mathrm{h} 6}$ | $\mathbf{X}_{\mathrm{h} 7}$ | $\mathbf{X}_{\mathrm{h} 8}$ | $\mathbf{X}_{\mathrm{h} 9}$ |

Observation 3

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ | $\mathbf{S} 2$ |
| Obs | $\mathbf{X}_{\mathrm{c} 1}$ | $\mathbf{X}_{\mathrm{c} 2}$ | $\mathbf{X}_{\mathrm{c} 3}$ | $\mathbf{X}_{\mathrm{c} 4}$ | $\mathbf{X}_{\mathrm{c} 5}$ | $\mathbf{X}_{\mathrm{cb}}$ | $\mathbf{X}_{\mathrm{c} 7}$ | $\mathbf{X}_{\mathrm{c} 8}$ |

## Parameters learnt so far

- State initial probabilities, often denoted as $\pi$

$$
\begin{aligned}
& -\pi(\mathrm{S} 1)=2 / 3=0.66 \\
& -\pi(\mathrm{S} 2)=1 / 3=0.33
\end{aligned}
$$

- State transition probabilities
$-P(S 1 \mid S 1)=6 / 11=0.545 ; P(S 2 \mid S 1)=5 / 11=0.455$
$-P(S 1 \mid S 2)=5 / 13=0.385 ; P(S 2 \mid S 2)=8 / 13=0.615$
- Represented as a transition matrix

$$
A=\left(\begin{array}{ll}
P(S 1 \mid S 1) & P(S 2 \mid S 1) \\
P(S 1 \mid S 2) & P(S 2 \mid S 2)
\end{array}\right)=\left(\begin{array}{ll}
0.545 & 0.455 \\
0.385 & 0.615
\end{array}\right)
$$

Each row of this matrix must sum to 1.0

## Example: Learning HMM Parameters

- State output probability for S1
- There are 13 observations in S1

Observation 1

| Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | S1 | S1 | S2 | S2 | S2 | S1 | S1 | S2 | S1 | S1 |
| Obs | $\mathrm{X}_{91}$ | $\mathrm{X}_{02}$ | $\mathrm{X}_{03}$ | $\mathrm{X}_{94}$ | $\mathrm{X}_{05}$ | $\mathrm{X}_{36}$ | $\mathrm{X}_{07}$ | $\mathrm{X}_{38}$ | $\mathbf{X}_{9}$ | $\mathbf{X}_{\text {a } 10}$ |

Observation 2

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ |
| Obs | $\mathrm{X}_{\mathrm{h} 1}$ | $\mathrm{X}_{\mathrm{h} 2}$ | $\mathbf{X}_{\mathrm{h} 3}$ | $\mathbf{X}_{\mathrm{h} 4}$ | $\mathbf{X}_{\mathrm{h} 5}$ | $\mathbf{X}_{\mathrm{h} 6}$ | $\mathbf{X}_{\mathrm{h} 7}$ | $\mathbf{X}_{\mathrm{h} 8}$ | $\mathbf{X}_{\mathrm{h} 9}$ |

Observation 3

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ | $\mathbf{S} 2$ |
| Obs | $\mathbf{X}_{\mathrm{cl}}$ | $\mathbf{X}_{\mathrm{c} 2}$ | $\mathbf{X}_{\mathrm{c} 3}$ | $\mathbf{X}_{c 4}$ | $\mathbf{X}_{\mathrm{c} 5}$ | $\mathbf{X}_{\mathrm{cb}}$ | $\mathbf{X}_{\mathrm{c} 7}$ | $\mathbf{X}_{\mathrm{c} 8}$ |

## Example: Learning HMM Parameters

- State output probability for S1
- There are 13 observations in S1
- Segregate them out and count

- Compute parameters (mean and variance) of Gaussian output density for state S1

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | S1 | S1 | S1 | S1 | S1 | S1 |
| Obs | $\mathbf{X}_{\mathrm{a} 1}$ | $\mathbf{X}_{\mathrm{a} 2}$ | $\mathbf{X}_{\mathrm{a} 6}$ | $\mathbf{X}_{\mathrm{a} 7}$ | $\mathbf{X}_{a 9}$ | $\mathbf{X}_{\mathrm{a} 10}$ |

$$
P\left(X \mid S_{1}\right)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Theta_{1}\right|}} \exp \left(-0.5\left(X-\mu_{1}\right)^{T} \Theta_{1}^{-1}\left(X-\mu_{1}\right)\right)
$$

