Machine Learning for Signal Processing
 Non-negative Matrix Factorization

Instructor: Bhiksha Raj

With examples and slides from
Paris Smaragdis

A Quick Recap

- Problem: Given a collection of data \boldsymbol{X}, find a set of "bases" \boldsymbol{B}, such that each vector x_{i} can be expressed as a weighted combination of the bases

A Quick Recap: Subproblem 1

- Problem 1: Finding bases
- Finding typical faces
- Finding "notes" like structures

A Quick Recap: Subproblem 2

- Problem 2: Expressing instances in terms of these bases
- Finding weights of typical faces
- Finding weights of notes

A Quick Recap: WHY? 1.

- Better Representation: The weights $\left\{\mathrm{w}_{\mathrm{ij}}\right\}$ represent the vectors in a meaningful way
- Better suited to semantically motivated operation
- Better suited for specific statistical models

A Quick Recap: WHY? 2.

- Dimensionality Reduction: The number of Bases may be fewer than the dimensions of the vectors
- Represent each Vector using fewer numbers
- Expresses each vector within a subspace
- Loses information / energy
- Objective: Lose least energy

A Quick Recap: WHY? 3.

- Denoising: Reduced dimensional representation eliminates dimensions
- Can often eliminate noise dimensions
- Signal-to-Noise ratio worst in dimensions where the signal has least energy/information
- Removing them eliminates noise

A Quick Recap: HOW? PCA

- Find Eigenvectors of Correlation matrix
- These are our "eigen" bases
- Capture information compactly and satisfy most of our requirements
- MOST??

- What is a negative face?
- And what does it mean to subtract one face from the other?
- Problem more obvious when applied to music
- You would like bases to be notes
- Weights to be scores
- What is a negative note? What is a negative score?

Summary

- Decorrelation and Independence are statistically meaningful operations
- But may not be physically meaningful
- Next: A physically meaningful constraint
- Non-negativity

The Engineer and the Musician

Once upon a time a rich potentate discovered a previously unknown recording of a beautiful piece of music. Unfortunately it was badly damaged.

He greatly wanted to find out what it would sound like if it were not.

So he hired an engineer and a musician to solve the problem..

The Engineer and the Musician

The engineer worked for many years. He spent much money and published many papers.

Finally he had a somewhat scratchy restoration of the music..

The musician listened to the musid carefully for a day, transcribed it, broke out his trusty keyboard and replicated the music.

The Prize

Who do you think won the princess?

The search for building blocks

- What composes an audio signal?
- E.g. notes compose music

The properties of building blocks

- Constructive composition
- A second note does not diminish a first note

- Linearity of composition
- Notes do not distort one another

Looking for building blocks in sound

- Can we compute the building blocks from sound itself - Can we learn the notes from the music?

A property of power spectra

- When two or more independent signals are added, their power spectra (approximately) add
- Their power spectrograms add as well

Building Blocks of Sound

- The building blocks of sound are (power) spectral structures
- E.g. notes build music
- The spectra are entirely non-negative
- The complete sound is composed by constructive combination of the building blocks scaled to different non-negative gains
- E.g. notes are played with varying energies through the music
- The sound from the individual notes combines to form the final spectrogram
- The final spectrogram is also non-negative

Building Blocks of Sound

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
- Individual frames are composed by activating the building blocks to different degrees
- E.g. notes are strummed with different energies to compose the frame

Composing the Sound

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
- Individual frames are composed by activating the building blocks to different degrees
- E.g. notes are strummed with different energies to compose the frame

Building Blocks of Sound

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
- Individual frames are composed by activating the building blocks to different degrees
- E.g. notes are strummed with different energies to compose the frame

Building Blocks of Sound

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
- Individual frames are composed by activating the building blocks to different degrees
- E.g. notes are strummed with different energies to compose the frame

Building Blocks of Sound

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
- Individual frames are composed by activating the building blocks to different degrees
- E.g. notes are strummed with different energies to compose the frame

The Problem of Learning

- Given only the final sound, determine its building blocks
- From only listening to music, learn all about musical notes!

