Machine Learning for Signal Processing Predicting and Estimation from Time Series

Bhiksha Raj

Preliminaries: $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for Gaussian

- If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is Gaussian:

$$
P(\mathbf{x}, \mathbf{y})=N\left(\left[\begin{array}{l}
\mu_{\mathrm{x}} \\
\mu_{\mathrm{y}}
\end{array}\right],\left[\begin{array}{ll}
C_{\mathrm{xx}} & C_{\mathrm{xy}} \\
C_{\mathrm{yx}} & C_{\mathrm{yy}}
\end{array}\right],\right.
$$

- The conditional probability of y given x is also Gaussian
- The slice in the figure is Gaussian

$$
P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right)
$$

- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
- Uncertainty is reduced

Preliminaries : $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for Gaussian

Best guess for Y when X is not known

$$
P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right)
$$

Preliminaries: $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for Gaussian

Preliminaries: $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for Gaussian

$$
\text { Correction to } Y=\text { slope * (offset of } X \text { from mean })
$$

Preliminaries: $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for Gaussian

Preliminaries: $\mathbf{P}(y \mid x)$ for Gaussian

Shrinkage of variance is 0 if X and Y are uncorrelated, i.e $C_{y x}=0$

Preliminaries: $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for Gaussian

Knowing X modifies the mean of Y and shrinks its variance
Variance of Y when X is known

Overall variance of Y when X is unknown

$$
P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x} C_{x x}^{-1} C_{x y}\right)
$$

Background: Sum of Gaussian RVs

$$
\begin{gathered}
\boldsymbol{O}=A S+\varepsilon \\
\boldsymbol{S} \sim \boldsymbol{N}\left(\boldsymbol{\mu}_{s}, \boldsymbol{\Theta}_{s}\right) \quad \varepsilon \sim N\left(\mu_{\varepsilon}, \boldsymbol{\Theta}_{\varepsilon}\right)
\end{gathered}
$$

- Consider a random variable O obtained as above
- The expected value of O is given by

$$
E[O]=E[A S+\varepsilon]=A \mu_{s}+\mu_{\varepsilon}
$$

- Notation:

$$
E[0]=\mu_{O}
$$

Background: Sum of Gaussian RVs

$$
\begin{gathered}
\boldsymbol{O}=A S+\varepsilon \\
\boldsymbol{S} \sim \boldsymbol{N}\left(\boldsymbol{\mu}_{s}, \boldsymbol{\Theta}_{s}\right) \quad \varepsilon \sim N\left(\mu_{\varepsilon}, \boldsymbol{\Theta}_{\varepsilon}\right)
\end{gathered}
$$

- The variance of O is given by

$$
\operatorname{Var}(0)=\Theta_{0}=E\left[\left(0-\mu_{0}\right)\left(0-\mu_{0}\right)^{T}\right]
$$

- This is just the sum of the variance of $\boldsymbol{A S}$ and the variance of $\boldsymbol{\varepsilon}$

$$
\boldsymbol{\Theta}_{\boldsymbol{O}}=\boldsymbol{A} \boldsymbol{\Theta}_{\boldsymbol{S}} \boldsymbol{A}^{\mathrm{T}}+\boldsymbol{\Theta}_{\boldsymbol{\varepsilon}}
$$

Background: Sum of Gaussian RVs

$$
\begin{gathered}
\boldsymbol{O}=A S+\varepsilon \\
\boldsymbol{S} \sim \boldsymbol{N}\left(\boldsymbol{\mu}_{s}, \boldsymbol{\Theta}_{S}\right) \quad \varepsilon \sim N\left(\mu_{\varepsilon}, \Theta_{\varepsilon}\right)
\end{gathered}
$$

- The conditional probability of O :

$$
P(O \mid S)=N\left(A S+\mu_{\varepsilon}, \Theta_{\varepsilon}\right)
$$

- The overall probability of O :

$$
P(0)=N\left(A \mu_{s}+\mu_{\varepsilon}, A \Theta_{S} A^{\mathrm{T}}+\Theta_{\varepsilon}\right)
$$

Background: Sum of Gaussian RVs

$$
\begin{gathered}
\boldsymbol{O}=A S+\varepsilon \\
\boldsymbol{S} \sim \boldsymbol{N}\left(\boldsymbol{\mu}_{\boldsymbol{s}}, \boldsymbol{\Theta}_{s}\right) \quad \varepsilon \sim N\left(\mu_{\boldsymbol{\varepsilon}}, \boldsymbol{\Theta}_{\varepsilon}\right)
\end{gathered}
$$

- The cross-correlation between O and S

$$
\begin{aligned}
& \Theta_{o s}=\boldsymbol{E}\left[\left(\boldsymbol{O}-\boldsymbol{\mu}_{\boldsymbol{O}}\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}\right] \\
& =\boldsymbol{E}\left[\left(\boldsymbol{A}\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)+\left(\boldsymbol{\varepsilon}-\boldsymbol{\mu}_{\boldsymbol{\varepsilon}}\right)\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}\right] \\
& =\boldsymbol{E}\left[\boldsymbol{A}\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}+\left(\boldsymbol{\varepsilon}-\boldsymbol{\mu}_{\boldsymbol{\varepsilon}}\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}\right] \\
& =\boldsymbol{A} \boldsymbol{E}\left[\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}\right]+\boldsymbol{E}\left[\left(\boldsymbol{\varepsilon}-\boldsymbol{\mu}_{\varepsilon}\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}\right] \\
& =\boldsymbol{A} \boldsymbol{E}\left[\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)\left(\boldsymbol{S}-\boldsymbol{\mu}_{\boldsymbol{s}}\right)^{T}\right]
\end{aligned}
$$

- $=A \Theta_{s}$
- The cross-correlation between O and S is

$$
\begin{gather*}
\boldsymbol{\Theta}_{o S}=\boldsymbol{A} \boldsymbol{\Theta}_{S} \\
\boldsymbol{\Theta}_{S O}=\boldsymbol{\Theta}_{S} \boldsymbol{A}^{T} \tag{12}
\end{gather*}
$$

Background: Joint Prob. of \mathbf{O} and S

$$
O=A S+\varepsilon \quad Z=\left[\begin{array}{l}
O \\
\boldsymbol{S}
\end{array}\right]
$$

- The joint probability of O and S (i.e. $P(Z)$) is also Gaussian

$$
P(Z)=P(O, S)=N\left(\mu_{Z}, \Theta_{Z}\right)
$$

- Where

$$
\mu_{Z}=\left[\begin{array}{l}
\mu_{O} \\
\mu_{S}
\end{array}\right]=\left[\begin{array}{c}
A \mu_{S}+\mu_{\varepsilon} \\
\mu_{S}
\end{array}\right]
$$

- $\boldsymbol{\Theta}_{Z}=\left[\begin{array}{cc}\boldsymbol{\Theta}_{O} & \boldsymbol{\Theta}_{O S} \\ \boldsymbol{\Theta}_{S O} & \boldsymbol{\Theta}_{S}\end{array}\right]=\left[\begin{array}{cc}\boldsymbol{A} \boldsymbol{\Theta}_{S} \boldsymbol{A}^{\mathrm{T}}+\boldsymbol{\Theta}_{\boldsymbol{\varepsilon}} & \boldsymbol{A} \boldsymbol{\Theta}_{S} \\ \boldsymbol{\Theta}_{S} \boldsymbol{A}^{\mathrm{T}} & \boldsymbol{\Theta}_{S}\end{array}\right]$

Preliminaries: Conditional of S mese

 given O : $\mathrm{P}(\mathrm{S} \mid \mathrm{O})$

$$
O=A S+\varepsilon
$$

$$
\begin{gathered}
P(S \mid O)=N\left(\mu_{S}+\Theta_{S O} \Theta_{o}^{-1}\left(O-\mu_{O}\right), \Theta_{S}-\Theta_{S O} \Theta_{o}^{-1} \Theta_{O S}\right) \\
P(S \mid O)=N\left(\mu_{S}+\Theta_{S} A^{\mathrm{T}}\left(A \Theta_{S} A^{\mathrm{T}}+\Theta_{\varepsilon}\right)^{-1}\left(O-A \mu_{S}-\mu_{\varepsilon}\right),\right. \\
\left.\Theta_{S}-\Theta_{S} A^{\mathrm{T}}\left(A \Theta_{S} A^{\mathrm{T}}+\Theta_{\varepsilon}\right)^{-1} A \Theta_{S}\right)
\end{gathered}
$$

The little parable

You've been kidnapped

You can only hear the car
You must find your way back home from wherever they drop you off

Kidnapped!

- Determine by only listening to a running automobile, if it is:
- Idling; or
- Travelling at constant velocity; or
- Accelerating; or
- Decelerating
- You only record energy level (SPL) in the sound
- The SPL is measured once per second

What we know

- An automobile that is at rest can accelerate, or continue to stay at rest
- An accelerating automobile can hit a steadystate velocity, continue to accelerate, or decelerate
- A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate
- A automobile at a steady-state velocity can stay in steady state, accelerate or decelerate

What else we know

- The probability distribution of the SPL of the sound is different in the various conditions
- As shown in figure
- In reality, depends on the car
- The distributions for the different conditions overlap
- Simply knowing the current sound level is not enough to know the state of the car

The Model!