| Time | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- |
| state | S1 | S1 | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{\mathrm{h} 3}$ | $\mathbf{X}_{\mathrm{b4}}$ | $\mathbf{X}_{\mathrm{h} 9}$ |

$$
\mu_{1}=\frac{1}{13}\binom{X_{a 1}+X_{a 2}+X_{a 6}+X_{a 7}+X_{a 9}+X_{a 10}+X_{b 3}+}{X_{b 4}+X_{b 9}+X_{c 1}+X_{c 2}+X_{c 4}+X_{c 5}}
$$

| Time | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- |
| state | S1 | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S 1}$ |
| Obs | $\mathbf{X}_{\mathrm{cc}}$ | $\mathbf{X}_{\mathrm{c} 2}$ | $\mathbf{X}_{\mathrm{c} 4}$ | $\mathbf{X}_{\mathrm{c} 5}$ |

$$
\Theta_{1}=\frac{1}{13}\left(\begin{array}{l}
\left(X_{a 1}-\mu_{1}\right)\left(X_{a 1}-\mu_{1}\right)^{T}+\left(X_{a 2}-\mu_{1}\right)\left(X_{a 2}-\mu_{1}\right)^{T}+\ldots \\
\left(X_{b 3}-\mu_{1}\right)\left(X_{b 3}-\mu_{1}\right)^{T}+\left(X_{b 4}-\mu_{1}\right)\left(X_{b 4}-\mu_{1}\right)^{T}+\ldots \\
\left(X_{c 1}-\mu_{1}\right)\left(X_{c 1}-\mu_{1}\right)^{T}+\left(X_{c 2}-\mu_{1}\right)\left(X_{c 2}-\mu_{1}\right)^{T}+\ldots
\end{array}\right)
$$

## Example: Learning HMM Parameters

- State output probability for S2
- There are 14 observations in S2


Observation 1

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{91}$ | $\mathbf{X}_{a 2}$ | $\mathbf{X}_{03}$ | $\mathbf{X}_{94}$ | $\mathbf{X}_{05}$ | $\mathbf{X}_{a 6}$ | $\mathbf{X}_{07}$ | $\mathbf{X}_{98}$ | $\mathbf{X}_{99}$ | $\mathbf{X}_{a 10}$ |

Observation 2

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ | $\mathbf{S} 1$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 1$ |
| Obs | $\mathbf{X}_{\mathrm{h} 1}$ | $\mathbf{X}_{\mathrm{h} 2}$ | $\mathbf{X}_{\mathrm{h} 3}$ | $\mathbf{X}_{\mathrm{h} 4}$ | $\mathbf{X}_{\mathrm{h} 5}$ | $\mathbf{X}_{\mathrm{h} 6}$ | $\mathbf{X}_{\mathrm{h} 7}$ | $\mathbf{X}_{\mathrm{h} 8}$ | $\mathbf{X}_{\mathrm{h} 9}$ |

Observation 3

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S 1}$ | $\mathbf{S 2}$ | $\mathbf{S 1}$ | $\mathbf{S 1}$ | $\mathbf{S} 1$ | $\mathbf{S 2}$ | $\mathbf{S 2}$ | $\mathbf{S} 2$ |
| Obs | $\mathbf{X}_{c 1}$ | $\mathbf{X}_{c 2}$ | $\mathbf{X}_{\mathrm{c} 3}$ | $\mathbf{X}_{c 4}$ | $\mathbf{X}_{c 5}$ | $\mathbf{X}_{\mathrm{cb}}$ | $\mathbf{X}_{c 7}$ | $\mathbf{X}_{c 8}$ |

## Example: Learning HMM Parameters

- State output probability for S2
- There are 14 observations in S2
- Segregate them out and count
- Compute parameters (mean and variance) of Gaussian output density for state S2

| Time | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S 2}$ |
| Obs | $\mathbf{X}_{03}$ | $\mathbf{X}_{a 4}$ | $\mathbf{X}_{a 5}$ | $\mathbf{X}_{a 8}$ |

$$
P\left(X \mid S_{2}\right)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Theta_{2}\right|}} \exp \left(-0.5\left(X-\mu_{2}\right)^{T} \Theta_{2}^{-1}\left(X-\mu_{2}\right)\right)
$$

| Time | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ |
| Obs | $\mathrm{X}_{\mathrm{h} 1}$ | $\mathrm{X}_{\mathrm{h} 2}$ | $\mathbf{X}_{\mathrm{h} 5}$ | $\mathbf{X}_{\mathrm{h} 6}$ | $\mathbf{X}_{\mathrm{h} 7}$ | $\mathbf{X}_{\mathrm{h} 8}$ |


