Machine Learning for Signal Processing Non-negative Matrix Factorization

Instructor: Bhiksha Raj

With examples and slides from Paris Smaragdis

11755/18797

A Quick Recap

Problem: Given a collection of data X, find a set of "bases" B, such that each vector x_i can be expressed as a weighted combination of the bases

A Quick Recap: Subproblem 1

- Problem 1: Finding bases
 - Finding typical faces
 - Finding "notes" like structures

A Quick Recap: Subproblem 2

- Problem 2: Expressing instances in terms of these bases
 - Finding weights of typical faces
 - Finding weights of notes

A Quick Recap: WHY? 1.

- Better Representation: The weights {w_{ij}}
 represent the vectors in a meaningful way
 - Better suited to semantically motivated operation
 - Better suited for specific statistical models

A Quick Recap: WHY? 2.

- Dimensionality Reduction: The number of Bases may be fewer than the dimensions of the vectors
 - Represent each Vector using fewer numbers
 - Expresses each vector within a subspace
 - Loses information / energy
 - **Objective:** Lose *least* energy

A Quick Recap: WHY? 3.

- **Denoising:** Reduced dimensional representation eliminates dimensions
- Can often eliminate *noise* dimensions
 - Signal-to-Noise ratio worst in dimensions where the signal has least energy/information
 - Removing them eliminates noise

A Quick Recap: HOW? PCA

• Find Eigenvectors of Correlation matrix

- These are our "eigen" bases
- Capture information compactly and satisfy most of our requirements
- **MOST**??

- What is a negative face?
 - And what does it mean to subtract one face from the other?
- Problem more obvious when applied to music
 - You would like bases to be notes
 - Weights to be scores
 - What is a negative note? What is a negative score?

Summary

- Decorrelation and Independence are statistically meaningful operations
- But may not be *physically* meaningful
- Next: A physically meaningful constraint – Non-negativity

The Engineer and the Musician

Once upon a time a rich potentate discovered a previously unknown recording of a beautiful piece of music. Unfortunately it was badly damaged.

He greatly wanted to find out what it would sound like if it were not.

So he hired an engineer and a musician to solve the problem..

The Engineer and the Musician

The engineer worked for many years. He spent much money and published many papers.

Finally he had a somewhat scratchy restoration of the music..

The musician listened to the music carefully for a day, transcribed it, broke out his trusty keyboard and replicated the music.

Who do you think won the princess?

The search for building blocks

What composes an audio signal?
 E.g. notes compose music

The properties of building blocks

Constructive composition

A second note does not diminish a first note

- Linearity of composition
 - Notes do not distort one another

Looking for building blocks in sound

Can we compute the building blocks from sound itself
 Can we learn the notes from the music?

A property of power spectra

- When two or more independent signals are added, their power spectra (approximately) add
 - Their power spectrograms add as well

- The building blocks of sound are (power) spectral structures
 - E.g. notes build music
 - The spectra are entirely non-negative
- The complete sound is composed by *constructive* combination of the building blocks scaled to different non-negative gains
 - E.g. notes are played with varying energies through the music
 - The sound from the individual notes combines to form the final spectrogram
- The final spectrogram is also non-negative

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
 - Individual frames are composed by activating the building blocks to different degrees
 - E.g. notes are strummed with different energies to compose the frame

Composing the Sound

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
 - Individual frames are composed by activating the building blocks to different degrees
 - E.g. notes are strummed with different energies to compose the frame

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
 - Individual frames are composed by activating the building blocks to different degrees
 - E.g. notes are strummed with different energies to compose the frame

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
 - Individual frames are composed by activating the building blocks to different degrees
 - E.g. notes are strummed with different energies to compose the frame

- Each frame of sound is composed by activating each spectral building block by a frame-specific amount
 - Individual frames are composed by activating the building blocks to different degrees
 - E.g. notes are strummed with different energies to compose the frame

The Problem of Learning

- Given only the final sound, determine its building blocks
 - From only listening to music, learn all about musical notes!