$\mathrm{P}(\mathrm{x}$ |idle)

Estimating the state at $\mathbf{T}=\mathbf{0}$ -

- $A T=0$, before the first observation, we know nothing of the state
- Assume all states are equally likely

The first observation: T=0

- At $T=0$ you observe the sound level $x_{0}=68 \mathrm{~dB}$ SPL
- The observation modifies our belief in the state of the system

The first observation: $\mathbf{T}=\mathbf{0}$

$\mathrm{P}(\mathrm{x} \mid$ idle $)$	$\mathrm{P}(\mathrm{x} \mid$ deceleration $)$	$\mathrm{P}(\mathrm{x} \mid$ cruising $)$	$\mathrm{P}(\mathrm{x} \mid$ acceleration $)$
0	0.0001	0.5	0.7

These don't have to sum to 1
0.7

Can even be greater than 1!

The first observation: $\mathbf{T}=\mathbf{0}$

Estimating state after at observing x_{0}

- Combine prior information about state and evidence from observation
- We want P (state $\mid \mathbf{x}_{0}$)
- We can compute it using Bayes rule as

$$
P\left(\text { state } \mid x_{0}\right)=\frac{P(\text { state }) P\left(\mathrm{x}_{0} \mid \text { state }\right)}{\sum_{\text {state }} P\left(\text { state }^{\prime}\right) P\left(\mathrm{x}_{0} \mid \text { state }^{\prime}\right)}
$$

The Posterior

- Multiply the two, term by term, and normalize them so that they sum to 1.0

Estimating the state at $\mathrm{T}=\mathbf{0 +}$

- At $\mathrm{T}=0$, after the first observation x_{0}, we update our belief about the states
- The first observation provided some evidence about the state of the system
- It modifies our belief in the state of the system

Predicting the state at $\mathrm{T}=1$

- Predicting the probability of idling at $\mathrm{T}=1$
$-\mathrm{P}($ idling \mid idling $)=0.5$;
- $\mathrm{P}($ idling \mid deceleration $)=0.25$
$-\mathrm{P}\left(\right.$ idling at $\left.\mathrm{T}=1 \mid \mathrm{x}_{0}\right)=$ $\mathrm{P}\left(\mathrm{I}_{\mathrm{T}=0} \mid \mathrm{x}_{0}\right) \mathrm{P}(\mathrm{I} \mid \mathrm{I})+\mathrm{P}\left(\mathrm{D}_{\mathrm{T}=0} \mid \mathrm{x}_{0}\right) \mathrm{P}(\mathrm{I} \mid \mathrm{D})=2.1 \times 10^{-5}$
- In general, for any state S
- $P\left(S_{T=1} \mid \mathbf{x}_{0}\right)=\sum_{S_{T=0}} P\left(S_{T=0} \mid \mathbf{x}_{0}\right) P\left(S_{T=1} \mid S_{T=0}\right)$

Predicting the state at $\mathbf{T}=1$

Updating after the observation at $\mathrm{T}=1$

- At $T=1$ we observe $x_{1}=63 d B$ SPL

Updating after the observation at T=1

$\mathrm{P}(\mathrm{x} \mid$ idle $)$	$\mathrm{P}(\mathrm{x} \mid$ deceleration $)$	$\mathrm{P}(\mathrm{x} \mid$ cruising $)$	$\mathrm{P}(\mathrm{x} \mid$ acceleration $)$
O	0.2	0.5	0.01

The second observation: T=1

Prior: P(stat	x_{0})	Remember the prior	
	0.33	0.33	0.33
2.1×10^{-5}			
Idling	Declerating	Cruising	Accelerating

Estimating state after at observing x_{1}

- Combine prior information from the observation at time $\mathrm{T}=0$, AND evidence from observation at $\mathrm{T}=1$ to estimate state at $\mathrm{T}=1$
- We want P (state $\left.\mid \mathbf{x}_{0}, \mathbf{x}_{1}\right)$
- We can compute it using Bayes rule as

$$
P\left(\text { state } \mid \mathbf{x}_{0}, \mathbf{x}_{1}\right)=\frac{P\left(\text { state } \mid \mathbf{x}_{0}\right) P\left(\mathbf{x}_{1} \mid \text { state }\right)}{\sum_{\text {state }} P\left(\text { state }^{\prime} \mid \mathbf{x}_{0}\right) P\left(\mathbf{x}_{1} \mid \text { state }^{\prime}\right)}
$$

The Posterior at $\mathbf{T}=1$

- Multiply the two, term by term, and normalize them so that they sum to 1.0

Estimating the state at $\mathbf{T}=1+$

- The updated probability at $\mathrm{T}=1$ incorporates information from both x_{0} and x_{1}
- It is NOT a local decision based on x_{1} alone
- Because of the Markov nature of the process, the state at $\mathrm{T}=0$ affects the state at $\mathrm{T}=1$
- x_{0} provides evidence for the state at $\mathrm{T}=1$

Overall Process

Time

Computation

- T=0- : A priori probability • $P\left(S_{0}\right)=P(S)$
- T = 0+: Update after X_{0} - $P\left(S_{0} \mid X_{0}\right)=C . P\left(S_{0}\right) P\left(X_{0} \mid S_{0}\right)$
- T=1- (Prediction before $\left.\mathrm{X}_{1}\right) \cdot P\left(S_{1} \mid X_{0}\right)=\sum_{S_{0}} P\left(S_{1} \mid S_{0}\right) P\left(S_{0} \mid X_{0}\right)$
- $\mathrm{T}=1+$: Update after X_{1} - $P\left(S_{1} \mid X_{0: 1}\right)=C . P\left(S_{1} \mid X_{0}\right) P\left(X_{1} \mid S_{1}\right)$
- T=2- (Prediction before $\left.\mathrm{X}_{2}\right) \cdot P\left(S_{2} \mid X_{0: 1}\right)=\sum_{S_{1}} P\left(S_{2} \mid S_{1}\right) P\left(S_{1} \mid X_{0: 1}\right)$
- T = 2+: Update after X_{2} - $P\left(S_{2} \mid X_{0: 2}\right)=C . P\left(S_{2} \mid X_{0: 1}\right) P\left(X_{2} \mid S_{2}\right)$
- T= t- (Prediction before $\left.\mathrm{X}_{\mathrm{t}}\right) \cdot P\left(S_{t} \mid X_{0: t-1}\right)=$

$$
\sum_{S_{t-1}} P\left(S_{t} \mid S_{t-1}\right) P\left(S_{t-1} \mid X_{0: t-1}\right)
$$

- $\mathrm{T}=\mathrm{t}+$: Update after X_{t}
- $P\left(S_{t} \mid X_{0: t}\right)=C . P\left(S_{t} \mid X_{0: t-1}\right) P\left(X_{t} \mid S_{t}\right)$

Overall procedure

- At $\mathrm{T}=0$ the predicted state distribution is the initial state probability
- At each time T, the current estimate of the distribution over states considers all observations $x_{0} \ldots x_{T}$
- A natural outcome of the Markov nature of the model
- The prediction+update is identical to the forward computation for HMMs to within a normalizing constant

Comparison to Forward Algorithm

- Forward Algorithm:

- Normalized:

Decomposing the Algorithm

$$
P\left(S_{t}, X_{0: t}\right)=P\left(X_{t} \mid S_{t}\right) \sum_{S_{t-1}} P\left(S_{t} \mid S_{t-1}\right) P\left(S_{t-1}, X_{0: t-1}\right)
$$

Predict: $P\left(S_{t} \mid X_{0: t-1}\right)=\sum_{S_{t-1}} P\left(S_{t} \mid S_{t-1}\right) P\left(S_{t-1} \mid X_{0: t-1}\right)$

Update: $\quad P\left(S_{t} \mid X_{0: t}\right)=\frac{P\left(S_{t} \mid X_{0: t-1}\right) P\left(X_{t} \mid S_{t}\right)}{\sum_{S} P\left(S \mid X_{0: t-1}\right) P\left(X_{t} \mid S\right)}$

Estimating a Unique state

- What we have estimated is a distribution over the states
- If we had to guess a state, we would pick the most likely state from the distributions
- State $(\mathrm{T}=0)=$ Accelerating
- $\operatorname{State}(\mathrm{T}=1)=$ Cruising

Estimating the state

- The state is estimated from the updated distribution
- The updated distribution is propagated into time, not the state

Predicting the next observation

- The probability distribution for the observations at the next time is a mixture:
- $P\left(X_{t} \mid X_{0: t-1}\right)=\sum_{S_{t}} P\left(X_{t} \mid S_{t}\right) P\left(S_{t} \mid X_{0: t-1}\right)$
- The actual observation can be predicted from $P\left(x_{T} \mid x_{0: T-1}\right)$

Predicting the next observation

- Can use any of the various estimators of x_{T} from $P\left(x_{T} \mid x_{0: T-1}\right)$
- MAP estimate:
$-\operatorname{argmax}_{x_{T}} \mathrm{P}\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{0: \mathrm{T}-1}\right)$
- MMSE estimate:
- Expectation $\left(\mathrm{x}_{\mathrm{T}} \mid \mathrm{x}_{0: \mathrm{T}-1}\right)$

Difference from Viterbi decoding

- Estimating only the current state at any time
- Not the state sequence
- Although we are considering all past observations
- The most likely state at T and T+1 may be such that there is no valid transition between S_{T} and $\mathrm{S}_{\mathrm{T}+1}$