| Time | $\mathbf{2}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- |
| state | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ | $\mathbf{S} 2$ |
| Obs | $\mathbf{X}_{c 2}$ | $\mathbf{X}_{c 6}$ | $\mathbf{X}_{c 7}$ | $\mathbf{X}_{c 8}$ |

$$
\begin{gathered}
\mu_{2}=\frac{1}{14}\binom{X_{a 3}+X_{a 4}+X_{a 5}+X_{a 8}+X_{b 1}+X_{b 2}+X_{b 5}+}{X_{b 6}+X_{b 7}+X_{b 8}+X_{c 2}+X_{c 6}+X_{c 7}+X_{c 8}} \\
\Theta_{1}=\frac{1}{14}\left(\left(X_{a 3}-\mu_{2}\right)\left(X_{a 3}-\mu_{2}\right)^{T}+\ldots\right)
\end{gathered}
$$

## We have learnt all the HMM parmeters

- State initial probabilities, often denoted as $\pi$

$$
-\pi(\mathrm{S} 1)=0.66 \quad \pi(\mathrm{~S} 2)=1 / 3=0.33
$$

- State transition probabilities

$$
A=\left(\begin{array}{ll}
0.545 & 0.455 \\
0.385 & 0.615
\end{array}\right)
$$

- State output probabilities

State output probability for S1
State output probability for S2

$$
P\left(X \mid S_{1}\right)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Theta_{1}\right|}} \exp \left(-0.5\left(X-\mu_{1}\right)^{T} \Theta_{1}^{-1}\left(X-\mu_{1}\right)\right) \quad P\left(X \mid S_{2}\right)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Theta_{2}\right|}} \exp \left(-0.5\left(X-\mu_{2}\right)^{\tau} \Theta_{2}^{-1}\left(X-\mu_{2}\right)\right)
$$

## Update rules at each iteration

$\pi\left(s_{i}\right)=\frac{\text { No. of observation sequencesthat start at state } s_{i}}{\text { Total no.of observation sequences }}$
$P\left(s_{j} \mid s_{i}\right)=\frac{\sum_{\text {obs }} \sum_{t: \text { state }(t)=s_{i}, \text { s. state }(t+1)=s_{j}} 1}{\sum_{\text {obs }} \sum_{\text {t:state }(t)=s_{i} .} 1} \quad \mu_{i}=\frac{\sum_{\text {obs }} \sum_{\text {statate }(t)=\text { obs } s, t} X_{\text {obs }}}{\sum_{\text {obs }} \sum_{t: \text { satae }(t)=s_{i} .} 1}$

$$
\Theta_{i}=\frac{\sum_{\text {obs }} \sum_{t: \text { state }(t)=s_{i}}\left(X_{o b s, t}-\mu_{i}\right)\left(X_{o b s, t}-\mu_{i}\right)^{T}}{\sum_{\text {obs }} \sum_{t: \text { state }(t)=s_{i} .} 1}
$$

- Assumes state output PDF = Gaussian
- For GMMs, estimate GMM parameters from collection of observations at any state


## Training by segmentation: Viterbi training



- Initialize all HMM parameters
- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a "segmental k-means" learning procedure


# Alternative to counting: SOFT counting 

- Expectation maximization
- Every observation contributes to every state


## Update rules at each iteration

$$
\begin{gathered}
\pi\left(s_{i}\right)=\frac{\sum_{\text {Obs }} P\left(\text { state }(t=1)=s_{i} \mid \text { Obs }\right)}{\text { Total no. of observation sequences }} \\
P\left(s_{j} \mid s_{i}\right)=\frac{\sum_{\text {Obs }} \sum_{t} P\left(\operatorname{state}(t)=s_{i}, \text { state }(t+1)=s_{j} \mid \text { Obs }\right)}{\sum_{\text {Obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
\end{gathered}
$$

$$
\mu_{i}=\frac{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right) X_{\text {obs }, t}}{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
$$

$$
\Theta_{i}=\frac{\sum_{\text {obs }} \sum_{t} P\left(\operatorname{state}(t)=s_{i} \mid O b s\right)\left(X_{O b s, t}-\mu_{i}\right)\left(X_{O b s, t}-\mu_{i}\right)^{T}}{\sum_{\text {obs }} \sum_{t} P\left(\operatorname{state}(t)=s_{i} \mid O b s\right)}
$$