In Math

- Each frame is a non-negative power spectral vector
- Each note is a non-negative power spectral vector
- Each frame is a non-negative combination of the notes

Non-negative matrix factorization: Basics

- NMF is used in a compositional model
- Data are assumed to be non-negative
- E.g. power spectra
- Every data vector is explained as a purely constructive linear composition of a set of bases
- $V=\Sigma_{\mathrm{i}} w_{\mathrm{i}} B_{\mathrm{i}}$
- The bases B_{i} are in the same domain as the data
- I.e. they are power spectra
- Constructive composition: no subtraction allowed
- Weights w_{i} must all be non-negative
- All components of bases B_{i} must also be non-negative

Understanding non-negative combination

$$
V=a B_{1}+b B_{2}
$$

- Non-negative combination: a and b are strictly non-negative
- Implies V must lie inside the cone of B_{1} and B_{2}
- V can be composed without reversing the directions of B_{1} and B_{2}

Understanding non-negative combination

$$
V=a B_{1}+b B_{2}
$$

- If V lies outside the cone, at least one B_{1} or B_{2} must be reversed in direction to compose it
- At least one of a and b must be negative

Learning building blocks: Restating the problem

- Given a collection of spectral vectors (from the composed sound) ...
- Find a set of "basic" sound spectral vectors such that ...
- All of the spectral vectors can be composed through constructive addition of the bases
- We never have to flip the direction of any basis

Learning building blocks: Restating the problem

$\mathbf{V}=\mathbf{B W}$

- Each column of V is one "composed" spectral vector
- Each column of \mathbf{B} is one building block
- One spectral basis
- Each column of \mathbf{W} has the scaling factors for the building blocks to compose the corresponding column of \mathbf{V}
- All columns of \mathbf{V} are non-negative
- All entries of B and \mathbf{W} must also be nonnegative

Interpreting non-negative factorization

- Bases are non-negative, lie in the positive quadrant
- Blue lines represent bases, blue dots represent vectors
- Any vector that lies between the bases (highlighted region) can be expressed as a non-negative combination of bases
- E.g. the black dot

Interpreting non-negative factorization

- Vectors outside the shaded enclosed area can only be expressed as a linear combination of the bases by reversing a basis
- I.e. assigning a negative weight to the basis
- E.g. the red dot
- Alpha and beta are scaling factors for bases
- Beta weighting is negative

Interpreting non-negative factorization

- If we approximate the red dot as a non-negative combination of the bases, the approximation will lie in the shaded region
- On or close to the boundary
- The approximation has error

The NMF representation

- The representation characterizes all data as lying within a compact convex region (a cone)
- "Compact" \rightarrow enclosing only a small fraction of the entire space
- The more compact the enclosed region, the more it localizes the data within it
- Represents the boundaries of the distribution of the data better
- Conventional statistical models represent the mode of the distribution
- The bases must be chosen to
- Enclose the data as compactly as possible
- And also enclose as much of the data as possible
- Data that are not enclosed are not represented correctly

Data need not be non-negative

- The only part of the model that must be non-negative are the weights.
- Examples
- Blue bases enclose blue region in negative quadrant
- Red bases enclose red region in positive-negative quadrant
- Notions of compactness and enclosure still apply
- This is a generalization of NMF
- We wont discuss it further

NMF: Learning Bases

- Given a collection of data vectors (blue dots)
- Goal: find a set of bases (blue arrows) such that they enclose the data.
- Ideally, they must simultaneously enclose the smallest volume
- This "enclosure" constraint is usually not explicitly imposed in the standard NMF formulation

NMF: Learning Bases

- Express every training vector as non-negative combination of bases
- $\mathrm{V}=\Sigma_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}$
- In linear algebraic notation, represent:
- Set of all training vectors as a data matrix \mathbf{V}
- A DxN matrix, $D=$ dimensionality of vectors, $N=N o$. of vectors
- All basis vectors as a matrix B
- A DxK matrix, K is the number of bases
- The K weights for any vector V as a Kx1 column vector W
- The weight vectors for all N training data vectors as a matrix \mathbf{W}
- KxN matrix
- Ideally $\mathbf{V}=\mathbf{B W}$
- All components of V, B and W are non-negative