In Math

- Each frame is a non-negative power spectral vector
- Each note is a non-negative power spectral vector
- Each frame is a non-negative combination of the notes

Non-negative matrix factorization: Basics

- NMF is used in a *compositional* model
- Data are assumed to be non-negative
 - E.g. power spectra
- Every data vector is explained as a purely constructive linear composition of a set of bases

$$\Box V = \Sigma_i W_i B_i$$

- The bases B_i are in the same domain as the data
 - I.e. they are power spectra
- Constructive composition: no subtraction allowed
 - Weights w_i must all be non-negative
 - All components of bases *B*_i must also be non-negative

Understanding non-negative combination

- *Non-negative* combination: *a* and *b* are strictly non-negative
- Implies V must lie inside the cone of B₁ and B₂
 - V can be composed without reversing the directions of B_1 and B_2

Understanding non-negative combination

- If V lies outside the cone, at least one B₁ or B₂ must be reversed in direction to compose it
 - At least one of a and b must be negative

Learning building blocks: Restating the problem

- Given a collection of spectral vectors (from the composed sound) ...
- Find a set of "basic" sound spectral vectors such that ...
- All of the spectral vectors can be composed through constructive addition of the bases

Learning building blocks: Restating the problem

V = BW

- Each column of V is one "composed" spectral vector
- Each column of **B** is one building block
 - One spectral basis
- Each column of W has the scaling factors for the building blocks to compose the corresponding column of V
- All columns of **V** are non-negative
- All entries of B and W must also be nonnegative

Interpreting non-negative factorization

- Bases are non-negative, lie in the positive quadrant
- Blue lines represent bases, blue dots represent vectors
- Any vector that lies between the bases (highlighted region) can be expressed as a non-negative combination of bases
 - E.g. the black dot

Interpreting non-negative factorization

- Vectors outside the shaded enclosed area can only be expressed as a linear combination of the bases by reversing a basis
 - □ I.e. assigning a negative weight to the basis
 - E.g. the red dot
 - Alpha and beta are scaling factors for bases
 - Beta weighting is negative

Interpreting non-negative factorization

- If we approximate the red dot as a non-negative combination of the bases, the approximation will lie in the shaded region
 - On or close to the boundary
 - The approximation has error

The NMF representation

- The representation characterizes all data as lying within a compact convex region (a cone)
 - "Compact" \rightarrow enclosing only a small fraction of the entire space
 - The more compact the enclosed region, the more it localizes the data within it
 - Represents the boundaries of the distribution of the data better
 - Conventional statistical models represent the mode of the distribution
- The bases must be chosen to
 - Enclose the data as compactly as possible
 - And also enclose as much of the data as possible
 - Data that are not enclosed are not represented correctly

Data need not be non-negative

- The general principle of enclosing data applies to any one-sided data
 - Whose distribution does not cross the origin.
- The only part of the model that must be non-negative are the weights.
- Examples
 - Blue bases enclose blue region in negative quadrant
 - Red bases enclose red region in positive-negative quadrant
- Notions of compactness and enclosure still apply
 - This is a generalization of NMF
 - We wont discuss it further

NMF: Learning Bases

- Given a collection of data vectors (blue dots)
- Goal: find a set of bases (blue arrows) such that they enclose the data.
- Ideally, they must simultaneously enclose the smallest volume
 - This "enclosure" constraint is usually not explicitly imposed in the standard NMF formulation
NMF: Learning Bases

- Express every training vector as non-negative combination of bases
 V = Σ_i w_i B_i
- In linear algebraic notation, represent:
 - Set of all training vectors as a data matrix V
 - A DxN matrix, D = dimensionality of vectors, N = No. of vectors
 - All basis vectors as a matrix B
 - A DxK matrix , K is the number of bases
 - The K weights for any vector V as a Kx1 column vector W
 - The weight vectors for all N training data vectors as a matrix W
 - KxN matrix
- Ideally V = BW
 - □ All components of V, B and W are non-negative

NMF: Learning Bases

- V = BW will only hold true if all training vectors in V lie inside the region enclosed by the bases
- Learning bases is an iterative algorithm
- Intermediate estimates of B do not satisfy V = BW
- Algorithm updates B until V = BW is satisfied as closely as possible