A continuous state model

- HMM assumes a very coarsely quantized state space
- Idling / accelerating / cruising / decelerating
- Actual state can be finer
- Idling, accelerating at various rates, decelerating at various rates, cruising at various speeds
- Solution: Many more states (one for each acceleration /deceleration rate, crusing speed)?
- Solution: A continuous valued state

Tracking and Prediction: The wind and the target

- Aim: measure wind velocity
- Using a noisy wind speed sensor
- E.g. arrows shot at a target

- State: Wind speed at time t depends on speed at time $t-1$

$$
S_{t}=S_{t-1}+\epsilon_{t}
$$

- Observation: Arrow position at time t depends on wind speed at time t

$$
Y_{t}=A S_{t}+\gamma_{t}
$$

The real-valued state model

- A state equation describing the dynamics of the system

$$
s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right)
$$

- s_{t} is the state of the system at time t
$-\varepsilon_{t}$ is a driving function, which is assumed to be random
- The state of the system at any time depends only on the state at the previous time instant and the driving term at the current time
- An observation equation relating state to observation

$$
o_{t}=g\left(s_{t}, \gamma_{t}\right)
$$

$-o_{t}$ is the observation at time t

- γ_{t} is the noise affecting the observation (also random)
- The observation at any time depends only on the current state of the system and the noise

States are still "hidden"

$$
\begin{aligned}
& s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) \\
& o_{t}=g\left(s_{t}, \gamma_{t}\right)
\end{aligned}
$$

- The state is a continuous valued parameter that is not directly seen
- The state is the position of the automobile or the star
- The observations are dependent on the state and are the only way of knowing about the state
- Sensor readings (for the automobile) or recorded image (for the telescope)

Statistical Prediction and Estimation

- Given an a priori probability distribution for the state
$-P_{0}(s):$ Our belief in the state of the system before we observe any data
- Probability of state of navlab
- Probability of state of stars
- Given a sequence of observations $o_{0} . O_{\mathrm{t}}$
- Estimate state at time t

Prediction and update at $\mathrm{t}=0$

- Prediction
- Initial probability distribution for state
$-\mathrm{P}\left(s_{0}\right)=\mathrm{P}_{0}\left(s_{0}\right)$
- Update:
- Then we observe o_{0}
- We must update our belief in the state

$$
P\left(s_{0} \mid o_{0}\right)=\frac{P\left(s_{0}\right) P\left(o_{0} \mid s\right)}{P\left(o_{0}\right)}=\frac{P_{0}\left(s_{0}\right) P\left(o_{0} \mid s_{0}\right)}{P\left(o_{0}\right)}
$$

- $\mathrm{P}\left(s_{0} \mid o_{0}\right)=C . \mathrm{P}_{0}\left(\mathrm{~s}_{0}\right) \mathrm{P}\left(o_{0} \mid s_{0}\right)$

Prediction and update at $\mathrm{t}=0$

- Prediction
- Initial probability distribution for state
$-\mathrm{P}\left(s_{0}\right)=\mathrm{P}_{0}\left(s_{0}\right)$
- Update:
- Then we observe o_{0}
- We must update our belief in the state

$$
P\left(s_{0} \mid o_{0}\right)=\frac{P\left(s_{0}\right) P\left(o_{0} \mid s\right)}{P\left(o_{0}\right)}=\frac{P_{0}\left(s_{0}\right) P\left(o_{0} \mid s_{0}\right)}{P\left(o_{0}\right)}
$$

- $\mathrm{P}\left(s_{0} \mid o_{0}\right)=C . \mathrm{P}_{0}\left(\mathrm{~s}_{0}\right) \mathrm{P}\left(o_{0} \mid s_{0}\right)$

The observation probability: $\mathrm{P}(\mathrm{o} \mid \mathrm{s})$

- $o_{t}=g\left(s_{t}, \gamma_{t}\right)$
- This is a (possibly many-to-one) stochastic function of state s_{t} and noise γ_{t}
- Noise γ_{t} is random. Assume it is the same dimensionality as o_{t}
- Let $\mathrm{P}_{\gamma}\left(\gamma_{\mathrm{t}}\right)$ be the probability distribution of γ_{t}
- Let $\left\{\gamma: g\left(s_{\mathrm{t}}, \gamma\right)=o_{\mathrm{t}}\right\}$ be all γ that result in o_{t}

$$
P\left(o_{t} \mid s_{t}\right)=\sum_{\gamma: g\left(s_{t}, \gamma\right)=o_{t}} \frac{P_{\gamma}(\gamma)}{\left|J_{\gamma}\left(g\left(s_{t}, \gamma\right)\right)\right|}
$$

The observation probability

- $P(o \mid s)=$?

$$
o_{t}=g\left(s_{t}, \gamma_{t}\right)
$$

$$
P\left(o_{t} \mid s_{t}\right)=\sum_{\gamma: g\left(s_{t}, \gamma\right)=o_{t}} \frac{P_{\gamma}(\gamma)}{\left|J_{\gamma}\left(g\left(s_{t}, \gamma\right)\right)\right|}
$$

- The J is a Jacobian

$$
\left|J_{\gamma}\left(g\left(s_{t}, \gamma\right)\right)\right|=\left|\begin{array}{ccc}
\frac{\partial o_{t}(1)}{\partial \gamma(1)} & \cdots & \frac{\partial o_{t}(1)}{\partial \gamma(n)} \\
\vdots & \ddots & \vdots \\
\frac{\partial o_{t}(n)}{\partial \gamma(1)} & \cdots & \frac{\partial o_{t}(n)}{\partial \gamma(n)}
\end{array}\right|
$$

- For scalar functions of scalar variables, it is simply a derivative: $\left|J_{\gamma}\left(g\left(s_{t}, \gamma\right)\right)\right|=\left|\frac{\partial o_{t}}{\partial \gamma}\right|$

Predicting the next state at $\mathrm{t}=1$

- Given $\mathrm{P}\left(s_{0} \mid o_{0}\right)$, what is the probability of the state at $\mathrm{t}=1$
$P\left(s_{1} \mid o_{0}\right)=\int_{\left\{s_{0}\right\}} P\left(s_{1}, s_{0} \mid o_{0}\right) d s_{0}=\int_{\left\{s_{0}\right\}} P\left(s_{1} \mid s_{0}\right) P\left(s_{0} \mid o_{0}\right) d s_{0}$
- State progression function:

$$
s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right)
$$

$-\varepsilon_{t}$ is a driving term with probability distribution $\mathrm{P}_{\varepsilon}\left(\varepsilon_{\mathrm{t}}\right)$

- $\mathrm{P}\left(s_{\mathrm{t}} \mid s_{\mathrm{t}-1}\right)$ can be computed similarly to $\mathrm{P}(o \mid s)$
$-P\left(s_{1} \mid s_{0}\right)$ is an instance of this

And moving on

- $P\left(s_{1} \mid o_{0}\right)$ is the predicted state distribution for $\mathrm{t}=1$
- Then we observe o_{1}
- We must update the probability distribution for s_{1}
$-\mathrm{P}\left(\mathrm{s}_{1} \mid \mathrm{o}_{0: 1}\right)=\mathrm{CP}\left(\mathrm{s}_{1} \mid \mathrm{o}_{0}\right) \mathrm{P}\left(\mathrm{o}_{1} \mid \mathrm{s}_{1}\right)$
- We can continue on

Discrete vs. Continuous state systems

$$
\begin{aligned}
& s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) \\
& o_{t}=g\left(s_{t}, \gamma_{t}\right)
\end{aligned}
$$

Prediction at time 0:

$$
\frac{P(}{\text { Update after } \mathrm{O}_{0} \text { : }}
$$

$$
P\left(S_{0} \mid O_{0}\right)=C . \pi\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)
$$

$$
P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)
$$

Prediction at time 1:

| $P\left(S_{1} \mid O_{0}\right)=\sum_{S_{0}} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right)$ |
| :--- |$\quad P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}$

Discrete vs. Continuous State Systems

$$
\pi=\begin{array}{cccc}
0.1 & 0.2 & 0.3 & 0.4 \\
\hline 0 & 1 & & \\
\hline 0 & 1 & 2 & 3
\end{array}
$$

$$
\begin{aligned}
& s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) \\
& o_{t}=g\left(s_{t}, \gamma_{t}\right)
\end{aligned}
$$

Prediction at time t
$P\left(S_{t} \mid O_{0: t-1}\right)=\sum_{S_{t-1}} P\left(S_{t-1} \mid O_{0, t-1}\right) P\left(S_{t} \mid S_{t-1}\right)$
Update after observing $O_{\mathbf{t}}:$

$$
P\left(S_{t} \mid O_{0: t}\right)=C . P\left(S_{t} \mid O_{0: t-1}\right) P\left(O_{t} \mid S_{t}\right) \quad P\left(S_{t} \mid O_{0: t}\right)=C . P\left(S_{t} \mid O_{0: t-1}\right) P\left(O_{t} \mid S_{t}\right)
$$

Discrete vs. Continuous State Systems

$$
\pi=\begin{array}{ccccc}
\\
\begin{array}{c}
0.1 \\
1
\end{array} & 0.2 & & & 0.3 \\
\hline 0 & 1 & 2 & 3
\end{array}
$$

Parameters

Initial state prob.
π

Transition prob

$$
P\left(s_{t}=j \mid s_{t-1}=i\right)
$$

Observation prob

$$
\begin{gathered}
s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) \\
o_{t}=g\left(s_{t}, \gamma_{t}\right) \\
P(s) \\
P\left(s_{t} \mid s_{t-1}\right) \\
P(O \mid s)
\end{gathered}
$$