NMF: Learning Bases

- V = BW will only hold true if all training vectors in V lie inside the region enclosed by the bases
- Learning bases is an iterative algorithm
- Intermediate estimates of B do not satisfy V = BW
- Algorithm updates \mathbf{B} until $\mathbf{V}=\mathbf{B W}$ is satisfied as closely as possible

NMF: Minimizing Divergence

- Define a Divergence between data \mathbf{V} and approximation BW
- Divergence($\mathbf{V}, \mathbf{B W}$) is the total error in approximating all vectors in \mathbf{V} as $\mathbf{B W}$
- Must estimate non-negative \mathbf{B} and \mathbf{W} so that this error is minimized
- Divergence(V, BW) can be defined in different ways
- L2: Divergence $=\Sigma_{i} \Sigma_{\mathrm{j}}\left(\mathrm{V}_{\mathrm{ij}}-(\mathrm{BW})_{\mathrm{ij}}\right)^{2}$
- Minimizing the L2 divergence gives us an algorithm to learn \mathbf{B} and \mathbf{W}
- KL: Divergence $(\mathbf{V}, \mathbf{B W})=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}} \log \left(\mathrm{V}_{\mathrm{ij}} /(\mathrm{BW})_{\mathrm{ij}}\right)+\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}}-\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}(\mathrm{BW})_{\mathrm{ij}}$
- This is a generalized KL divergence that is minimum when $\mathbf{V}=\mathbf{B W}$
- Minimizing the KL divergence gives us another algorithm to learn \mathbf{B} and \mathbf{W}
- Other divergence forms can also be used

NMF: Minimizing Divergence

- Define a Divergence between data \mathbf{V} and approximation BW
- Divergence($\mathbf{V}, \mathbf{B W}$) is the total error in approximating all vectors in \mathbf{V} as $\mathbf{B W}$
- Must estimate non-negative \mathbf{B} and \mathbf{W} so that this error is minimized
- Divergence($\mathbf{V}, \mathbf{B W}$) can be defined in different ways
- L2: Divergence $=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}\left(\mathrm{V}_{\mathrm{ij}}-(\mathrm{BW})_{\mathrm{ij}}\right)^{2}$
- Minimizing the $L 2$ divergence gives us an algorithm to learn \mathbf{B} and \mathbf{W}
- KL: Divergence $(\mathbf{V}, \mathbf{B W})=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}} \log \left(\mathrm{V}_{\mathrm{ij}} /(\mathrm{BW})_{\mathrm{ij}}\right)+\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}}-\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}(\mathrm{BW})_{\mathrm{ij}}$
- This is a generalized KL divergence that is minimum when $\mathbf{V}=\mathbf{B W}$
- Minimizing the KL divergence gives us another algorithm to learn \mathbf{B} and \mathbf{W}
- Other divergence forms can also be used

NMF: Minimizing L_{2} Divergence

- Divergence(V, BW) is defined as
- $\mathrm{E}=\|\mathbf{V}-\mathbf{B W} \mid\|_{\mathrm{F}}{ }^{2}$
$\square \mathrm{E}=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}\left(\mathrm{V}_{\mathrm{ij}}-(\mathrm{BW})_{\mathrm{ij}}\right)^{2}$
- Iterative solution: Minimize E such that B and \mathbf{W} are strictly non-negative

NMF: Minimizing L_{2} Divergence

- Learning both B and W with non-negativity
- Divergence(V, BW) is defined as
- $\mathrm{E}=\|\mathbf{V}-\mathbf{B W}\|_{\mathrm{F}}{ }^{2}$

$$
V \approx B W
$$

- Iterative solution:
- $\mathbf{B}=[\mathbf{V P i n v (W)}]_{+}$
- $\mathbf{W}=[\operatorname{Pinv}(B) \mathrm{V}]_{+}$
- Subscript + indicates thresholding -ve values to 0