- Every observation contributes to every state


## Update rules at each iteration

$$
\begin{gathered}
\pi\left(s_{i}\right)=\frac{\sum_{\text {obs }} P\left(\operatorname{state}(t=1)=s_{i} \mid \text { Obs }\right)}{\text { Total no. of observation sequences }} \\
P\left(s_{j} \mid s_{i}\right)=\frac{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i}, \text { state }(t+1)=s_{j} \mid \text { Obs }\right)}{\sum_{\text {obs }} \sum_{t}^{P\left(\text { state }(t)=s_{i} \mid \text { Obs }\right)}}
\end{gathered}
$$

$$
\mu_{i}=\frac{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right) Y_{\text {obs }, t}}{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
$$

$$
\Theta_{i}=\frac{\sum_{\text {obs }} \sum_{t}-\left(\text { state }(t)=s_{i} \mid \text { Obs }\right)\left(X_{\text {obs }, t}-\mu_{i}\right)\left(X_{\text {obs }, t}-\mu_{i}\right)^{T}}{\sum_{\text {Obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
$$

- Where did these terms come from?
$P($ state $(t)=s \mid O b s)$
- The probability that the process was at $s$ when it generated $X_{t}$ given the entire observation
- Dropping the "Obs" subscript for brevity
$P\left(\operatorname{state}(t)=s \mid X_{1}, X_{2}, \ldots, X_{T}\right) \propto P\left(\operatorname{state}(t)=s, X_{1}, X_{2}, \ldots, X_{T}\right)$
- We will compute $P\left(\right.$ state $\left.(t)=s_{i}, x_{1}, x_{2}, \ldots, x_{T}\right)$ first
- This is the probability that the process visited $s$ at time $t$ while producing the entire observation


## $P\left(\operatorname{state}(t)=s, x_{1}, x_{2}, \ldots, x_{T}\right)$

- The probability that the HMM was in a particular state $s$ when generating the observation sequence is the probability that it followed a state sequence that passed through $s$ at time $t$



## $P\left(\operatorname{state}(t)=s, x_{1}, x_{2}, \ldots, x_{T}\right)$

- This can be decomposed into two multiplicative sections
- The section of the lattice leading into state $s$ at time $t$ and the section leading out of it



## The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state $s$ at time $t$
- This is simply $\alpha(s, t)$
- Can be computed using the forward algorithm


## The Backward Paths

- The blue portion represents the probability of all state sequences that began at state $s$ at time $t$
- Like the red portion it can be computed using a backward recursion



## The Backward Recursion

$$
\beta(s, t)=P\left(x_{t+1}, x_{t+2}, \ldots, x_{T} \mid \text { state }(t)=s\right)
$$



- $\beta(s, t)$ is the total probability of ALL state sequences that depart from $s$ at time $t$, and all observations after $x_{t}$
$-\beta(s, T)=1$ at the final time instant for all valid final states


## The complete probability

$$
\alpha(s, t) \beta(s, t)=P\left(x_{t+1}, x_{t+2}, \ldots, x_{T}, \text { state }(t)=s\right)
$$



## Posterior probability of a state

- The probability that the process was in state $s$ at time $t$, given that we have observed the data is obtained by simple normalization

$$
P(\text { state }(t)=s \mid O b s)=\frac{P\left(\text { state }(t)=s, x_{1}, x_{2}, \ldots, x_{T}\right)}{\sum_{s^{\prime}} P\left(\text { state }(t)=s, x_{1}, x_{2}, \ldots, x_{T}\right)}=\frac{\alpha(s, t) \beta(s, t)}{\sum_{s^{\prime}} \alpha\left(s^{\prime}, t\right) \beta\left(s^{\prime}, t\right)}
$$

- This term is often referred to as the gamma term and denoted by $\gamma_{s, t}$


## Update rules at each iteration

$$
\begin{aligned}
& \pi\left(s_{i}\right)=\frac{\left.\left.\sum_{\text {Obs }} \underset{\text { Potal no. of observation sequences }}{ } \text { ( } t=1\right)=s_{i} \mid \text { Obs }\right)}{\text { Tol }} \\
& P\left(s_{j} \mid s_{i}\right)=\frac{\sum_{\text {Obs }} \sum_{t} P\left(\text { state }(t)=s_{i}, \text { state }(t+1)=s_{j} \mid \text { Obs }\right)}{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid \text { Obs }\right)} \\
& \mu_{i}=\frac{\sum_{\text {obs }} \sum_{t} P\left(\operatorname{state}(t)=s_{i} \mid O b s\right) X_{\text {obs }, t}}{\sum_{\text {Obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
\end{aligned}
$$