Special case: Linear Gaussian model

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
P(\varepsilon)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Theta_{\varepsilon}\right|}} \exp \left(-0.5\left(\varepsilon-\mu_{\varepsilon}\right)^{T} \Theta_{\varepsilon}^{-1}\left(\varepsilon-\mu_{\varepsilon}\right)\right)
$$

$$
\text { (0) } o_{t}=B_{t} s_{t}+\gamma_{t}
$$

$$
P(\gamma)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Theta_{\gamma}\right|}} \exp \left(-0.5\left(\gamma-\mu_{\gamma}\right)^{\tau} \Theta_{\gamma}^{-1}\left(\gamma-\mu_{\gamma}\right)\right)
$$

- A linear state dynamics equation
- Probability of state driving term ε is Gaussian
- Sometimes viewed as a driving term μ_{ε} and additive zero-mean noise
- A linear observation equation
- Probability of observation noise γ is Gaussian
- $A_{\mathrm{t}}, B_{\mathrm{t}}$ and Gaussian parameters assumed known
- May vary with time

Linear model example The wind and the target

- State: Wind speed at time t depends on speed at time $t-1$

$$
S_{t}=S_{t-1}+\epsilon_{t}
$$

- Observation: Arrow position at time t depends on wind speed at time t

$$
\boldsymbol{O}_{\boldsymbol{t}}=\boldsymbol{B} \boldsymbol{S}_{t}+\gamma_{t}
$$

The initial state probability

$$
P_{0}(s)=\frac{1}{\sqrt{(2 \pi)^{d}|R|}} \exp \left(-0.5(s-\bar{s}) R^{-1}(s-\bar{s})^{T}\right)
$$

$$
P_{0}(s)=\operatorname{Gaussian}(s ; \bar{s}, R)
$$

- We also assume the initial state distribution to be Gaussian
- Often assumed zero mean

$$
\begin{aligned}
& s_{t}=A_{t} s_{t-1}+\varepsilon_{t} \\
& o_{t}=B_{t} s_{t}+\gamma_{t}
\end{aligned}
$$

Model Parameters:

The observation probability

$$
o_{t}=B_{t} s_{t}+\gamma_{t} \quad P(\gamma)=\operatorname{Gaussian}\left(\gamma ; \mu_{\gamma}, \Theta_{\gamma}\right)
$$

$$
P\left(o_{t} \mid s_{t}\right)=\operatorname{Gaussian}\left(o_{t} ; \mu_{\gamma}+B_{t} s_{t}, \Theta_{\gamma}\right)
$$

- The probability of the observation, given the state, is simply the probability of the noise, with the mean shifted
- Since the only uncertainty is from the noise
- The new mean is the mean of the distribution of the noise + the value of the observation in the absence of noise

Model Parameters:

State transition probability

$$
\begin{aligned}
& s_{t+1}=A_{t} s_{t}+\varepsilon_{t} \quad P(\varepsilon)=\operatorname{Gaussian}\left(\varepsilon ; \mu_{\varepsilon}, \Theta_{\varepsilon}\right) \\
& P\left(s_{t+1} \mid s_{t}\right)=\operatorname{Gaussian}\left(s_{t} ; \mu_{\varepsilon}+A_{t} s_{t}, \Theta_{\varepsilon}\right)
\end{aligned}
$$

- The probability of the state at time t, given the state at $\mathrm{t}-1$, is simply the probability of the driving term, with the mean shifted

Continuous state systems

Prediction at time 0:

$$
P\left(S_{0}\right)=P_{0}\left(S_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
P\left(S_{0}\right)=P_{0}\left(S_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Model Parameters:
 The initial state probability

$$
\begin{gathered}
P_{0}(s)=\frac{1}{\sqrt{(2 \pi)^{d}\left|R_{0}\right|}} \exp \left(-0.5\left(s-\bar{s}_{0}\right) R_{0}^{-1}\left(s-\bar{s}_{0}\right)^{T}\right) \\
P_{0}(s)=\operatorname{Gaussian}\left(s ; \bar{s}_{0}, R_{0}\right)
\end{gathered}
$$

- We assume the initial state distribution to be Gaussian
- Often assumed zero mean

Continuous state systems

$$
\begin{gathered}
s_{t+1}=A_{t} s_{t}+\varepsilon_{t} \\
o_{t}=B_{t} s_{t}+\gamma_{t}
\end{gathered}
$$

Prediction at time 0:

$$
P\left(S_{0}\right)=P_{0}\left(S_{0}\right)
$$

$P\left(S_{0}\right)=P_{0}\left(S_{0}\right)$

$$
=N\left(\bar{s}_{0}, R_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
P\left(\boldsymbol{S}_{\mathbf{0}}\right)=N\left(\overline{\boldsymbol{s}}_{\mathbf{0}}, \boldsymbol{R}_{\mathbf{0}}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Recap: Conditional of S given O: mese P(S|O) for Gaussian RVs

$$
O=B S+\gamma
$$

$$
P(S \mid O)=N\left(\mu_{S}+\Theta_{S O} \Theta_{O}^{-1}\left(0-\mu_{O}\right), \Theta_{S}-\Theta_{S O} \Theta_{o}^{-1} \Theta_{O S}\right)
$$

Recap: Conditional of S given O: mese

 P(S|O) for Gaussian RVs

$$
P(S \mid O)=N\left(\mu_{S}+\Theta_{S O} \Theta_{o}^{-1}\left(0-\mu_{0}\right), \quad \Theta_{S}-\Theta_{S O} \Theta_{o}^{-1} \Theta_{o S}\right)
$$

$$
\begin{gathered}
\boldsymbol{P}(S \mid \boldsymbol{O})=\boldsymbol{N}\left(\boldsymbol{\mu}_{S}+\boldsymbol{\Theta}_{S} \boldsymbol{B}^{\mathrm{T}}\left(\boldsymbol{B} \boldsymbol{\Theta}_{S} \boldsymbol{B}^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-\mathbf{1}}\left(\boldsymbol{O}-\boldsymbol{B} \boldsymbol{\mu}_{\boldsymbol{s}}-\boldsymbol{\mu}_{\gamma}\right)\right. \\
\left.\boldsymbol{\Theta}_{S}-\boldsymbol{\Theta}_{S} \boldsymbol{B}^{\mathrm{T}}\left(\boldsymbol{B} \boldsymbol{\Theta}_{S} \boldsymbol{B}^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-\mathbf{1}} \boldsymbol{B} \boldsymbol{\Theta}_{S}\right)
\end{gathered}
$$

Recap: Conditional of S given O: mesp

 P(S|O) for Gaussian RVs

$$
\begin{gathered}
P\left(S_{0} \mid O_{0}\right)=N\left(\overline{s_{0}}+R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1}\left(O_{0}-B \bar{s}_{0}-\mu_{\gamma}\right)\right. \\
\left.R_{0}-\boldsymbol{R}_{0} B^{\mathrm{T}}\left(B \boldsymbol{R}_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-\mathbf{1}} B \boldsymbol{R}_{0}\right)
\end{gathered}
$$

Continuous state systems

Prediction at time 0:

$$
P\left(\boldsymbol{S}_{\mathbf{0}}\right)=N\left(\overline{\boldsymbol{s}}_{\mathbf{0}}, \boldsymbol{R}_{\mathbf{0}}\right)
$$

Update after O_{0} :
$P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right) \quad P\left(S_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \hat{R}_{0}\right)$
Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
\begin{array}{|c|c|}
\hline K_{0}=R_{0} B^{\mathrm{T}}\left(\boldsymbol{B} R_{0} B^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-1} \\
\left.\hline \hat{S}_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \hat{R}_{0}\right) \\
\hat{s}_{0}+K_{0}\left(\boldsymbol{O}_{0}-B \bar{B}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(I-K_{0}\right) R_{0} \\
\hline
\end{array}
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0 :

$$
P\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after $\mathrm{O}_{0}:$	$=N\left(\bar{s}_{0}+R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1}\left(O_{0}-B \bar{s}_{0}-\mu_{\gamma}\right)\right.$,
$P\left(S_{0} \mid O_{0}\right)=C . P\left(S_{0}\right) P\left(O_{0} \mid S_{0}\right)$	$\left.R_{0}-R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1} B R_{0}\right)$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Introducting shorthand notation

$$
\begin{aligned}
P\left(S_{0} \mid O_{0}\right)= & N\left(\bar{s}_{0}+R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1}\left(O_{0}-B \bar{s}_{0}-\mu_{\gamma}\right)\right. \\
& \left.R_{0}-R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1} B R_{0}\right)
\end{aligned}
$$

$$
\hat{s}_{0}=\bar{s}_{0}+\boldsymbol{R}_{0} B^{\mathrm{T}}\left(\boldsymbol{B} \boldsymbol{R}_{0} \boldsymbol{B}^{\mathrm{T}}+\Theta_{\gamma}\right)^{-\mathbf{1}}\left(\boldsymbol{O}-\boldsymbol{B} \bar{s}_{0}-\mu_{\gamma}\right)
$$

$$
\widehat{\boldsymbol{R}}_{\mathbf{0}}=\boldsymbol{R}_{\mathbf{0}}-\boldsymbol{R}_{\mathbf{0}} \boldsymbol{B}^{\mathrm{T}}\left(B \boldsymbol{R}_{\mathbf{0}} \boldsymbol{B}^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-\mathbf{1}} \boldsymbol{B} \boldsymbol{R}_{\mathbf{0}}
$$