NMF: Minimizing Divergence

- Define a Divergence between data \mathbf{V} and approximation BW
- Divergence $(\mathbf{V}, \mathbf{B W})$ is the total error in approximating all vectors in \mathbf{V} as $\mathbf{B W}$
- Must estimate \mathbf{B} and \mathbf{W} so that this error is minimized
- Divergence(V, BW) can be defined in different ways
- L2: Divergence $=\Sigma_{i} \Sigma_{\mathrm{j}}\left(\mathrm{V}_{\mathrm{ij}}-(\mathrm{BW})_{\mathrm{ij}}\right)^{2}$
- Minimizing the L2 divergence givesucan algorithm to learn B and W
- KL: Divergence $(\mathbf{V}, \mathbf{B W})=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}} \log \left(\mathrm{V}_{\mathrm{ij}} /(\mathrm{BW})_{\mathrm{ij}}\right)+\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}}-\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}(\mathrm{BW})_{\mathrm{ij}}$
- This is a generalized KL divergence that is minimum when $\mathbf{V}=\mathbf{B W}$

Minimizing the KL divergence gives us another algorithm to learn \mathbf{B} and \mathbf{W}

- For many kinds of signals, e.g. sound, NMF-based representations work best when we minimize the KL divergence

NMF: Minimizing KL Divergence

- Divergence(V, BW) defined as
$\square \mathrm{E}=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}} \log \left(\mathrm{V}_{\mathrm{ij}} /(B W)_{\mathrm{ij}}\right)+\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{ij}}-\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}(\mathrm{BW})_{\mathrm{ij}}$
- Iterative update rules
- Number of iterative update rules have been proposed
- The most popular one is the multiplicative update rule..

NMF Estimation: Learning bases

- The algorithm to estimate \mathbf{B} and \mathbf{W} to minimize the KL divergence between V and BW:
- Initialize B and W (randomly)
- Iteratively update B and W using the following formulae

$$
B=B \otimes \frac{\left(\frac{V}{B W}\right) W^{T}}{1 W^{T}} \quad W=W \otimes \frac{B^{T}\left(\frac{V}{B W}\right)}{B^{T} 1}
$$

- Iterations continue until divergence converges
- In practice, continue for a fixed no. of iterations

Reiterating

$$
V_{D \times N} \approx B_{D \times K} W_{K \times N} \quad V_{L} \approx \sum_{k} w_{L, k} B_{k}
$$

- NMF learns the optimal set of basis vectors B_{k} to approximate the data in terms of the bases
- It also learns how to compose the data in terms of these bases
- Compositions can be inexact

Learning building blocks of sound

From Bach's Fugue in Gm

bases

Time \rightarrow

$\mathbf{V}=\mathbf{B W}$

- Each column of \mathbf{V} is one spectral vector
- Each column of \mathbf{B} is one building block/basis
- Each column of \mathbf{W} has the scaling factors for the bases to compose the corresponding column of \mathbf{V}
- All terms are non-negative
- Learn B (and W) by applying NMF to V

Learning Building Blocks

Speech Signal

bases

Basis-specific spectrograms

What about other data

- Faces
- Trained 49 multinomial components on 2500 faces - Each face unwrapped into a 361-dimensional vector
- Discovers parts of faces

There is no "compactness" constraint

- No explicit "compactness" constraint on bases
- The red lines would be perfect bases:
- Enclose all training data without error
- Algorithm can end up with these bases
- If no. of bases K >= dimensionality D, can get uninformative bases

- If $K<D$, we usually learn compact representations
- NMF becomes a dimensionality reducing representation
- Representing D-dimensional data in terms of K weights, where K < D

Representing Data using Known Bases

- If we already have bases B_{k} and are given a vector that must be expressed in terms of the bases: $V \approx \sum_{k} w_{k} B_{k}$
- Estimate weights as:
- Initialize weights
- Iteratively update them using

$$
W=W \otimes \frac{B^{T}\left(\frac{V}{B W}\right)}{B^{T} 1}
$$

What can we do knowing the building blocks

- Signal Representation
- Signal Separation
- Signal Completion
- Denoising
- Signal recovery
- Music Transcription
- Etc.

