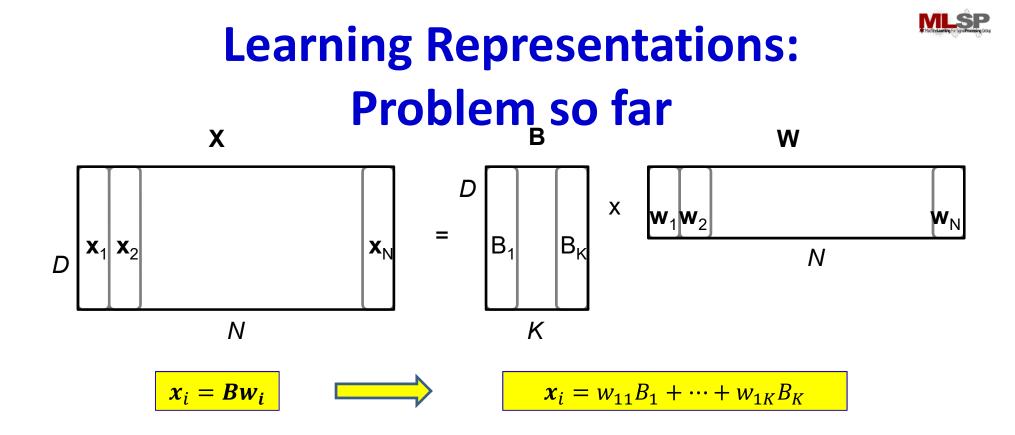


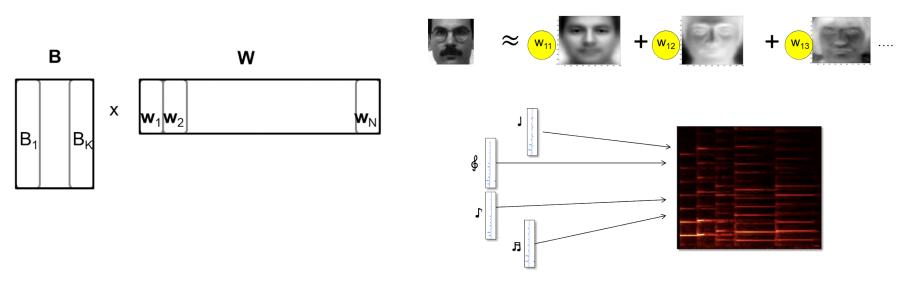
Machine Learning for Signal Processing Quantization and Clustering

Bhiksha Raj



Problem: Given a collection of data X, find a set of "bases" B, such that each vector x_i can be expressed as a weighted combination of the bases

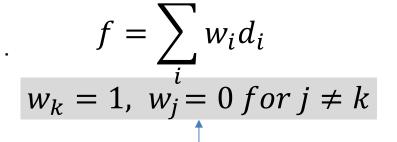
Why is this important?



- With the right set of bases, the weights represent the data most effectively
 - We can now use the weights to represent the data
 - E.g. with notes as bases, the weights would be the score
- If the bases are agreed upon, we can also *communicate* the information about the data most efficiently
 - Just communicate the weights
 - E.g. enough to store eigen face weights to reconstruct face
 - E.g. just reading the score is sufficient for anyone to recreate music

What is the most accurate way to represent data

D



Selecting the kth face in the collection

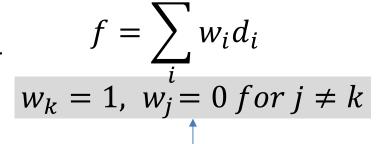
- If, instead of bases, we had a *dictionary* of all possible data
 - A matrix that included every possible data vector as a column
 - And the weights vector simply selected the correct data instance
 - I.e. w was one-sparse vector

$$|w|_0 = 1$$

(actually a one-hot vector because the one non-zero entry of w = 1, i.e. $\sum_i w_i = 1$)

