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A Quick Recap

• Problem: Given a collection of data X, find a 
set of “bases” B, such that each vector xi can 
be expressed as a weighted combination of 
the bases
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A Quick Recap: Subproblem 1

• Problem 1: Finding bases
– Finding typical faces
– Finding “notes” like structures
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A Quick Recap: Subproblem 2

• Problem 2: Expressing instances in terms of 
these bases
– Finding weights of typical faces
– Finding weights of notes
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A Quick Recap: WHY? 1.

• Better Representation: The weights {wij} 
represent the vectors in a meaningful way
– Better suited to semantically motivated operation
– Better suited for specific statistical models
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A Quick Recap: WHY? 2.

• Dimensionality Reduction: The number of Bases may be fewer than 
the dimensions of the vectors
– Represent each Vector using fewer numbers
– Expresses each vector within a subspace

• Loses information / energy
• Objective: Lose least energy
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A Quick Recap: WHY? 3.

• Denoising: Reduced dimensional representation 
eliminates dimensions

• Can often eliminate noise dimensions
– Signal-to-Noise ratio worst in dimensions where the signal 

has least energy/information
– Removing them eliminates noise
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A Quick Recap: HOW? PCA

• Find Eigenvectors of Correlation matrix
– These are our “eigen” bases

– Capture information compactly and satisfy most of 
our requirements

• MOST??
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The problem?

• What is a negative face? 
– And what does it mean to subtract one face from the 

other?

• Problem more obvious when applied to music
– You would like bases to be notes

– Weights to be scores

– What is a negative note? What is a negative score?
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Summary

• Decorrelation and Independence are 
statistically meaningful operations

• But may not be physically meaningful

• Next: A physically meaningful constraint
– Non-negativity
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The Engineer and the Musician

Once upon a time a rich potentate 
discovered a previously unknown 
recording of a beautiful piece of 
music. Unfortunately it was badly 
damaged.  

He greatly wanted to find out what it would sound 
like if it were not.

So he hired an engineer and a 
musician to solve the 
problem..
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The Engineer and the Musician

The engineer worked for many 
years. He spent much money and 
published many papers.

Finally he had a somewhat scratchy 
restoration of the music..

The musician listened to the music 
carefully for a day, transcribed it,  
broke out his trusty keyboard and 
replicated the music. 12



The Prize

Who do you think won the princess?
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The search for building blocks

 What composes an audio signal?
 E.g. notes compose music
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The properties of building blocks

 Constructive composition
 A second note does not diminish a first note

 Linearity of composition
 Notes do not distort one another
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Looking for building blocks in sound

 Can we compute the building blocks from sound itself
 Can we learn the notes from the music?
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A property of power spectra

+
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=

 When two or more independent signals are 
added, their power spectra (approximately) add

 Their power spectrograms add as well
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Building Blocks of Sound

 The building blocks of sound are (power) spectral structures
 E.g. notes build music
 The spectra are entirely non-negative

 The complete sound is composed by constructive combination of the 
building blocks scaled to different non-negative gains
 E.g. notes are played with varying energies through the music
 The sound from the individual notes combines to form the final spectrogram

 The final spectrogram is also non-negative 18



Building Blocks of Sound

 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount
 Individual frames are composed by activating the building 

blocks to different degrees
 E.g. notes are strummed with different energies to 

compose the frame 19
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Composing the Sound
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 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount
 Individual frames are composed by activating the building 
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Building Blocks of Sound
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 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount
 Individual frames are composed by activating the building 
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Building Blocks of Sound
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spectral building block by a frame-specific amount
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Building Blocks of Sound
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 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount
 Individual frames are composed by activating the building 

blocks to different degrees
 E.g. notes are strummed with different energies to 

compose the frame



The Problem of Learning

24

 Given only the final sound, determine its building 
blocks
 From only listening to music, learn all about musical 

notes!