NMF: Minimizing Divergence

- Define a Divergence between data V and approximation BW
 - Divergence(V, BW) is the total error in approximating all vectors in V as BW
 - Must estimate non-negative B and W so that this error is minimized
- Divergence(V, BW) can be defined in different ways
 - □ L2: Divergence = $\Sigma_i \Sigma_j (V_{ij} (BW)_{ij})^2$
 - Minimizing the L2 divergence gives us an algorithm to learn B and W
 - □ KL: Divergence(**V**,**BW**) = $\Sigma_i \Sigma_j V_{ij} \log(V_{ij} / (BW)_{ij}) + \Sigma_i \Sigma_j V_{ij} \Sigma_i \Sigma_j (BW)_{ij}$
 - This is a generalized KL divergence that is minimum when V = BW
 - Minimizing the KL divergence gives us another algorithm to learn B and W
- Other divergence forms can also be used

NMF: Minimizing Divergence

- Define a Divergence between data V and approximation BW
 - Divergence(V, BW) is the total error in approximating all vectors in V as BW
 - Must estimate non-negative B and W so that this error is minimized

Divergence(V, BW) can be defined in different ways

- □ L2: Divergence = $\Sigma_i \Sigma_j (V_{ij} (BW)_{ij})^2$
 - Minimizing the L2 divergence gives us an algorithm to learn B and W
- □ KL: Divergence(**V**,**BW**) = $\Sigma_i \Sigma_j V_{ij} \log(V_{ij} / (BW)_{ij}) + \Sigma_i \Sigma_j V_{ij} \Sigma_i \Sigma_j (BW)_{ij}$
 - This is a generalized KL divergence that is minimum when V = BW
 - Minimizing the KL divergence gives us another algorithm to learn B and W
- Other divergence forms can also be used

NMF: Minimizing L₂ Divergence

Divergence(V, BW) is defined as

- **E** = $||V BW||_{F}^{2}$
- $\Box E = \Sigma_i \Sigma_j (V_{ij} (BW)_{ij})^2$

Iterative solution: Minimize E such that B and
 W are strictly non-negative

NMF: Minimizing L₂ Divergence

- Learning both B and W with non-negativity
- Divergence(V, BW) is defined as

E =
$$||V - BW||_{F}^{2}$$

$V \approx BW$

- Iterative solution:
 - B = [V Pinv(W)]₊
 - W = [Pinv(B) V]₊
 - Subscript + indicates thresholding –ve values to 0

NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW

- Divergence(V, BW) is the total error in approximating all vectors in V as BW
- Must estimate B and W so that this error is minimized
- Divergence(V, BW) can be defined in different ways
 - **L2:** Divergence = $\Sigma_i \Sigma_j (V_{ij} (BW)_{ij})^2$
 - Minimizing the L2 divergence gives us an algorithm to learn B and W

KL: Divergence(**V**,**BW**) = $\Sigma_i \Sigma_j V_{ij} \log(V_{ij} / (BW)_{ij}) + \Sigma_i \Sigma_j V_{ij} - \Sigma_i \Sigma_j (BW)_{ij}$

This is a *generalized* KL divergence that is minimum when **V** = **BW** Minimizing the KL divergence gives us another algorithm to learn **B** and **W**

 For many kinds of signals, e.g. sound, NMF-based representations work best when we minimize the KL divergence

NMF: Minimizing KL Divergence

Divergence(V, BW) defined as

 $\Box E = \Sigma_i \Sigma_j V_{ij} \log(V_{ij} / (BW)_{ij}) + \Sigma_i \Sigma_j V_{ij} - \Sigma_i \Sigma_j (BW)_{ij}$

- Iterative update rules
- Number of iterative update rules have been proposed
- The most popular one is the multiplicative update rule..