What is the most accurate way to represent data

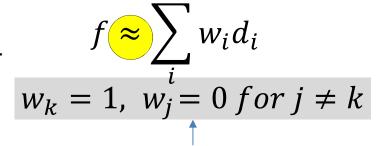
D



- If, instead of bases, we had a *dictionary* of all possible data
 - A matrix that included every possible data vector as a column
 - And the weights vector simply selected the correct data instance
- **Problem:** Infeasible to construct such a dictionary!
 - Will require infinite entries
 - And our w vector too will require infinite bits to represent
 - Alternately, will require storing the entire training data
 - And will not be useful to represent data outside the training set

Approximate representation with a dictionary

D

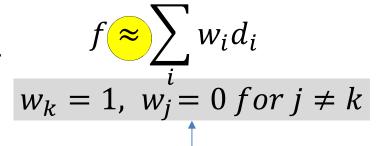


- **Problem:** Infeasible to construct a perfect dictionary
 - Will require too many (potentially infinite) entries
- **Solution:** Can we instead construct a smaller *finite* dictionary such that all data can be approximated well by one of the entries in the dictionary?
 - E.g. "The guy looks a lot like the 7^{th} face in the dictionary"
 - E.g. The vector x looks a lot like the d_i , the i-th entry in the dictionary.
- Questions:
 - What do we mean by "looks a lot like"
 - How do we construct the dictionary?

Approximate representation with a dictionary

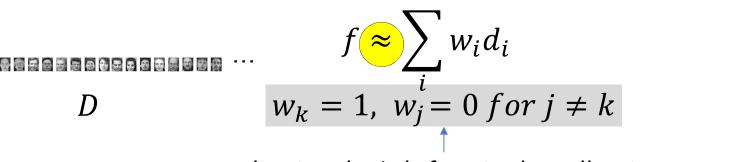
9 9 5 0 5 5 6 6 5 6 5 6 5 5 6 5 6 6 6 6 6

D



- **Problem:** Infeasible to construct a perfect dictionary
 - Will require too many (potentially infinite) entries
- **Solution:** Can we instead construct a smaller *finite* dictionary such that all data can be approximated well by one of the entries in the dictionary?
 - E.g. "The guy looks a lot like the 7^{th} face in the dictionary"
 - E.g. The vector x looks a lot like the d_i , the i-th entry in the dictionary.
- Questions:
 - What do we mean by "looks a lot like"
 - How do we construct the dictionary?

Quantifying the error



Selecting the kth face in the collection

- Different error metrics will result in different solutions
- Lets generically represent the error as div()

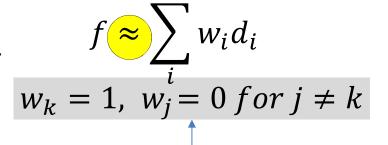
$$\hat{f} = D\boldsymbol{w}, \qquad |\boldsymbol{w}|_0 = 1, \sum_i w_i = 1$$
$$Error(f) = div(f, \hat{f})$$

• A common choice is the L2 error

$$Error(f) = |f - \hat{f}|^2$$

Approximate representation with a dictionary

D



- **Problem:** Infeasible to construct a perfect dictionary
 - Will require too many (potentially infinite) entries
- **Solution:** Can we instead construct a smaller *finite* dictionary such that all data can be approximated well by one of the entries in the dictionary?
 - E.g. "The guy looks a lot like the 7th face in the dictionary"
 - E.g. The vector x looks a lot like the d_i , the i-th entry in the dictionary.
- Questions:
 - What do we mean by "looks a lot like"
 - How do we construct the dictionary?

10

Learning the Dictionary

- $V = [V_1, V_2, V_3, ...]$ are the data for which the dictionary is being learned
- $D = [d_1, d_2, ..., d_K]$ is the matrix of dictionary vectors
- $W = [w_1, w_2, w_3, ...]$ is a set of *one-hot* vectors
- Learning: Learn **D** and **W** to minimize total error on **V**

$$\widehat{D}, \widehat{W} = \underset{D,W}{\operatorname{argmin}} \operatorname{div}(V, DW) = \underset{D,W}{\operatorname{argmin}} \sum_{i} \operatorname{div}(V_i, Dw_i),$$

s.t.w_i = one hot

• If we're only interested in learning the dictionary

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \min_{\boldsymbol{W}} \sum_{i} div(V_i, \boldsymbol{D} w_i), \quad s.t.w_i = one \ hot$$