In Math

25

 Each frame is a non-negative power spectral vector

 Each note is a non-negative power spectral vector

 Each frame is a non-negative combination of the notes
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Non-negative matrix factorization: Basics

 NMF is used in a compositional model

 Data are assumed to be non-negative
 E.g. power spectra

 Every data vector is explained as a purely constructive 
linear composition of a set of bases
 V = Si wi Bi

 The bases Bi are in the same domain as the data
 I.e. they are power spectra

 Constructive composition: no subtraction allowed
 Weights wi must all be non-negative

 All components of bases Bi  must also be non-negative
26



 Non-negative combination: a and b are strictly non-negative
 Implies V must lie inside the cone of B1 and B2

 V can be composed without reversing the directions of B1 and B2
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 If V lies outside the cone, at least one B1 or B2

must be reversed in direction to compose it
 At least one of a and b must be negative
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 Given a collection of spectral vectors (from 
the composed sound) …

 Find a set of “basic” sound spectral vectors 
such that …

 All of the spectral vectors can be 
composed through constructive addition 
of the bases
 We never have to flip the direction of any basis

29

Learning building blocks: Restating the 
problem



 Each column of V is one “composed” 
spectral vector

 Each column of B is one building block
 One spectral basis

 Each column of W has the scaling factors 
for the building blocks to compose the 
corresponding column of V

 All columns of V are non-negative
 All entries of B and W must also be non-

negative
30
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Interpreting non-negative factorization

 Bases are non-negative, lie in the positive quadrant
 Blue lines represent bases, blue dots represent vectors
 Any vector that lies between the bases (highlighted region) can 

be expressed as a non-negative combination of bases
 E.g. the black dot 31
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Interpreting non-negative factorization

 Vectors outside the shaded enclosed area can only be expressed 
as a linear combination of the bases by reversing a basis
 I.e. assigning a negative weight to the basis
 E.g. the red dot

 Alpha and beta are scaling factors for bases
 Beta weighting is negative
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Interpreting non-negative factorization

 If we approximate the red dot as a non-negative 
combination of the bases, the approximation will lie in 
the shaded region
 On or close to the boundary
 The approximation has error

aB1
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The NMF representation

 The representation characterizes all data as lying within 
a compact convex region (a cone)
 “Compact”  enclosing only a small fraction of the entire space

 The more compact the enclosed region, the more it localizes the 
data within it
 Represents the boundaries of the distribution of the data better

 Conventional statistical models represent the mode of the distribution

 The bases must be chosen to 
 Enclose the data as compactly as possible

 And also enclose as much of the data as possible
 Data that are not enclosed are not represented correctly
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Data need not be non-negative

 The general principle of enclosing data applies to any one-sided data
 Whose distribution does not cross the origin.

 The only part of the model that must be non-negative are the weights.
 Examples

 Blue bases enclose blue region in negative quadrant
 Red bases enclose red region in positive-negative quadrant

 Notions of compactness and enclosure still apply
 This is a generalization of NMF
 We wont discuss it further
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NMF: Learning Bases

 Given a collection of data vectors (blue dots)
 Goal: find a set of bases (blue arrows) such that they enclose the 

data.
 Ideally, they must simultaneously enclose the smallest volume

 This “enclosure” constraint is usually not explicitly imposed in the 
standard NMF formulation
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NMF: Learning Bases

 Express every training vector as non-negative combination of bases
 V = Si wi Bi

 In linear algebraic notation,  represent:
 Set of all training vectors as a data matrix V

 A DxN matrix, D = dimensionality of vectors,  N = No. of vectors

 All basis vectors as a matrix B
 A DxK matrix , K is the number of bases

 The K weights for any vector V as a Kx1 column vector W
 The weight vectors for all N training data vectors as a  matrix W

 KxN matrix

 Ideally V = BW
 All components of V, B and W are non-negative 37



NMF: Learning Bases

 V = BW will only hold true if all training vectors in V lie 
inside the region enclosed by the bases

 Learning bases is an iterative algorithm

 Intermediate estimates of B do not satisfy V = BW

 Algorithm updates B until V = BW is satisfied as closely 
as possible
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NMF: Minimizing Divergence

 Define a Divergence between data V and approximation BW
 Divergence(V, BW) is the total error in approximating all vectors in V as BW
 Must estimate non-negative B and W so that this error is minimized

 Divergence(V, BW) can be defined in different ways
 L2:    Divergence =  SiSj (Vij – (BW)ij)2

 Minimizing the L2 divergence gives us an algorithm to learn B and W

 KL:   Divergence(V,BW) =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij - SiSj (BW)ij

 This is a generalized KL divergence that is minimum when V =  BW
 Minimizing the KL divergence gives us another algorithm to learn B and W

 Other divergence forms can also be used
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NMF: Minimizing Divergence