NMF Estimation: Learning bases

- The algorithm to estimate B and W to minimize the KL divergence between V and BW:
- Initialize B and W (randomly)
- Iteratively update B and W using the following formulae

$$B = B \otimes \frac{\left(\frac{V}{BW}\right)W^{T}}{1W^{T}} \qquad W = W \otimes \frac{B^{T}\left(\frac{V}{BW}\right)}{B^{T}1}$$

- Iterations continue until divergence converges
 - □ In practice, continue for a fixed no. of iterations

Reiterating

 $V_{D\times N} \approx B_{D\times K} W_{K\times N}$

$$V_L \approx \sum_k w_{L,k} B_k$$

- NMF learns the optimal set of basis vectors B_k to approximate the data in terms of the bases
- It also learns how to compose the data in terms of these bases
 - Compositions can be inexact

The columns of **B** are the bases The columns of **V** are the data

Learning building blocks of sound

From Bach's Fugue in Gm

 $\mathbf{V} = \mathbf{B}\mathbf{W}$

- Each column of **V** is one spectral vector
- Each column of **B** is one building block/basis
- Each column of W has the scaling factors for the bases to compose the corresponding column of V
- All terms are non-negative
- Learn B (and W) by applying NMF to V

Time \rightarrow

Learning Building Blocks

Basis-specific spectrograms

What about other data

Faces

- Trained 49 multinomial components on 2500 faces
 - Each face unwrapped into a 361-dimensional vector
- Discovers parts of faces

There is no "compactness" constraint

- No explicit "compactness" constraint on bases
- The red lines would be perfect bases:
 - Enclose all training data without B₁ error
 - Algorithm can end up with these bases
 - If no. of bases K >= dimensionality_
 D, can get uninformative bases

- If K < D, we usually learn compact representations
 - NMF becomes a dimensionality reducing representation
 - Representing D-dimensional data in terms of K weights, where K < D

Representing Data using Known Bases

- If we already have bases B_k and are given a vector that must be expressed in terms of the bases: $V \approx \sum_k w_k B_k$
- Estimate weights as:
 - Initialize weights
 - Iteratively update them using

$$W = W \otimes \frac{B^T \left(\frac{V}{BW}\right)}{B^T 1}$$

What can we do knowing the building blocks

- Signal Representation
- Signal Separation
- Signal Completion
- Denoising
- Signal recovery
- Music Transcription
- Etc.

Signal Separation

Can we separate mixed signals?

Undoing a Jigsaw Puzzle

Given two distinct sets of building blocks, can we find which parts of a composition were composed from which blocks

From example of A, learn blocks A (NMF)

- From example of A, learn blocks A (NMF)
- From example of B, learn B (NMF)

- Use known "bases" of both sources
- Estimate the weights with which they combine in the mixed signal

 Separated signals are estimated as the contributions of the source-specific bases to the mixed signal

- It is sometimes sufficient to know the bases for only one source
 - The bases for the other can be estimated from the mixed signal itself

- "Raise my rent" by David Gilmour
- Background music "bases" learnt from 5-seconds of music-only segments within the song
- Lead guitar "bases" bases learnt from the rest of the song

- Norah Jones singing "Sunrise"
- Background music bases learnt from 5 seconds of music-only segments

Predicting Missing Data

Use the building blocks to fill in "holes"

Filling in

- Some frequency components are missing (left panel)
- We know the bases
 - But not the mixture weights for any particular spectral frame
- We must "fill in" the holes in the spectrogram
 - To obtain the one to the right

Learn building blocks

- Learn the building blocks from other examples of similar sounds
 - E.g. music by same singer
 - □ E.g. from undamaged regions of same recording

Predict data

- "Modify" bases to look like damaged spectra
 - Remove appropriate spectral components
- Learn how to compose damaged data with modified bases
- Reconstruct missing regions with complete bases

Filling in : An example

Madonna...