Learning the Dictionary

•
$$\widehat{D} = \underset{D}{\operatorname{argmin}} \min_{W} \sum_{i} div(V_{i}, Dw_{i})$$

$$= \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} \underset{w_{i}}{\min} div(V_{i}, \boldsymbol{D}w_{i})$$

 Generally does not have a closed form solution, but can solved with the following iteration that provably reduces error in each step

$$w_i = \underset{w}{\operatorname{argmin}} div(V_i, \boldsymbol{D}w)$$

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} div(V_i, \boldsymbol{D}w_i)$$

Learning the Dictionary

• $\widehat{D} = \operatorname{argmin} \min \sum div(V_i | D_{W_i})$ For $div(.) = ||V_i - D_{W_i}||^2$ this gives us the well-known K-means algorithm

$$= \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} \min_{w_{i}} div(V_{i}, \boldsymbol{D}w_{i})$$

 Generally does not have a closed form solution, but can solved with the following iteration that provably reduces error in each step

$$w_i = \underset{w}{\operatorname{argmin}} \operatorname{div}(V_i, \boldsymbol{D}w)$$

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} div(V_{i}, \boldsymbol{D}w_{i})$$

Learning the Dictionary

• $\widehat{D} = \operatorname{argmin} \min \sum_{i} div(V_i, D_{W_i})$ For $div(.) = ||V_i - D_{W_i}||^2$ this gives us the well-known K-means algorithm

$$\sum_{i} w_{i}$$

• Grouping V_i by the dictionary entries they are assigned to (w_i) results in *clustering*

error in each step

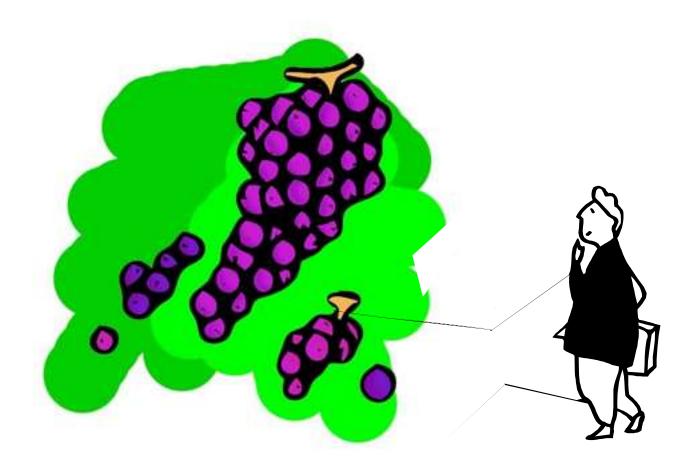
$$w_i = \underset{w}{\operatorname{argmin}} div(V_i, \boldsymbol{D}w)$$

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} div(V_{i}, \boldsymbol{D}w_{i})$$

13

So lets look at clustering

• From a more naïve, procedural perspective..

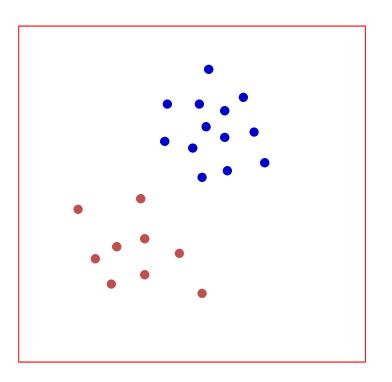


Statistical Modelling and Latent Structure

- Much of statistical modelling attempts to identify *latent* structure in the data
 - Structure that is not immediately apparent from the observed data
 - But which, if known, helps us explain it better, and make predictions from or about it
- Clustering methods attempt to extract such structure from proximity
 - *First-level* structure (as opposed to deep structure)
- We will see still other forms of latent structure discovery later in the course