 Define a Divergence between data V and approximation BW
 Divergence(V, BW) is the total error in approximating all vectors in V as BW
 Must estimate non-negative B and W so that this error is minimized

 Divergence(V, BW) can be defined in different ways
 L2:    Divergence =  SiSj (Vij – (BW)ij)2

 Minimizing the L2 divergence gives us an algorithm to learn B and W

 KL:   Divergence(V,BW) =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij - SiSj (BW)ij

 This is a generalized KL divergence that is minimum when V =  BW
 Minimizing the KL divergence gives us another algorithm to learn B and W

 Other divergence forms can also be used
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NMF: Minimizing L2 Divergence

 Divergence(V, BW) is defined as
 E = ||V – BW||F

2

 E =  SiSj (Vij – (BW)ij)2

 Iterative solution: Minimize E such that B and 
W are strictly non-negative
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NMF: Minimizing L2 Divergence

 Learning both B and W with non-negativity

 Divergence(V, BW) is defined as
 E = ||V – BW||F

2

 Iterative solution:
 B = [V Pinv(W)]+

 W = [Pinv(B) V]+

 Subscript + indicates thresholding –ve values to 0
42



NMF: Minimizing Divergence

 Define a Divergence between data V and approximation BW
 Divergence(V, BW) is the total error in approximating all vectors in V as BW
 Must estimate B and W so that this error is minimized

 Divergence(V, BW) can be defined in different ways
 L2:    Divergence =  SiSj (Vij – (BW)ij)2

 Minimizing the L2 divergence gives us an algorithm to learn B and W

 KL:   Divergence(V,BW) =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij - SiSj (BW)ij

 This is a generalized KL divergence that is minimum when V =  BW
 Minimizing the KL divergence gives us another algorithm to learn B and W

 For many kinds of signals, e.g. sound, NMF-based representations work 
best when we minimize the KL divergence
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NMF: Minimizing KL Divergence

 Divergence(V, BW)  defined as
 E =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij - SiSj (BW)ij

 Iterative update rules

 Number of iterative update rules have been 
proposed

 The most popular one is the multiplicative update 
rule..
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NMF Estimation: Learning bases 

 The algorithm to estimate B and W to minimize the 
KL divergence between V and BW:

 Initialize B and W (randomly)
 Iteratively update B and W using the following 

formulae

 Iterations continue until divergence converges
 In practice, continue for a fixed no. of iterations
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Reiterating

 NMF learns the optimal set of basis vectors Bk to approximate the data 
in terms of the bases

 It also learns how to compose  the data in terms of these bases
 Compositions can be inexact

NKKDND WBV   k
k

kLL BwV  ,

The columns of B are the
bases
The columns of V are the 
data
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 Each column of V is one spectral vector

 Each column of B is one building 
block/basis

 Each column of W has the scaling 
factors for the bases to compose the 
corresponding column of V

 All terms are non-negative

 Learn B (and W) by applying NMF to V
47

Learning building blocks of sound
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Learning Building Blocks
Speech Signal

bases

Basis-specific spectrograms
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What about other data

 Faces
 Trained 49 multinomial components on 2500 faces

 Each face unwrapped into a 361-dimensional vector

 Discovers parts of faces
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There is no “compactness”  constraint

• If K < D, we usually learn compact representations
• NMF becomes a dimensionality reducing representation

• Representing D-dimensional data in terms of K weights, 
where K < D

B1

B2

• No explicit “compactness” constraint on 
bases

• The red lines would be perfect bases:
• Enclose all training data without 

error
• Algorithm can end up with these 

bases
• If no. of bases K >= dimensionality 

D, can get uninformative bases
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Representing Data using Known Bases

 If we already have bases Bk and are given a vector 
that must be expressed in terms of the bases:

 Estimate weights as:
 Initialize weights
 Iteratively update them using
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What can we do knowing the building blocks

 Signal Representation

 Signal Separation

 Signal Completion

 Denoising

 Signal recovery

 Music Transcription

 Etc.
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Signal Separation

 Can we separate mixed signals?
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Undoing a Jigsaw Puzzle

 Given two distinct sets of building blocks, can we 
find which parts of a composition were 
composed from which blocks 54
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Separating Sounds

 From example of A, learn blocks A (NMF)
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Separating Sounds

 From example of A, learn blocks A (NMF)
 From example of B, learn B (NMF)
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Separating Sounds