Bases learned from other Madonna songs

A more fun example

•Reduced BW data

•Bases learned from this

•Bandwidth expanded version

A Natural Restriction

- For K-dimensional data, can learn no more than
 K-1 bases meaningufully
 - At K bases, simply select the axes as bases
 - □ The bases will represent *all* data exactly

Its an unnatural restriction

- For K-dimensional spectra, can learn no more than K-1 bases
- Nature does not respect the dimensionality of your spectrogram
- E.g. Music: There are tens of instruments
 - Each can produce dozens of unique notes
 - Amounting to a total of many thousands of notes
 - Many more than the dimensionality of the spectrum
- E.g. images: a 1024 pixel image can show millions of recognizable pictures!
 - Many more than the number of pixels in the image

Fixing the restriction: Updated model

Can have a very large number of building blocks (bases)

E.g. notes

- But any *particular* frame is composed of only a small subset of bases
 - E.g. any single frame only has a small set of notes

The Modified Model

V = BW V = BW For one vector

Modification 1:

- In any column of W, only a small number of entries have nonzero value
- □ I.e. the columns of **W** are *sparse*
- □ These are *sparse* representations

Modification 2:

- **B** may have more columns than rows
- These are called overcomplete representations
- Sparse representations need not be overcomplete, but the reverse will generally not provide useful decompositions

Imposing Sparsity

$$\mathbf{V} = \mathbf{B}\mathbf{W}$$
$$E = Div(\mathbf{V}, \mathbf{B}\mathbf{W})$$
$$Q = Div(\mathbf{V}, \mathbf{B}\mathbf{W}) + \lambda |\mathbf{W}|_{0}$$

- Minimize a modified objective function
- Combines divergence and ell-0 norm of W
 The number of non-zero elements in W
- Minimize Q instead of E
 - Simultaneously minimizes both divergence and number of active bases at any time

Imposing Sparsity

$$\mathbf{V} = \mathbf{B}\mathbf{W}$$
$$Q = Div(\mathbf{V}, \mathbf{B}\mathbf{W}) + \lambda |\mathbf{W}|_{0}$$
$$Q = Div(\mathbf{V}, \mathbf{B}\mathbf{W}) + \lambda |\mathbf{W}|_{1}$$

- Minimize the ell-0 norm is hard
 - Combinatorial optimization
- Minimize ell-1 norm instead
 - The sum of all the entries in W
 - Relaxation
- Is equivalent to minimize ell-0
 - We cover this equivalence later
- Will also result in sparse solutions
Update Rules

- Modified Iterative solutions
 - $\hfill \hfill \hfill$
 - I.e. if $dQ/dW = dE/dW + \lambda$
- For KL Divergence, results in following modified update rules

$$B = B \otimes \frac{\left(\frac{V}{BW}\right)W^{T}}{1W^{T}} \qquad W = W \otimes \frac{B^{T}\left(\frac{V}{BW}\right)}{B^{T}1 + \lambda}$$

Increasing λ makes the weights increasingly sparse _

Update Rules

- Modified Iterative solutions
 - In gradient based solutions, gradient w.r.t any W term now includes λ
 - I.e. if $dQ/dW = dE/dW + \lambda$
- Both **B** and **W** can be made sparse

$$B = B \otimes \frac{\left(\frac{V}{BW}\right)W^{T}}{1W^{T} + \lambda_{b}}$$

$$W = W \otimes \frac{B^T \left(\frac{V}{BW}\right)}{B^T 1 + \lambda_w}$$

What about Overcompleteness?

- Use the same solutions
- Simply make B wide!
 - **W** must be made sparse

$$B = B \otimes \frac{\left(\frac{V}{BW}\right)W^{T}}{1W^{T}}$$

$$W = W \otimes \frac{B^T \left(\frac{V}{BW}\right)}{B^T 1 + \lambda_w}$$

Sparsity: What do we learn

 Without sparsity: The model has an implicit limit: can learn no more than D-1 useful bases

• If $K \ge D$, we can get uninformative bases

- Sparsity: The bases are "pulled towards" the data
 - Representing the distribution of the data much more effectively

Sparsity: What do we learn

- Top and middle panel: Compact (non-sparse) estimator
 - As the number of bases increases, bases migrate towards corners of the orthant
- Bottom panel: Sparse estimator
 - Cone formed by bases shrinks to fit the data

The Vowels and Music Examples

- Left panel, Compact learning: most bases have significant energy in all frames
- Right panel, Sparse learning: Fewer bases active within any frame
 - Decomposition into basic sounds is cleaner