Signal Separation

- Can we separate mixed signals?

Undoing a Jigsaw Puzzle

- Given two distinct sets of building blocks, can we find which parts of a composition were composed from which blocks

Separating Sounds

- From example of A, learn blocks A (NMF)

Separating Sounds

- From example of A, learn blocks A (NMF)
- From example of B, learn B (NMF)

Separating Sounds

$\mathbf{V}=\mathbf{B} \boldsymbol{W}$
 $$
1
$$
 $$
\left[\begin{array}{ll} \mathbf{B}_{1} & \mathbf{B}_{\text {given }} \end{array}\right]
$$

- From mixture, separate out (NMF)
- Use known "bases" of both sources
- Estimate the weights with which they combine in the mixed signal

Separating Sounds

- Separated signals are estimated as the contributions of the source-specific bases to the mixed signal

Separating Sounds

- It is sometimes sufficient to know the bases for only one source
- The bases for the other can be estimated from the mixed signal itself

Separating Sounds

- "Raise my rent" by David Gilmour
- Background music "bases" learnt from 5-seconds of music-only segments within the song
- Lead guitar "bases" bases learnt from the rest of the song

- Norah Jones singing "Sunrise"
- Background music bases learnt from 5 seconds of music-only segments

Predicting Missing Data

■ Use the building blocks to fill in "holes"

Filling in

- Some frequency components are missing (left panel)
- We know the bases
- But not the mixture weights for any particular spectral frame
- We must "fill in" the holes in the spectrogram
- To obtain the one to the right

Learn building blocks

- Learn the building blocks from other examples of similar sounds
- E.g. music by same singer
- E.g. from undamaged regions of same recording

Predict data

- "Modify" bases to look like damaged spectra
- Remove appropriate spectral components
- Learn how to compose damaged data with modified bases
- Reconstruct missing regions with complete bases

Filling in : An example

- Madonna...
- Bases learned from other Madonna songs

A more fun example

-Reduced BW data

-Bases learned from this

-Bandwidth expanded version

A Natural Restriction

- For K-dimensional data, can learn no more than $K-1$ bases meaningufully
- At K bases, simply select the axes as bases
- The bases will represent all data exactly

Its an unnatural restriction

- For K-dimensional spectra, can learn no more than K-1 bases
- Nature does not respect the dimensionality of your spectrogram
- E.g. Music: There are tens of instruments
- Each can produce dozens of unique notes
- Amounting to a total of many thousands of notes
- Many more than the dimensionality of the spectrum
- E.g. images: a 1024 pixel image can show millions of recognizable pictures!
- Many more than the number of pixels in the image

Fixing the restriction: Updated model

- Can have a very large number of building blocks (bases)
- E.g. notes
- But any particular frame is composed of only a small subset of bases
- E.g. any single frame only has a small set of notes

The Modified Model

$$
\mathbf{V}=\mathbf{B W}
$$

- Modification 1:
- In any column of \mathbf{W}, only a small number of entries have nonzero value
- I.e. the columns of \mathbf{W} are sparse

$V=\mathbf{B} W \xrightarrow{\text { For one vector }}$

- These are sparse representations
- Modification 2:
- B may have more columns than rows
- These are called overcomplete representations
- Sparse representations need not be overcomplete, but the reverse will generally not provide useful decompositions

Imposing Sparsity

$$
\begin{gathered}
\mathbf{V}=\mathbf{B W} \\
E=\operatorname{Div}(\mathbf{V}, \mathbf{B W}) \\
Q=\operatorname{Div}(\mathbf{V}, \mathbf{B W})+\lambda|\mathbf{W}|_{0}
\end{gathered}
$$