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{S}_{0}, \widehat{R}_{0}\right)
$$

Introducting shorthand notation

$$
\begin{aligned}
P\left(S_{0} \mid O_{0}\right)= & N\left(\bar{s}_{0}+R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1}\left(O_{0}-B \bar{s}_{0}-\mu_{\gamma}\right)\right. \\
& \left.R_{0}-R_{0} B^{\mathrm{T}}\left(B R_{0} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1} B R_{0}\right)
\end{aligned}
$$

$$
\boldsymbol{K}_{0}=\boldsymbol{R}_{\mathbf{0}} \boldsymbol{B}^{\mathrm{T}}\left(\boldsymbol{B} \boldsymbol{R}_{\mathbf{0}} \boldsymbol{B}^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-\mathbf{1}}
$$

$$
\begin{array}{c|}
\hat{s}_{0}=\bar{s}_{0}+K_{0}\left(O-B \bar{s}_{0}-\mu_{\gamma}\right) \\
\widehat{R}_{0}=\left(I-K_{0} B\right) R_{0} \\
\hline
\end{array}
$$

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \widehat{R}_{0}\right)
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
\begin{array}{|c|c|}
\hline K_{0}=R_{0} B^{\mathrm{T}}\left(\boldsymbol{B} R_{0} B^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-1} \\
\left.\hline \hat{S}_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \hat{R}_{0}\right) \\
\hat{s}_{0}+K_{0}\left(\boldsymbol{O}_{0}-B \bar{B}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(I-K_{0}\right) R_{0} \\
\hline
\end{array}
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\overline{\boldsymbol{s}}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \hat{R}_{0}\right) \quad \hat{s}_{0}=\bar{s}_{0}+K_{0}\left(\boldsymbol{O}_{0}-B \bar{s}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(I-K_{0}\right) R_{0}
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

The prediction equation

$$
\begin{array}{ll}
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0} \\
P\left(S_{0} \mid O_{0}\right)=N\left(\widehat{\boldsymbol{s}}_{\mathbf{0}}, \widehat{\boldsymbol{R}}_{\mathbf{0}}\right) & P(\varepsilon)=N\left(\mu_{\varepsilon}, \Theta_{\varepsilon}\right) \\
P\left(S_{1} \mid S_{0}\right)=N\left(\boldsymbol{A} S_{0}+\boldsymbol{\mu}_{\varepsilon}, \boldsymbol{\Theta}_{\varepsilon}\right) & S_{t+1}=A_{t} s_{t}+\varepsilon_{t}
\end{array}
$$

- The integral of the product of two Gaussians

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} \operatorname{Gaussian}\left(S_{0} ; \hat{S}_{0}, \hat{R}_{0}\right) \operatorname{Gaussian}\left(S_{1} ; A S_{0}, \Theta_{\varepsilon}\right) d S_{0}
$$

The Prediction Equation

- The integral of the product of two Gaussians is Gaussian!

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} \operatorname{Gaussian}\left(S_{0} ; \hat{s}_{0}, \hat{R}_{0}\right) \operatorname{Gaussian}\left(S_{1} ; A S_{0}+\mu_{\varepsilon}, \Theta_{\varepsilon}\right) d S_{0}
$$

$$
=\int_{-\infty}^{\infty} C_{1} \exp \left(-0.5\left(S_{0}-\hat{s}_{0}\right) \hat{R}_{0}^{-1}\left(S_{0}-\hat{s}_{0}\right)^{T}\right) \cdot C_{2} \exp \left(-0.5\left(S_{1}-A S_{0}-\mu_{\varepsilon}\right) \Theta_{\varepsilon}^{-1}\left(S_{1}-A S_{0}-\mu_{\varepsilon}\right)^{T}\right) d S_{0}
$$

$$
=\operatorname{Gaussian}\left(S_{1} ; A \hat{s}_{0}+\mu_{\varepsilon}, \Theta_{\varepsilon}+A \hat{R}_{0} A^{T}\right)
$$

$$
P\left(S_{1} \mid O_{0}\right)=N\left(A \hat{s}_{0}+\mu_{\varepsilon}, \Theta_{\varepsilon}+A \hat{R}_{0} A^{T}\right)
$$

Continuous state systems

$$
\begin{gathered}
s_{t+1}=A_{t} s_{t}+\varepsilon_{t} \\
o_{t}=B_{t} s_{t}+\gamma_{t}
\end{gathered}
$$

Prediction at time 0:

$$
P\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \hat{R}_{0}\right) \quad \hat{s}_{0}=\bar{s}_{0}+K_{0}\left(\boldsymbol{O}_{0}-B \bar{s}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(I-K_{0}\right) R_{0}
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=\int_{-\infty}^{\infty} P\left(S_{0} \mid O_{0}\right) P\left(S_{1} \mid S_{0}\right) d S_{0} \quad=N\left(A \hat{s}_{0}+\mu_{\varepsilon}, \Theta_{\varepsilon}+A \hat{R}_{0} A^{T}\right)
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

More shorthand notation

$$
P\left(S_{1} \mid O_{0}\right)=N\left(A \hat{s}_{0}+\mu_{\varepsilon}, \Theta_{\varepsilon}+A \hat{R}_{0} A^{T}\right)
$$

$$
\bar{s}_{1}=A \hat{s}_{0}+\mu_{\varepsilon}
$$

$$
R_{1}=\Theta_{\varepsilon}+A \widehat{R}_{0} A^{T}
$$

$$
P\left(S_{1} \mid O_{0}\right)=N\left(\bar{s}_{1}, R_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{S}_{0}, \hat{R}_{0}\right) \quad \hat{s}_{0}=\bar{s}_{0}+K_{0}\left(\boldsymbol{O}_{0}-B \bar{s}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(I-K_{0}\right) R_{0}
$$

Prediction at time 1:

$$
\bar{s}_{1}=A \widehat{s}_{0}+\mu_{\varepsilon}
$$

$$
P\left(S_{1} \mid O_{0}\right)=N\left(\overline{\boldsymbol{s}}_{1}, \boldsymbol{R}_{1}\right) \quad \boldsymbol{R}_{1}=\Theta_{\varepsilon}+A \widehat{\boldsymbol{R}}_{0} A^{T}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\overline{\boldsymbol{s}}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{S}_{0}, \hat{R}_{0}\right) \quad \hat{s}_{0}=\bar{s}_{0}+K_{0}\left(\boldsymbol{O}_{0}-\boldsymbol{B} \bar{s}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(\boldsymbol{I}-\boldsymbol{K}_{0}\right) \boldsymbol{R}_{0}
$$

Prediction at time 1:

$$
\begin{array}{ll}
& \bar{s}_{1}=A \hat{s}_{0}+\mu_{\varepsilon} \\
\hline & R_{1}=\Theta_{\varepsilon}+A \widehat{R}_{0} A^{T}
\end{array}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=C . P\left(S_{1} \mid O_{0}\right) P\left(O_{1} \mid S_{1}\right)
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{s}_{0}, \hat{R}_{0}\right)
$$

$$
\begin{gathered}
\boldsymbol{K}_{0}=\boldsymbol{R}_{0} \boldsymbol{B}^{\mathrm{T}}\left(\boldsymbol{B} \boldsymbol{R}_{0} \boldsymbol{B}^{\mathrm{T}}+\boldsymbol{\theta}_{\gamma}\right)^{-1} \\
\hat{\boldsymbol{s}}_{\mathbf{0}}=\bar{s}_{0}+\boldsymbol{K}_{0}\left(\boldsymbol{O}_{\mathbf{0}}-\boldsymbol{B} \overline{\boldsymbol{s}}_{0}-\boldsymbol{\mu}_{\gamma}\right) \quad \widehat{R}_{0}=\left(\boldsymbol{I}-\boldsymbol{K}_{0} \text { R }\right) \boldsymbol{R}_{0}
\end{gathered}
$$

Prediction at time 1:

$$
P\left(S_{1} \mid O_{0}\right)=N\left(\bar{s}_{1}, R_{1}\right)
$$

$$
\begin{aligned}
& \bar{s}_{1}=A \hat{s}_{0}+\mu_{\varepsilon} \\
& R_{1}=\Theta_{\varepsilon}+A \widehat{R}_{0} A^{T}
\end{aligned}
$$

Update after O_{1} :

$$
\begin{aligned}
& \boldsymbol{K}_{1}=\boldsymbol{R}_{1} B^{\mathrm{T}}\left(B R_{1} B^{\mathrm{T}}+\Theta_{\gamma}\right)^{-1} \\
& \widehat{s}_{\mathbf{1}}=\bar{s}_{1}+\boldsymbol{K}_{1}\left(\boldsymbol{O}_{1}-\boldsymbol{B} \overline{s_{1}}-\boldsymbol{\mu}_{\gamma}\right) \\
& \widehat{R}_{1}=\left(\boldsymbol{I}-\boldsymbol{K}_{1} B\right) R_{1}
\end{aligned}
$$

Continuous state systems

Prediction at time 0:

$$
\boldsymbol{P}\left(\boldsymbol{S}_{0}\right)=N\left(\bar{s}_{0}, \boldsymbol{R}_{0}\right)
$$