11755/18797

Sparse Overcomplete Bases: Separation

- 3000 bases for each of the speakers
 - The speaker-to-speaker ratio typically doubles (in dB) w.r.t compact bases

Sparseness: what do we learn

- As solutions get more sparse, bases become more informative
 - □ In the limit, each basis is a complete face by itself.
 - Mixture weights simply select face

"Dense" weights

Filling in missing information

A. Occluded Faces

B. Reconstructions

C. Original Test Images

- 19x19 pixel images (361 pixels)
- 1000 bases trained from 2000 faces
- SNR of reconstruction from overcomplete basis set more than 10dB better than reconstruction from corresponding "compact" (regular) basis set

Sparse decomposition for

- Given a number of examples of handwritten instances of numbers "2" and "3"
 - □ Find bases for "2" and "3"
- For any test instance, attempt to construct it using the bases for 2 and (separately) the bases for 3
- The set whose bases result in the better reconstruction is selected
- Accuracy improves with increasing sparsity

Extending the model

- In reality our building blocks are not spectra
- They are spectral patterns!
 - Which change with time

The building blocks of sound are spectral patches!

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

- The building blocks of sound are spectral patches!
- At each time, they combine to compose a patch starting from that time
- Overlapping patches add

In Math

 Each spectral frame has contributions from several previous shifts

An Alternate Repesentation

- **B**(t) is a matrix composed of the t-th columns of all bases
 - The *i*-th column represents the *i*-th basis
- W is a matrix whose *i*-th row is sequence of weights applied to the *i*-th basis
 - The superscript $t \rightarrow$ represents a right shift by t

$$\hat{\mathbf{S}} = \sum_{\tau} \mathbf{B}(\tau) \mathbf{W}$$
$$\mathbf{B}(t) = \mathbf{B}(t) \otimes \frac{\hat{\mathbf{S}}}{1.\mathbf{W}^{T}} \qquad \mathbf{W} = \frac{1}{T} \sum_{t} \mathbf{W} \otimes \frac{\mathbf{B}(t) \begin{bmatrix} \mathbf{S} \\ \mathbf{S} \end{bmatrix}}{\mathbf{B}(t)^{T} \mathbf{1}}$$

- Simple learning rules for B and W
- Identical rules to estimate W given B
 - Simply don't update B
- Sparsity can be imposed on **W** as before if desired

The Convolutive Model

- An Example: Two distinct sounds occurring with different repetition rates within a signal
 - Each sound has a time-varying spectral structure INPUT SPECTROGRAM

Discovered "patch" bases

Contribution of individual bases to the recording

Example applications: Dereverberation

- From "Adrak ke Panje" by Babban Khan
- Treat the reverberated spectrogram as a composition of many shifted copies of a "clean" spectrogram
 - "Shift-invariant" analysis
- NMF to estimate clean spectrogram

Pitch Tracking

- Left: A segment of a song
- Right: Smoke on the water
 - "Impulse" distribution captures the "melody"!

Pitch Tracking

- Simultaneous pitch tracking on multiple instruments
- Can be used to find the velocity of cars on the highway!!
 - "Pitch track" of sound tracks Doppler shift (and velocity)

Example: 2-D shift invariance

- Sparse decomposition employed in this example
 - Otherwise locations of faces (bottom right panel) are not precisely determined $^{11755/18797}_{11755/18797}$

Example: 2-D shift invarince

- The original figure has multiple handwritten renderings of three characters
 In different colours
- The algorithm learns the three characters and identifies their locations in the figure

Example: Transform Invariance

- Top left: Original figure
- Bottom left the two bases discovered
- Bottom right
 - Left panel, positions of "a"
 - □ Right panel, positions of "l"
- Top right: estimated distribution underlying original figure

Example: Higher dimensional data

Lessons learned

- Linear decomposition when constrained with semantic constraints e.g. non-negativity can result in semantically meaningful bases
- NMF: Useful compositional model of data
- Really effective when the data obey compositional rules..