- Minimize a modified objective function
- Combines divergence and ell-0 norm of \mathbf{W}
- The number of non-zero elements in W
- Minimize Q instead of E
- Simultaneously minimizes both divergence and number of active bases at any time

Imposing Sparsity

$$
\begin{gathered}
\mathbf{V}=\mathbf{B W} \\
Q=\operatorname{Div}(\mathbf{V}, \mathbf{B W})+\lambda|\mathbf{W}|_{e} \\
Q=\operatorname{Div}(\mathbf{V}, \mathbf{B W})+\lambda|\mathbf{W}|_{1}
\end{gathered}
$$

- Minimize the ell-0 norm is hard
- Combinatorial optimization
- Minimize ell-1 norm instead
- The sum of all the entries in W
- Relaxation
- Is equivalent to minimize ell-0
- We cover this equivalence later
- Will also result in sparse solutions

Update Rules

- Modified Iterative solutions
- In gradient based solutions, gradient w.r.t any W term now includes λ
- I.e. if $\mathrm{d} Q / \mathrm{d} W=\mathrm{d} E / \mathrm{d} W+\lambda$
- For KL Divergence, results in following modified update rules

$$
B=B \otimes \frac{\left(\frac{V}{B W}\right) W^{T}}{1 W^{T}} \quad W=W \otimes \frac{B^{T}\left(\frac{V}{B W}\right)}{B^{T} 1+\lambda}
$$

- Increasing λ makes the weights increasingly sparse

Update Rules

- Modified Iterative solutions
- In gradient based solutions, gradient w.r.t any W term now includes λ
- I.e. if $\mathrm{d} Q / \mathrm{d} W=\mathrm{d} E / \mathrm{d} W+\lambda$
- Both B and W can be made sparse

$$
B=B \otimes \frac{\left(\frac{V}{B W}\right) W^{T}}{1 W^{T}+\lambda_{b}} \quad W=W \otimes \frac{B^{T}\left(\frac{V}{B W}\right)}{B^{T} 1+\lambda_{w}}
$$

What about Overcompleteness?

- Use the same solutions
- Simply make B wide!
- W must be made sparse

$$
B=B \otimes \frac{\left(\frac{V}{B W}\right) W^{T}}{1 W^{T}} \quad W=W \otimes \frac{B^{T}\left(\frac{V}{B W}\right)}{B^{T} 1+\lambda_{w}}
$$

Sparsity: What do we learn

- Without sparsity: The model has an implicit limit: can learn no more than D-1 useful bases
- If $\mathrm{K}>=\mathrm{D}$, we can get uninformative bases
- Sparsity: The bases are "pulled towards" the data
- Representing the distribution of the data much more effectively

Sparsity: What do we learn

Each dot represents a location where a vector "pierces" the simplex

- Top and middle panel: Compact (non-sparse) estimator
- As the number of bases increases, bases migrate towards corners of the orthant
- Bottom panel: Sparse estimator
- Cone formed by bases shrinks to fit the data

The Vowels and Music Examples

- Left panel, Compact learning: most bases have significant energy in all frames
- Right panel, Sparse learning: Fewer bases active within any frame
- Decomposition into basic sounds is cleaner

11755/18797

Sparse Overcomplete Bases: Separation

- 3000 bases for each of the speakers
- The speaker-to-speaker ratio typically doubles (in dB) w.r.t compact bases

Regular bases

Sparse bases

Sparseness: what do we learn

- As solutions get more sparse, bases become more informative
- In the limit, each basis is a complete face by itself.
- Mixture weights simply select face

Sparse bases

Dense bases
"Dense" weights
(d)

Sparse weights

Filling in missing information

A. Occluded Faces

B. Reconatuctions

C. Original Teat lmagea

- 1000 bases trained from 2000 faces

Number of Basis Components

- SNR of reconstruction from overcomplete basis set more than 10dB better than reconstruction from corresponding "compact" (regular) basis set

Sparse decomposition for

- Given a number of examples of handwritten instances of numbers " 2 " and " 3 " - Find bases for " 2 " and " 3 "
- For any test instance, attempt to construct it using the bases for 2 and (separately) the bases for 3
- The set whose bases result in the better reconstruction is selected
- Accuracy improves with increasing sparsity

Extending the model

- In reality our building blocks are not spectra They are spectral patterns!
- Which change with time

Convolutive NMF

- The building blocks of sound are spectral patches!