Update after O_{0} :

$$
P\left(S_{0} \mid O_{0}\right)=N\left(\hat{S}_{0}, \hat{R}_{0}\right) \quad \hat{s}_{0}=\bar{s}_{0}+K_{0}\left(O_{0}-B \bar{s}_{0}-\mu_{\gamma}\right) \quad \widehat{R}_{0}=\left(I-K_{0} B\right) R_{0}
$$

Prediction at time 1:

$$
\bar{s}_{1}=A \widehat{s}_{0}+\mu_{\varepsilon}
$$

$$
P\left(S_{1} \mid O_{0}\right)=N\left(\bar{s}_{1}, R_{1}\right) \quad R_{1}=\boldsymbol{\Theta}_{\varepsilon}+A \widehat{R}_{0} A^{T}
$$

Update after O_{1} :

$$
P\left(S_{1} \mid O_{0: 1}\right)=N\left(\hat{s}_{1}, \hat{R}_{1}\right)
$$

$$
\begin{aligned}
& \boldsymbol{K}_{\mathbf{1}}=\boldsymbol{R}_{1} \boldsymbol{B}^{\mathrm{T}}\left(\boldsymbol{B} \boldsymbol{R}_{1} B^{\mathrm{T}}+\boldsymbol{\Theta}_{\gamma}\right)^{-\mathbf{1}} \\
& \hat{\boldsymbol{s}}_{\mathbf{1}}=\overline{\boldsymbol{s}}_{1}+\boldsymbol{K}_{\mathbf{1}}\left(\boldsymbol{O}_{1}-\boldsymbol{B} \overline{s_{1}}-\boldsymbol{\mu}_{\gamma}\right) \\
& \widehat{\boldsymbol{R}}_{\mathbf{1}}=\left(\boldsymbol{I}-\boldsymbol{K}_{\mathbf{1}} \boldsymbol{B}\right) \boldsymbol{R}_{\mathbf{1}}
\end{aligned}
$$

Gaussian Continuous State Linear Systems

Prediction at time t

$$
P\left(S_{t} \mid O_{0: t-1}\right)=\int_{-\infty}^{\infty} P\left(S_{t-1} \mid O_{0: t-1}\right) P\left(S_{t} \mid S_{t-1}\right) d S_{t-1}
$$

Update after observing $\mathbf{O}_{\mathbf{t}}$:

$$
P\left(S_{t} \mid O_{0: t}\right)=C . P\left(S_{t} \mid O_{0: t-1}\right) P\left(O_{t} \mid S_{t}\right)
$$

Gaussian Continuous State Linear Systems

Prediction at time t

$$
P\left(S_{t} \mid O_{0: t-1}\right)=N\left(\bar{s}_{t}, R_{t}\right) \quad \begin{aligned}
& \bar{s}_{t}=A \hat{s}_{t-1}+\mu_{\varepsilon} \\
& \hline R_{t}=\Theta_{\varepsilon}+A \hat{R}_{t-1} A^{T}
\end{aligned}
$$

Update after observing O_{t} :

$$
P\left(S_{t} \mid O_{0: t}\right)=N\left(\hat{s}_{t}, \hat{R}_{t}\right)
$$

$$
\begin{aligned}
& K_{t}=R_{1} B^{T}\left(B R_{1} B^{T}+\Theta_{\gamma}\right)^{-1} \\
& \hat{s}_{t}=\bar{s}_{t}+K t\left(O t-B \bar{s}_{t}-\mu_{\gamma}\right) \\
& \hat{R}_{t}=(I-K t B) R_{t}
\end{aligned}
$$

Gaussian Continuous State Linear Systems

$$
\begin{gathered}
s_{t+1}=A_{t} s_{t}+\varepsilon_{t} \\
o_{t}=B_{t} s_{t}+\gamma_{t}
\end{gathered}
$$

Prediction at time t

$$
P\left(S_{t} \mid O_{0: t-1}\right)=N\left(\bar{s}_{t}, R_{t}\right)
$$

$$
\begin{aligned}
& \bar{s}_{t}=A \hat{s}_{t-1}+\mu_{\varepsilon} \\
& R_{t}=\Theta_{\varepsilon}+A \hat{R}_{t-1} A^{T}
\end{aligned}
$$

Update after observing O_{t} :

$$
P\left(S_{t} \mid O_{0: t}\right)=N\left(\hat{s}_{t}, \hat{R}_{t}\right)
$$

$$
\begin{aligned}
& K_{t}=R_{1} B^{T}\left(B R_{1} B^{T}+\Theta_{\gamma}\right)^{-1} \\
& \hat{s}_{t}=\bar{s}_{t}+K t\left(O t-B \bar{s}_{t}-\mu_{\gamma}\right) \\
& \hat{R}_{t}=(I-K t B) R_{t}
\end{aligned}
$$

The Kalman filter

- Prediction (based on state equation)

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon} \quad s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
$$

- Update (using observation and observation equation)

$$
\begin{aligned}
& K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1} \quad o_{t}=B_{t} s_{t}+\gamma_{t} \\
& \hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-B_{t} \bar{s}_{t}-\mu_{\gamma}\right)
\end{aligned}
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

Explaining the Kalman Filter

- Prediction

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon} \quad o_{t}=B_{t} s_{t}+\gamma_{t}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
$$

- The Kalman filter can be explained intuitively without working through the math

$$
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-B_{t} \bar{s}_{t}-\mu_{\gamma}\right)
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Kalman filter

- Prediction

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon}
$$

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
o_{t}=B_{t} s_{t}+\gamma_{t}
$$

The predicted state at time \dagger is obtained simply by propagating the estimated state at $t-1$ through the state dynamics equation

$$
\begin{aligned}
& K_{t}=R_{t} B_{t}\left(B_{t} R_{t} B_{t}+\Theta_{\gamma}\right) \\
& \hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-B_{t} \bar{s}_{t}-\mu_{\gamma}\right)
\end{aligned}
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Kalman filter

- Prediction

$$
\begin{aligned}
& s_{t}=A_{t} s_{t-1}+\varepsilon_{t} \\
& o_{t}=B_{t} s_{t}+\gamma_{t}
\end{aligned}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
$$

This is the uncertainty in the prediction. The variance of the predictor $=$ variance of $\varepsilon_{t}+$ variance of $A S_{t-1}$

The two simply add because ε_{t} is not correlated with s_{\dagger}

The Kalman filter

- Prediction

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
\begin{aligned}
& \bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon} \longrightarrow o_{t}=B_{t} s_{t}+\gamma_{t} \\
& R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T} \text { (0) } \hat{o}_{t}=B_{t} \bar{s}_{t}+\mu_{\gamma}
\end{aligned}
$$

We can also predict the observation from the predicted state using the observation equation

$$
S_{t}=S_{t}+\Lambda_{t}\left(O_{t}-D_{t} S_{t}-\mu_{\gamma}\right)
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Kalman filter

- Prediction

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon} \quad o_{t}=B_{t} s_{t}+\gamma_{t}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T} \text {, (1) } \hat{o}_{t}=B_{t} \bar{s}_{t}+\mu_{\gamma}
$$

- Update

Actual observation

$$
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1}
$$

$$
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-B_{t} \bar{s}_{t}\right)
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

MAP Recap (for Gaussians)

- If $P(x, y)$ is Gaussian:

$$
P(\mathbf{x}, \mathbf{y})=N\left(\left[\begin{array}{l}
\mu_{\mathrm{x}} \\
\mu_{\mathrm{y}}
\end{array}\right],\left[\begin{array}{ll}
C_{\mathrm{xx}} & C_{\mathrm{xy}} \\
C_{\mathrm{yx}} & C_{\mathrm{yy}}
\end{array}\right]\right)
$$

$$
P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x}^{T} C_{x x}^{-1} C_{x y}\right)
$$

$$
\hat{y}=\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right)
$$

MAP Recap: For Gaussians

- If $P(x, y)$ is Gaussian:

$$
P(\mathbf{y}, \mathbf{x})=N\left(\left[\begin{array}{l}
\mu_{\mathrm{x}} \\
\mu_{\mathrm{y}}
\end{array}\right],\left[\begin{array}{ll}
C_{\mathrm{xx}} & C_{\mathrm{xy}} \\
C_{\mathrm{yx}} & C_{\mathrm{yy}}
\end{array}\right]\right)
$$

$$
P(y \mid x)=N\left(\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right), C_{y y}-C_{y x}^{T} C_{x x}^{-1} C_{x y}\right)
$$

$$
\hat{y}=\mu_{y}+C_{y x} C_{x x}^{-1}\left(x-\mu_{x}\right)
$$

"Slope" of the line

The Kalman filter $s_{t}=A_{1} s_{-1+1}+\varepsilon_{i}$

- Prediction

$$
o_{t}=B_{t} s_{t}+\gamma_{t}
$$

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}=\hat{o}_{t}=B_{t} \bar{s}_{t}+\mu_{\gamma}
$$

- Update

$$
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1}
$$

This is the slope of the MAP estimator that predicts s from 0 $\operatorname{RBT}^{\top}=C_{\mathrm{so}} \quad\left(\mathrm{BRB}^{\top}+\Theta\right)=C_{o 0}$
This is also called the Kalman Gain

The Kalman filter

- Prediction

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon}
$$

We must correct the predicted value of the state after making an observation

$$
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1}
$$

$$
\hat{S}_{t}=\bar{S}_{t}+K_{t}\left(o_{t}-\hat{o}_{t}\right)
$$

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

The Kalman filter

- Prediction

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon}
$$

We must correct the predicted value of the state after making an observation

$$
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1}
$$

㵢

$$
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-B_{t} \bar{s}_{t}-\mu_{\gamma}\right)
$$

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

The Kalman filter

- Prediction

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon}
$$

$$
o_{t}=B_{t} s_{t}+\gamma_{t}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
$$

- Update:

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative
"shrinkage" based on Kalman gain and B

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Kalman filter

- Prediction

$$
\bar{s}_{t}=A_{t} \hat{s}_{t-1}+\mu_{\varepsilon}
$$

$$
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
$$

- Update:
- Update

$$
\begin{aligned}
& K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1} \\
& \hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-B_{t} \bar{s}_{t}-\mu_{\gamma}\right)
\end{aligned}
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Kalman Filter

- Very popular for tracking the state of processes
- Control systems
- Robotic tracking
- Simultaneous localization and mapping
- Radars
- Even the stock market..
- What are the parameters of the process?