 From mixture, separate out (NMF)
 Use known “bases” of both sources
 Estimate the weights with which they combine in the 

mixed signal 57
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Separating Sounds

 Separated signals are estimated as the 
contributions of the source-specific bases to the 
mixed signal
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Separating Sounds

 It is sometimes sufficient to know the bases for 
only one source
 The bases for the other can be estimated from the 

mixed signal itself 59
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Separating Sounds

60

 “Raise my rent” by David Gilmour
 Background music “bases” learnt 

from 5-seconds of music-only 
segments within the song

 Lead guitar “bases” bases learnt 
from the rest of the song

 Norah Jones singing “Sunrise”
 Background music bases learnt 

from 5 seconds of music-only 
segments



Predicting Missing Data

 Use the building blocks to fill in “holes”
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Filling in 

 Some frequency components are missing (left panel)

 We know the bases
 But not the mixture weights for any particular spectral frame

 We must “fill in” the holes in the spectrogram
 To obtain the one to the right
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Learn building blocks

 Learn the building blocks from other examples of 
similar sounds
 E.g. music by same singer
 E.g. from undamaged regions of same recording
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Predict data

 “Modify” bases to look like damaged spectra
 Remove appropriate spectral components

 Learn how to compose damaged data with modified 
bases

 Reconstruct missing regions with complete bases
64
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Filling in : An example

 Madonna…

 Bases learned from other Madonna songs
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A more fun example

•Bases learned from this

•Bandwidth expanded version

•Reduced BW data



A Natural Restriction

 For K-dimensional data, can learn no more than 
K-1 bases meaningufully
 At K bases, simply select the axes as bases
 The bases will represent all data exactly

67
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Its an unnatural restriction

 For K-dimensional spectra, can learn no more than K-1 bases
 Nature does not respect the dimensionality of your spectrogram
 E.g. Music: There are tens of instruments

 Each can produce dozens of unique notes
 Amounting to a total of many thousands of notes
 Many more than the dimensionality of the spectrum

 E.g. images: a 1024 pixel image can show millions of 
recognizable pictures!
 Many more than the number of pixels in the image
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Fixing the restriction: Updated model

 Can have a very large number of building blocks (bases)
 E.g. notes

 But any particular frame is composed of only a small 
subset of bases
 E.g. any single frame only has a small set of notes
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The Modified Model

 Modification 1:
 In any column of W, only a small number of entries have non-

zero value
 I.e. the columns of W are sparse
 These are sparse representations

 Modification 2:
 B may have more columns than rows
 These are called overcomplete representations

 Sparse representations need not be overcomplete, but 
the reverse will generally not provide useful 
decompositions 70
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Imposing Sparsity

 Minimize a modified objective function
 Combines divergence and ell-0 norm of W
 The number of non-zero elements in W

 Minimize Q instead of E
 Simultaneously minimizes both divergence and 

number of active bases at any time
71
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Imposing Sparsity

 Minimize the ell-0 norm is hard
 Combinatorial optimization

 Minimize ell-1 norm instead
 The sum of all the entries in W
 Relaxation

 Is equivalent to minimize ell-0
 We cover this equivalence later

 Will also result in sparse solutions
72
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Update Rules

 Modified Iterative solutions
 In gradient based solutions, gradient w.r.t any W term now 

includes 

 I.e. if  dQ/dW = dE/dW + 

 For KL Divergence, results in following modified 
update rules

 Increasing  makes the weights increasingly sparse
73
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Update Rules

 Modified Iterative solutions
 In gradient based solutions, gradient w.r.t any W term 

now includes 
 I.e. if  dQ/dW = dE/dW + 

 Both B and W can be made sparse
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What about Overcompleteness?

 Use the same solutions
 Simply make B wide!
 W must be made sparse
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Sparsity: What do we learn

 Without sparsity: The model has an implicit limit: can learn 
no more than D-1 useful bases
 If K >= D, we can get uninformative bases

 Sparsity: The bases are “pulled towards” the data
 Representing the distribution of the data much more effectively
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Sparsity: What do we learn

 Top and middle panel: Compact (non-sparse) estimator
 As the number of bases increases, bases migrate towards corners of the 

orthant
 Bottom panel: Sparse estimator

 Cone formed by bases shrinks to fit the data

Each dot represents a
location where a vector
“pierces” the simplex
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The Vowels and Music Examples