Convolutive NMF

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

Convolutive NMF

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

Convolutive NMF

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

Convolutive NMF

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

Convolutive NMF

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

In Math

$$
\begin{gathered}
S(t)=\sum_{i} w_{i}(0) B_{i}(t)+\sum_{i} w_{i}(1) B_{i}(t-1)+\sum_{i} w_{i}(2) B_{i}(t-2)+\ldots=\sum_{i} \sum_{\tau} w_{i}(\tau) B_{i}(t-\tau) \\
S(t)=\sum_{i} B_{i}(t) \otimes w_{i}(t)
\end{gathered}
$$

- Each spectral frame has contributions from several previous shifts

An Alternate Repesentation

- $\mathbf{B}(\mathrm{t})$ is a matrix composed of the t -th columns of all bases
- The i-th column represents the i-th basis
- W is a matrix whose i-th row is sequence of weights applied to the i-th basis
- The superscript $t \rightarrow$ represents a right shift by t

Convolutive NMF

$$
\begin{gathered}
\hat{\mathbf{S}}=\sum_{\tau} \mathbf{B}(\tau) \overrightarrow{\mathbf{W}} \\
\mathbf{B}(t)=\mathbf{B}(t) \otimes \frac{\frac{\mathbf{S}}{\hat{\mathbf{S}}} \stackrel{t}{\mathbf{W}}^{T}}{\mathbf{1} \cdot \stackrel{\mathbf{W}}{ }^{T}} \quad \mathbf{W}=\frac{1}{T} \sum_{t} \mathbf{W} \otimes \frac{\mathbf{B}(t)\left[\frac{t}{\hat{\mathbf{S}}}\right]}{\mathbf{B}(t)^{T} \mathbf{1}}
\end{gathered}
$$

- Simple learning rules for B and W
- Identical rules to estimate \mathbf{W} given \mathbf{B}
- Simply don't update B
- Sparsity can be imposed on \mathbf{W} as before if desired

The Convolutive Model

- An Example: Two distinct sounds occurring with different repetition rates within a signal
- Each sound has a time-varying spectral structure INPUT SPECTROGRAM

Contribution of individual bases to the recording

Example applications: Dereverberation

- From "Adrak ke Panje" by Babban Khan
- Treat the reverberated spectrogram as a composition of many shifted copies of a "clean" spectrogram
- "Shift-invariant" analysis
- NMF to estimate clean spectrogram

Pitch Tracking

- Left: A segment of a song
- Right: Smoke on the water
- "Impulse" distribution captures the "melody"!

Pitch Tracking

Impulse distribution 1

Impulse distribution 2

- Simultaneous pitch tracking on multiple instruments
- Can be used to find the velocity of cars on the highway!!
- "Pitch track" of sound tracks Doppler shift (and velocity)

Example: 2-D shift invariance

- Sparse decomposition employed in this example
- Otherwise locations of faces (bottom right panel) are not precisely determined

Example: 2-D shift invarince

- The original figure has multiple handwritten renderings of three characters
- In different colours
- The algorithm learns the three characters and identifies their locations in the figure

Input data

Example: Transform Invariance

- Top left: Original figure
- Bottom left - the two bases discovered
- Bottom right -
- Left panel, positions of " a "
- Right panel, positions of "l"
- Top right: estimated distribution underlying original figure

Example: Higher dimensional data

- Video example

Deserption of Input.

Kemel 1

Kemel 3

Lessons learned

- Linear decomposition when constrained with semantic constraints e.g. non-negativity can result in semantically meaningful bases
- NMF: Useful compositional model of data
- Really effective when the data obey compositional rules..