Kalman filter contd.

$$
\begin{aligned}
& s_{t}=A_{t} s_{t-1}+\varepsilon_{t} \\
& o_{t}=B_{t} s_{t}+\gamma_{t}
\end{aligned}
$$

- Model parameters A and B must be known
- Often the state equation includes an additional driving term: $s_{t}=A_{t} s_{t-1}+G_{t} u_{t}+\varepsilon_{t}$
- The parameters of the driving term must be known
- The initial state distribution must be known

Defining the parameters

- State state must be carefully defined
- E.g. for a robotic vehicle, the state is an extended vector that includes the current velocity and acceleration
- $S=\left[X, d X, d^{2} X\right]$
- State equation: Must incorporate appropriate constraints
- If state includes acceleration and velocity, velocity at next time $=$ current velocity + acc. * time step
$-S t=A S_{t-1}+e$
- $A=\left[1 \mathrm{t} 0.5 \mathrm{t}^{2} ; 01 \mathrm{t} ; 001\right.$]

Parameters

- Observation equation:
- Critical to have accurate observation equation
- Must provide a valid relationship between state and observations
- Observations typically high-dimensional
- May have higher or lower dimensionality than state

Problems

$$
\begin{aligned}
& s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) \\
& o_{t}=g\left(s_{t}, \gamma_{t}\right)
\end{aligned}
$$

- $f()$ and/or $g()$ may not be nice linear functions
- Conventional Kalman update rules are no longer valid
- ε and/or γ may not be Gaussian
- Gaussian based update rules no longer valid

Linear Gaussian Model

$$
s_{t}=A_{t} s_{t-1}+\varepsilon_{t}
$$

$P\left(s_{0}\right)=P(s)$
$P\left(s_{0} \mid \mathrm{O}_{0}\right)=C P\left(s_{0}\right) P\left(\mathrm{O}_{0} \mid \mathrm{s}_{0}\right)$
$P\left(s_{1} \mid \mathrm{O}_{0}\right)=\int_{-\infty}^{\infty} P\left(s_{0} \mid \mathrm{O}_{0}\right) P\left(s_{1} \mid s_{0}\right) d s_{0}$
$P\left(s_{1} \mid \mathrm{O}_{0: 1}\right)=C P\left(\mathrm{~s}_{1} \mid \mathrm{O}_{0}\right) P\left(\mathrm{O}_{1} \mid \mathrm{s}_{0}\right)$
$P\left(s_{2} \mid \mathrm{O}_{0: 1}\right)=\int_{-\infty}^{\infty} P\left(s_{1} \mid \mathrm{O}_{0: 1}\right) P\left(s_{2} \mid s_{1}\right) d s_{1}$
$P\left(s_{2} \mid \mathrm{O}_{0: 2}\right)=C P\left(s_{2} \mid \mathrm{O}_{0: 1}\right) P\left(\mathrm{O}_{2} \mid \mathrm{s}_{2}\right)$

All distributions remain Gaussian

Problems

$$
\begin{aligned}
& s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) \\
& o_{t}=g\left(s_{t}, \gamma_{t}\right)
\end{aligned}
$$

- Nonlinear $\mathrm{f}(\mathrm{)}$ and/or g() : The Gaussian assumption breaks down
- Conventional Kalman update rules are no longer valid

The problem with non-linear functions

$$
\begin{array}{ll}
s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right) & P\left(s_{t} \mid \mathrm{o}_{0: t-1}\right)=\int_{-\infty}^{\infty} P\left(s_{t-1} \mid \mathrm{o}_{0: t-1}\right) P\left(s_{t} \mid s_{t-1}\right) d s_{t-1} \\
o_{t}=g\left(s_{t}, \gamma_{t}\right) & P\left(s_{t} \mid \mathrm{o}_{0: \mathrm{t}}\right)=C P\left(s_{t} \mid \mathrm{o}_{0: \mathrm{t}-1}\right) P\left(\mathrm{o}_{t} \mid s_{t}\right)
\end{array}
$$

- Estimation requires knowledge of $\mathrm{P}(\mathrm{o} \mid \mathrm{s})$
- Difficult to estimate for nonlinear g()
- Even if it can be estimated, may not be tractable with update loop
- Estimation also requires knowledge of $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}-1}\right)$
- Difficult for nonlinear f()
- May not be amenable to closed form integration

The problem with nonlinearity

$$
o_{t}=g\left(s_{t}, \gamma_{t}\right)
$$

- The PDF may not have a closed form

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=\sum_{\gamma ;\left(s_{s}, \gamma\right)=o_{t}} \frac{P_{\gamma}(\gamma)}{\left|J_{g\left(s_{r}, \gamma\right)}\left(o_{t}\right)\right|}
\end{aligned}
$$

- Even if a closed form exists initially, it will typically become intractable very quickly

Example: a simple nonlinearity

$$
o=\gamma+\log (1+\exp (s))
$$

- $\mathrm{P}(\mathrm{o} \mid \mathrm{s})=$?
- Assume γ is Gaussian
$-P(\gamma)=\operatorname{Gaussian}\left(\gamma ; \mu_{\gamma}, \Theta_{\gamma}\right)$

Example: a simple nonlinearity

$$
o=\gamma+\log (1+\exp (s))
$$

- $\mathrm{P}(\mathrm{o} \mid \mathrm{s})=$?

$$
P(\gamma)=\operatorname{Gaussian}\left(\gamma ; \mu_{\gamma}, \Theta_{\gamma}\right)
$$

$$
P(o \mid s)=\operatorname{Gaussian}\left(o ; \mu_{\gamma}+\log (1+\exp (s)), \Theta_{\gamma}\right)
$$

Example: At T=0.

$$
o=\gamma+\log (1+\exp (s))
$$

- Assume initial probability $\mathrm{P}(\mathrm{s})$ is Gaussian

$$
P\left(s_{0}\right)=P_{0}(s)=\operatorname{Gaussian}(s ; \bar{s}, R)
$$

- Update $P\left(s_{0} \mid o_{0}\right)=C P\left(o_{0} \mid s_{0}\right) P\left(s_{0}\right)$
$P\left(s_{0} \mid o_{0}\right)=\operatorname{CGaussian}\left(o ; \mu_{\gamma}+\log \left(1+\exp \left(s_{0}\right)\right), \Theta_{\gamma}\right) \operatorname{Gaussian}\left(s_{0} ; \bar{s}, R\right)$

UPDATE: At T=0.

$P\left(s_{0} \mid o_{0}\right)=C \operatorname{Gaussian}\left(o ; \mu_{\gamma}+\log \left(1+\exp \left(s_{0}\right)\right), \Theta_{\gamma}\right) \operatorname{Gaussian}\left(s_{0} ; \bar{s}, R\right)$

$$
P\left(s_{0} \mid o_{0}\right)=C \exp \binom{-0.5\left(\mu_{\gamma}+\log \left(1+\exp \left(s_{0}\right)\right)-o\right)^{T} \Theta_{\gamma}^{-1}\left(\mu_{\gamma}+\log \left(1+\exp \left(s_{0}\right)\right)-o\right)}{-0.5\left(s_{0}-\bar{s}\right)^{T} R^{-1}\left(s_{0}-\bar{s}\right)}
$$

- = Not Gaussian

Prediction for $\mathbf{T}=1$

$$
s_{t}=s_{t-1}+\varepsilon \quad P(\varepsilon)=\operatorname{Gaussian}\left(\varepsilon ; 0, \Theta_{\varepsilon}\right)
$$

- Trivial, linear state transition equation

$$
P\left(s_{t} \mid s_{t-1}\right)=\operatorname{Gaussian}\left(s_{t} ; s_{t-1}, \Theta_{\varepsilon}\right)
$$

- Prediction $\quad P\left(s_{1} \mid \mathrm{o}_{0}\right)=\int_{-\infty}^{\infty} P\left(s_{0} \mid \mathrm{o}_{0}\right) P\left(s_{1} \mid s_{0}\right) d s_{0}$

$$
P\left(s_{1} \mid o_{0}\right)=\int_{-\infty}^{\infty} C \exp \binom{-0.5\left(\mu_{\gamma}+\log \left(1+\exp \left(s_{0}\right)\right)-o\right)^{T} \Theta_{\gamma}^{-1}\left(\mu_{\gamma}+\log \left(1+\exp \left(s_{0}\right)\right)-o\right)}{-0.5\left(s_{0}-\bar{s}\right)^{R} R^{-1}\left(s_{0}-\bar{s}\right)} \exp \left(\left(s_{1}-s_{0}\right)^{T} \Theta_{\varepsilon}^{-1}\left(s_{1}-s_{0}\right)\right) d s_{0}
$$