- These have been found


## Update rules at each iteration

$$
\pi\left(s_{i}\right)=\frac{\sum_{O b s} P\left(\operatorname{state}(t=1)=s_{i} \mid O b s\right)}{\text { Total no.of observation sequences }}
$$

$$
P\left(s_{j} \mid s_{i}\right)=\frac{\sum_{\text {Obs }} \sum_{t} \frac{P\left(\operatorname{state}(t)=s_{i}, \text { state }(t+1)=s_{j} \mid \text { Obs }\right)}{\sum_{\text {Obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid \text { Obs }\right)}}{\text { 位 }}
$$

$$
\mu_{i}=\frac{\sum_{O b s} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right) X_{\text {obs }, t}}{\sum_{O b s} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
$$

$$
\Theta_{i}=\frac{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)\left(X_{\text {Obs }, t}-\mu_{i}\right)\left(X_{\text {Obs }, t}-\mu_{i}\right)^{T}}{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
$$

- Where did these terms come from?
$P\left(\operatorname{state}(t)=s\right.$, state $\left.(t+1)=s^{\prime}, x_{1}, x_{2}, \ldots, x_{T}\right)$

time
$P\left(\operatorname{state}(t)=s\right.$, state $\left.(t+1)=s^{\prime}, x_{1}, x_{2}, \ldots, x_{T}\right)$

$$
\alpha(s, t)
$$


time
$P\left(\right.$ state $(t)=s$, state $\left.(t+1)=s^{\prime}, x_{1}, x_{2}, \ldots, x_{T}\right)$

$$
\alpha(s, t) P\left(s^{\prime} \mid s\right) P\left(x_{t+1} \mid s^{\prime}\right)
$$


time
$P\left(\operatorname{state}(t)=s\right.$, state $\left.(t+1)=s^{\prime}, x_{1}, x_{2}, \ldots, x_{T}\right)$

$$
\alpha(s, t) P\left(s^{\prime} \mid s\right) P\left(x_{t+1} \mid s^{\prime}\right) \beta\left(s^{\prime}, t+1\right)
$$


time

## The a posteriori probability of transition

$$
P\left(\text { state }(t)=s, \operatorname{state}(t+1)=s^{\prime} \mid O b s\right)=\frac{\alpha(s, t) P\left(s^{\prime} \mid s\right) P\left(x_{t+1} \mid s^{\prime}\right) \beta\left(s^{\prime}, t+1\right)}{\sum_{s_{1}} \sum_{s_{2}} \alpha\left(s_{1}, t\right) P\left(s_{2} \mid s_{1}\right) P\left(x_{t+1} \mid s_{2}\right) \beta\left(s_{2}, t+1\right)}
$$

- The a posteriori probability of a transition given an observation


## Update rules at each iteration

$$
\begin{gathered}
\pi\left(s_{i}\right)=\frac{\sum_{\text {obs }} P\left(\text { state }(t=1)=s_{i} \mid \text { Obs }\right)}{\text { Total no. of observation sequences }} \\
P\left(s_{j} \mid s_{i}\right)=\frac{\sum_{\text {obs }} \sum_{t}^{P\left(\text { state }(t)=s_{i}, \text { state }(t+1)=s_{j} \mid \text { Obs }\right)}}{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid \text { Obs }\right)}
\end{gathered}
$$

$$
\mu_{i}=\frac{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right) Y_{\text {obs }, t}}{\sum_{\text {obs }} \sum_{t} P\left(\text { state }(t)=s_{i} \mid O b s\right)}
$$

- These have been found


## Training without explicit segmentatioftle Baum-Welch training

- Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data


## HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered


## Magic numbers

- How many states:
- No nice automatic technique to learn this
- You choose
- For speech, HMM topology is usually left to right (no backward transitions)
- For other cyclic processes, topology must reflect nature of process
- No. of states - 3 per phoneme in speech
- For other processes, depends on estimated no. of distinct states in process


## Applications of HMMs

- Classification:
- Learn HMMs for the various classes of time series from training data
- Compute probability of test time series using the HMMs for each class
- Use in a Bayesian classifier
- Speech recognition, vision, gene sequencing, character recognition, text mining...
- Prediction
- Tracking


## Applications of HMMs

- Segmentation:
- Given HMMs for various events, find event boundaries
- Simply find the best state sequence and the locations where state identities change
- Automatic speech segmentation, text segmentation by topic, geneome segmentation, ...