How

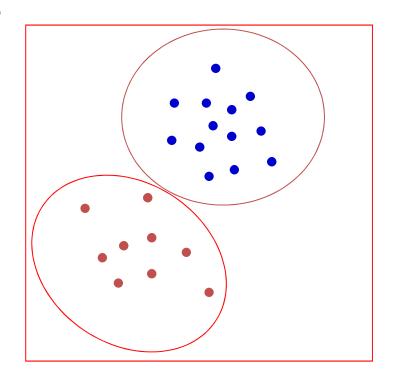
- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)



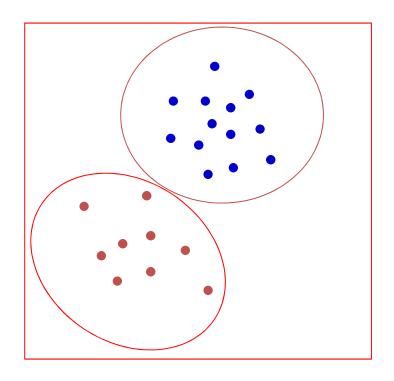
- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)

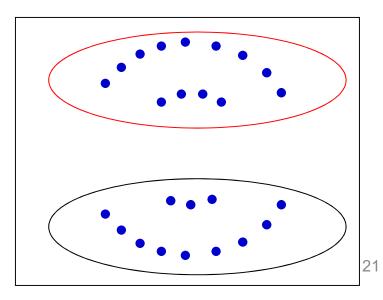


- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)
- How is it done
 - Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind

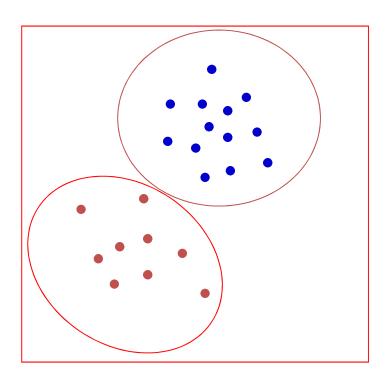


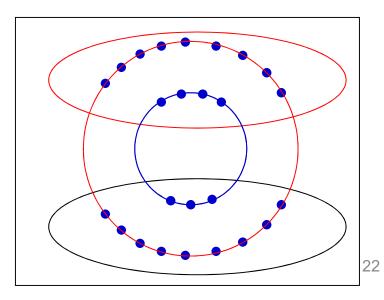
- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)
- How is it done
 - Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind
 - The objective function used affects the nature of the discovered clusters
 - E.g. Euclidean distance vs.





- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)
- How is it done
 - Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind
 - The objective function used affects the nature of the discovered clusters
 - E.g. Euclidean distance vs.
 - Distance from center





Why Clustering

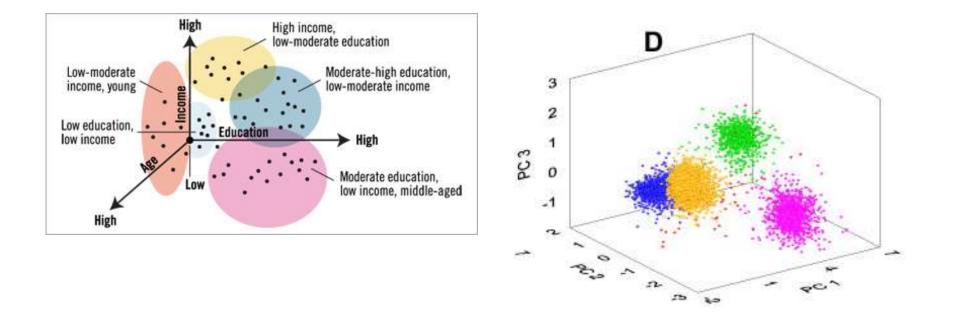
• Automatic grouping into "Classes"

- Different clusters may show different behavior

- Representation: Quantization
 - All data within a cluster are represented by a single point
- Preprocessing step for other algorithms

Indexing, categorization, etc.