- = intractable

Update at $\mathrm{T}=1$ and later

- Update at $\mathrm{T}=1$

$$
P\left(s_{t} \mid \mathrm{o}_{0: \mathrm{t}}\right)=C P\left(s_{t} \mid \mathrm{o}_{0: \mathrm{t}-1}\right) P\left(\mathrm{o}_{t} \mid s_{t}\right)
$$

- Intractable
- Prediction for $\mathrm{T}=2$

$$
P\left(s_{t} \mid \mathrm{o}_{0: t-1}\right)=\int_{-\infty}^{\infty} P\left(s_{t-1} \mid \mathrm{o}_{0: t-1}\right) P\left(s_{t} \mid s_{t-1}\right) d s_{t-1}
$$

- Intractable

The State prediction Equation

$$
s_{t}=f\left(s_{t-1}, \varepsilon_{t}\right)
$$

- Similar problems arise for the state prediction equation
- $P\left(s_{t} \mid s_{t-1}\right)$ may not have a closed form
- Even if it does, it may become intractable within the prediction and update equations
- Particularly the prediction equation, which includes an integration operation

Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth

Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth

Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth

Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth

Linearizing the observation function

$$
\begin{aligned}
& P\left(s_{t} \mid o_{0: t-1}\right)=\operatorname{Gaussian}\left(\bar{s}_{t}, R_{t}\right) \\
& o=\gamma+g(s) \quad \square o \approx \gamma+g\left(\bar{s}_{t}\right)+J_{g}\left(\bar{s}_{t}\right)\left(s-\bar{s}_{t}\right)
\end{aligned}
$$

- Simple first-order Taylor series expansion
$-J()$ is the Jacobian matrix
- Simply a determinant for scalar state
- Expansion around current predicted a priori (or predicted) mean of the state
- Linear approximation changes with time

Most probability is in the low-error

 region

- $P\left(s_{t}\right)$ is small where approximation error is large
- Most of the probability mass of s is in low-error regions

Linearizing the observation function

$$
\begin{aligned}
& P\left(s_{t} \mid o_{0: t-1}\right)=\operatorname{Gaussian}\left(\bar{s}_{t}, R_{t}\right) \\
& o=\gamma+g(s) \quad \square o \approx \gamma+g\left(\bar{s}_{t}\right)+J_{g}\left(\bar{s}_{t}\right)\left(s-\bar{s}_{t}\right)
\end{aligned}
$$

- With the linearized approximation the system becomes "linear"
- The observation PDF becomes Gaussian

$$
P(\gamma)=\operatorname{Gaussian}\left(\gamma ; 0, \Theta_{\gamma}\right)
$$

$$
P(o \mid s)=\operatorname{Gaussian}\left(o ; g(\bar{s})+J_{g}(\bar{s})(s-\bar{s}), \Theta_{\gamma}\right)
$$

The state equation?

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon \quad P(\varepsilon)=\operatorname{Gaussian}\left(\varepsilon ; 0, \Theta_{\varepsilon}\right)
$$

- Again, direct use of $f()$ can be disastrous
- Solution: Linearize

$$
P\left(s_{t-1} \mid o_{0: t-1}\right)=\operatorname{Gaussian}\left(s_{t-1} ; \hat{s}_{t-1}, \hat{R}_{t-1}\right)
$$

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon \square s_{t} \approx \varepsilon+f\left(\hat{s}_{t-1}\right)+J_{f}\left(\hat{s}_{t-1}\right)\left(s_{t-1}-\hat{s}_{t-1}\right)
$$

- Linearize around the mean of the updated distribution of s at $t-1$
- Converts the system to a linear one

Linearized System

$$
\begin{gathered}
o=\gamma+g(s) \\
s_{t}=f\left(s_{t-1}\right)+\varepsilon \\
o \approx \gamma+g\left(\bar{s}_{t}\right)+J_{g}\left(\bar{s}_{t}\right)\left(s-\bar{s}_{t}\right) \\
s_{t} \approx \varepsilon+f\left(\hat{s}_{t-1}\right)+J_{f}\left(\hat{s}_{t-1}\right)\left(s_{t-1}-\hat{s}_{t-1}\right)
\end{gathered}
$$

- Now we have a simple time-varying linear system
- Kalman filter equations directly apply

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{gathered}
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right) \\
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
\end{gathered}
$$

- Update

$$
\begin{gathered}
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1} \\
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-g\left(\bar{s}_{t}\right)\right) \\
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
\end{gathered}
$$

$$
o_{t}=g\left(s_{t}\right)+\gamma
$$

$$
\begin{gathered}
A_{t}=J_{f}\left(\hat{s}_{t-1}\right) \\
B_{t}=J_{g}\left(\bar{s}_{t}\right)
\end{gathered}
$$

Jacobians used in Linearization

Assuming ε and γ are 0 mean for simplicity

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right)
$$

$$
o_{t}=g\left(s_{t}\right)+\gamma
$$

The predicted state at time \dagger is obtained simply by propagating the estimated state at $t-1$ through the state dynamics equation $K_{t}=R_{t} B_{t}\left(B_{t} R_{t} B_{t}+\Theta_{\gamma}\right)$

$$
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-g\left(\bar{s}_{t}\right)\right)
$$

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{gathered}
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right) \\
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
\end{gathered}
$$

$$
o_{t}=g\left(s_{t}\right)+\varepsilon
$$

$$
A_{t}=J_{f}\left(\hat{s}_{t-1}\right)
$$

$$
B_{t}=J_{g}\left(\bar{s}_{t}\right)
$$

Uncertainty of prediction.
The variance of the predictor $=$
variance of $\varepsilon_{\mathrm{t}}+$ variance of $A s_{\mathrm{t}-1}$

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{gathered}
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right) \\
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
\end{gathered}
$$

$$
o_{t}=g\left(s_{t}\right)+\varepsilon
$$

- Update

$$
B_{t}=J_{g}\left(\bar{s}_{t}\right)
$$

$$
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1}
$$

The Kalman gain is the slope of the MAP estimator that predicts s from o RBT $=C_{\text {so }},\left(B^{\prime} B^{\top}+\Theta\right)=C_{\text {oo }}$
B is obtained by linearizing $g()$

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{aligned}
& \quad \bar{s}_{t}=f\left(\hat{s}_{t-1}\right) \Longrightarrow o_{t}=g\left(s_{t}\right)+\varepsilon \\
& R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
\end{aligned}
$$

We can also predict the observation from the predicted state using the observation equation

$$
\begin{array}{ll}
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-g\left(\bar{s}_{t}\right)\right) \\
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t} & \bar{o}_{t}=g\left(\bar{s}_{t}\right)
\end{array}
$$

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{gathered}
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right) \\
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
\end{gathered}
$$

$$
o_{t}=g\left(s_{t}\right)+\varepsilon
$$

We must correct the predicted value of the state after making an observation

$$
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-g\left(\bar{s}_{t}\right)\right) \quad \bar{o}_{t}=g\left(\bar{s}_{t}\right)
$$

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{array}{cc}
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right) & o_{t}=g\left(s_{t}\right)+\varepsilon \\
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T} & B_{t}=J_{g}\left(\bar{s}_{t}\right)
\end{array}
$$

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative "shrinkage" based on Kalman gain and B

$$
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
$$

The Extended Kalman filter

- Prediction

$$
s_{t}=f\left(s_{t-1}\right)+\varepsilon
$$

$$
\begin{gathered}
\bar{s}_{t}=f\left(\hat{s}_{t-1}\right) \\
R_{t}=\Theta_{\varepsilon}+A_{t} \hat{R}_{t-1} A_{t}^{T}
\end{gathered}
$$

$$
o_{t}=g\left(s_{t}\right)+\varepsilon
$$

$$
A_{t}=J_{f}\left(\hat{s}_{t-1}\right)
$$

$$
B_{t}=J_{g}\left(\bar{s}_{t}\right)
$$

- Update

$$
\begin{gathered}
K_{t}=R_{t} B_{t}^{T}\left(B_{t} R_{t} B_{t}^{T}+\Theta_{\gamma}\right)^{-1} \\
\hat{s}_{t}=\bar{s}_{t}+K_{t}\left(o_{t}-g\left(\bar{s}_{t}\right)\right) \\
\hat{R}_{t}=\left(I-K_{t} B_{t}\right) R_{t}
\end{gathered}
$$

EKFs

- EKFs are probably the most commonly used algorithm for tracking and prediction
- Most systems are non-linear
- Specifically, the relationship between state and observation is usually nonlinear
- The approach can be extended to include non-linear functions of noise as well
- The term "Kalman filter" often simply refers to an extended Kalman filter in most contexts.
- But..

EKFs have limitations

- If the non-linearity changes too quickly with s, the linear approximation is invalid
- Unstable
- The estimate is often biased
- The true function lies entirely on one side of the approximation
- Various extensions have been proposed:
- Invariant extended Kalman filters (IEKF)
- Unscented Kalman filters (UKF)

Conclusions

- HMMs are predictive models
- Continuous-state models are simple extensions of HMMs
- Same math applies
- Prediction of linear, Gaussian systems can be performed by Kalman filtering
- Prediction of non-linear, Gaussian systems can be performed by Extended Kalman filtering