 Left panel, Compact learning: most bases have significant energy in all frames
 Right panel, Sparse learning: Fewer bases active within any frame

 Decomposition into basic sounds is cleaner

 (.wav)
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Sparse Overcomplete Bases: Separation
 3000 bases for each of the speakers

 The speaker-to-speaker ratio typically doubles (in dB) w.r.t compact bases

Panels 2 and 3: Regular learning

Panels 4 and 5: Sparse learning

Regular bases

Sparse bases
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Sparseness: what do we learn
 As solutions get more sparse, bases become more 

informative
 In the limit, each basis is a complete face by itself.
 Mixture weights simply select face

Sparse bases

Dense bases

“Dense” weights

Sparse weights 80
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Filling in missing information

 19x19 pixel images (361 pixels)
 1000 bases trained from 2000 faces
 SNR of reconstruction from overcomplete basis set more than 10dB 

better than reconstruction from corresponding “compact” (regular) basis 
set
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Sparse decomposition for 
classification

 Given a number of examples of handwritten instances of numbers “2” and “3”
 Find bases for “2” and “3”

 For any test instance, attempt to construct it using the bases for 2 and 
(separately) the bases for 3

 The set whose bases result in the better reconstruction is selected

 Accuracy improves with increasing sparsity



Extending the model

 In reality our building blocks are not spectra

 They are spectral patterns!
 Which change with time
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Convolutive NMF

 The building blocks of sound are spectral 
patches!
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Convolutive NMF

 The building blocks of sound are spectral 
patches!

 At each time, they combine to compose a patch 
starting from that time

 Overlapping patches add 85
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Convolutive NMF

 The building blocks of sound are spectral 
patches!

 At each time, they combine to compose a patch 
starting from that time

 Overlapping patches add 86
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Convolutive NMF

 The building blocks of sound are spectral 
patches!

 At each time, they combine to compose a patch 
starting from that time

 Overlapping patches add 87
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Convolutive NMF

 The building blocks of sound are spectral 
patches!

 At each time, they combine to compose a patch 
starting from that time

 Overlapping patches add 88
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Convolutive NMF

 The building blocks of sound are spectral 
patches!

 At each time, they combine to compose a patch 
starting from that time

 Overlapping patches add 89



In Math

 Each spectral frame has contributions from 
several previous shifts 90
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An Alternate Repesentation

 B(t) is a matrix composed of the t-th columns of all bases
 The i-th column represents the i-th basis

 W is a matrix whose i-th row is sequence of weights applied to the 
i-th basis
 The superscript t represents a right shift by t 91
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Convolutive NMF

 Simple learning rules for B and W
 Identical rules to estimate W given B

 Simply don’t update B

 Sparsity can be imposed on W as before if desired
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The Convolutive Model

 An Example: Two distinct sounds occurring with 
different repetition rates within a signal
 Each sound has a time-varying spectral structure

INPUT SPECTROGRAM

Discovered “patch” 
bases

Contribution of individual bases to the recording 93



Example applications: Dereverberation

 From “Adrak ke Panje” by Babban Khan

 Treat the reverberated spectrogram as a composition of 
many shifted copies of a “clean” spectrogram
 “Shift-invariant” analysis

 NMF to estimate clean spectrogram
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Pitch Tracking

 Left: A segment of a song

 Right: Smoke on the water
 “Impulse” distribution captures the “melody”!
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 Simultaneous pitch tracking on multiple instruments

 Can be used to find the velocity of cars on the 
highway!!
 “Pitch  track” of sound tracks Doppler shift (and velocity)

Pitch Tracking

96
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Example: 2-D shift invariance

 Sparse decomposition employed in this example
 Otherwise locations of faces (bottom right panel) are not precisely determined
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Example: 2-D shift invarince

 The original figure has multiple handwritten 
renderings of three characters
 In different colours

 The algorithm learns the three characters and 
identifies their locations in the figure

Input data
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Example: Transform Invariance

 Top left: Original figure
 Bottom left – the two bases discovered
 Bottom right –

 Left panel, positions of “a”
 Right panel, positions of “l”

 Top right: estimated distribution underlying original figure
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Example: Higher dimensional data

 Video example



Lessons learned

 Linear decomposition when constrained with 
semantic constraints e.g. non-negativity can 
result in semantically meaningful bases

 NMF:  Useful compositional model of data

 Really effective when the data obey 
compositional rules..
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