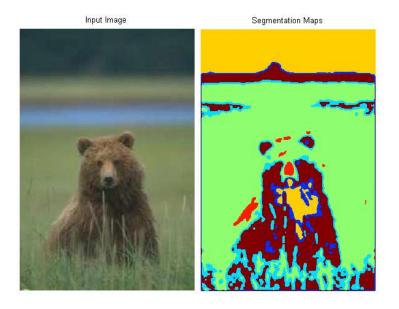
Finding natural structure in data



- Find natural groupings in data for further analysis
- Discover *latent* structure in data

Some Applications of Clustering

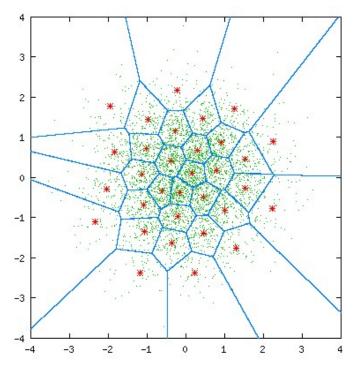
Image segmentation

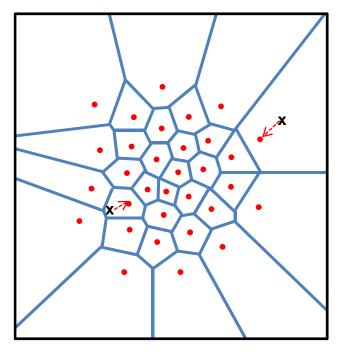


Representation: Quantization

TRAINING

QUANTIZATION



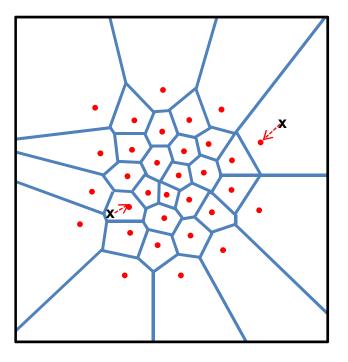


- Quantize every vector to one of K (vector) values
- What are the optimal K vectors? How do we find them? How do we perform the quantization?
- LBG algorithm

Quantization: Formally

$$V = \sum_{i} w_{i} d_{i}$$

$$V = \mathbf{D}\mathbf{w} \qquad |\mathbf{w}| = 1 \\ |\mathbf{w}|_0 = 1$$



- d_i are the "representative" vectors of each cluster
- Restriction: only one of the w_i is 1, the rest are 0

$$-\sum_i w_i = 0$$

w is unit length and one-sparse

Representation: BOW

- How to retrieve all music videos by this guy?
- Build a classifier
 - But how do you *represent* the video?

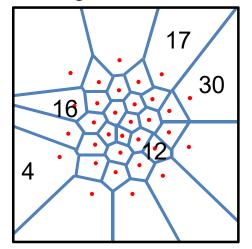
Representation: BOW

Training: Each point is a video frame



$$V_k = \mathbf{D}\mathbf{w}_k \quad f = \sum_k \mathbf{w}_k$$

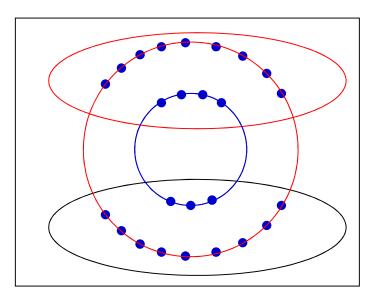
Representation: Each number is the #frames assigned to the codeword



Bag of words representations of video/audio/data

Obtaining "Meaningful" Clusters

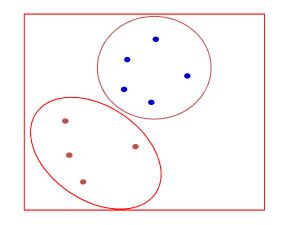
- Two key aspects:
 - 1. The feature representation used to characterize your data
 - 2. The "clustering criteria" employed



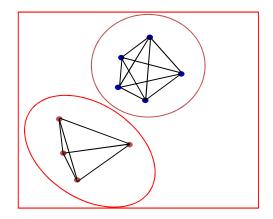
Clustering Criterion

- The "Clustering criterion" actually has two aspects
- Cluster compactness criterion
 - Measure that shows how "good" clusters are
 - The objective function
- Distance of a point from a cluster
 - To determine the cluster a data vector belongs to

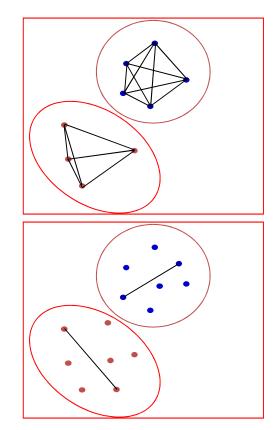
- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster



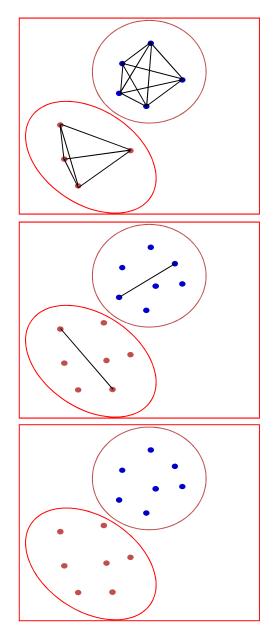
- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster



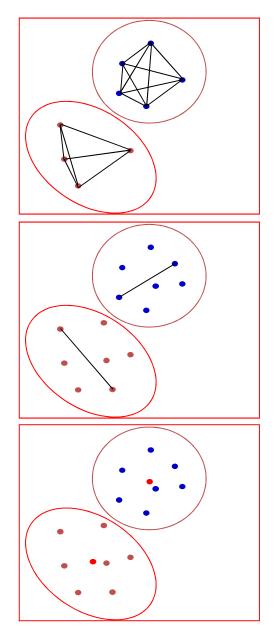
- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster



- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster

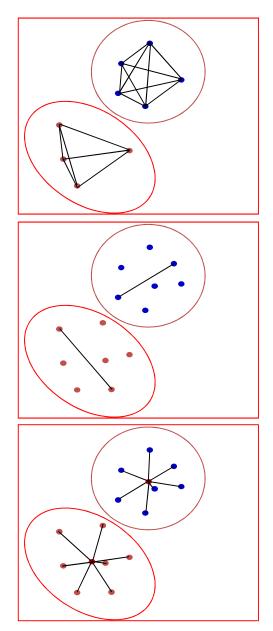


- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster



"Compactness" criteria for clustering

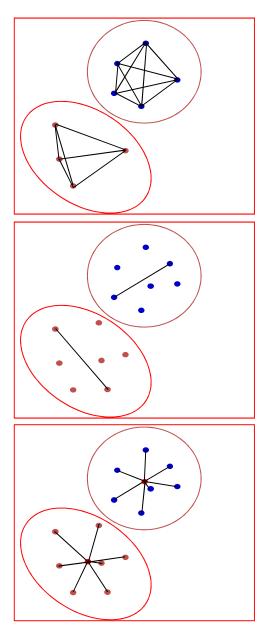
- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster



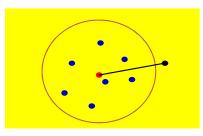
"Compactness" criteria for clustering

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster
 - Distance measures are often weighted Minkowski metrics

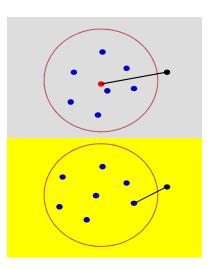
$$dist = \sqrt[n]{w_1|a_1 - b_1|^n + w_2|a_2 - b_2|^n + \dots + w_M|a_M - b_M|^n}$$



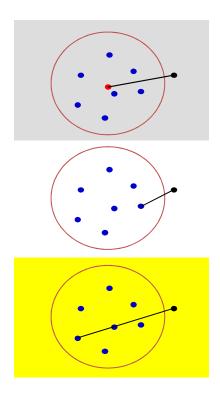
- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster



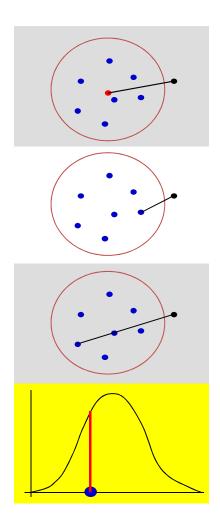
- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster



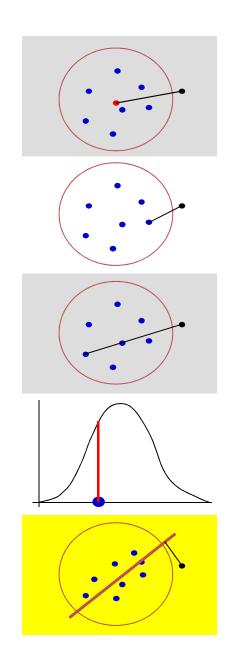
- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster



- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster
 - Probability of data measured on cluster distribution



- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster
 - Probability of data measured on cluster distribution
 - Fit of data to cluster-based regression



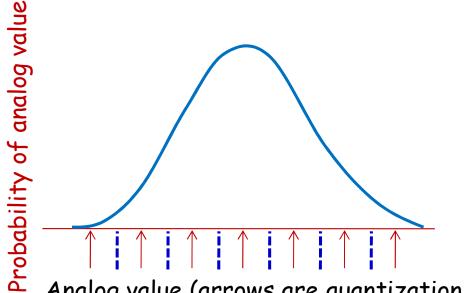
Optimal clustering: Exhaustive enumeration

- All possible combinations of data must be evaluated
 - If there are M data points, and we desire N clusters, the number of ways of separating M instances into N clusters is

$$\frac{1}{M!}\sum_{i=0}^{N}(-1)^{i}\binom{N}{i}(N-i)^{M}$$

- Exhaustive enumeration based clustering requires that the objective function (the "Goodness measure") be evaluated for every one of these, and the best one chosen
- This is the only correct way of optimal clustering
 - Unfortunately, it is also computationally unrealistic

Not-quite non sequitur: Quantization

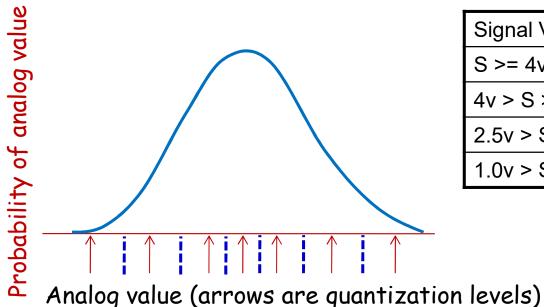


Signal Value	Bits	Mapped to
S >= 3.75v	11	3 * const
3.75v > S >= 2.5v	10	2 * const
2.5v > S >= 1.25v	01	1 * const
1.25v > S >= 0v	00	0

Analog value (arrows are quantization levels)

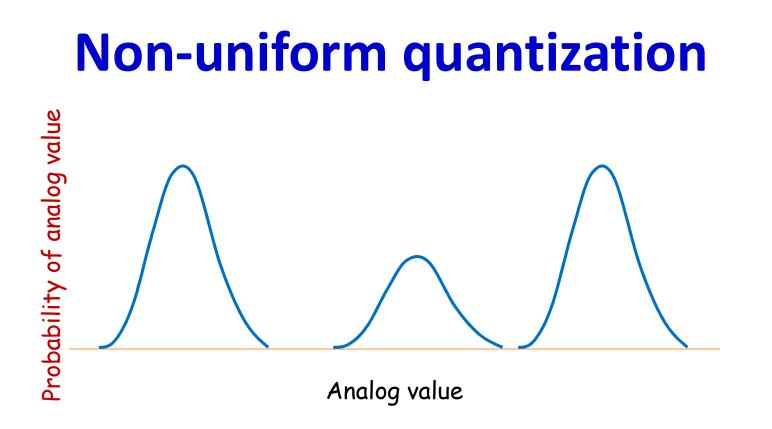
- Linear quantization (uniform quantization): ۲
 - Each digital value represents an equally wide range of analog values
 - Regardless of distribution of data
 - Digital-to-analog conversion represented by a "uniform" table

Not-quite non sequitur: Quantization



Signal Value	Bits	Mapped to
S >= 4v	11	4.5
4v > S >= 2.5v	10	3.25
2.5v > S >= 1v	01	1.25
1.0v > S >= 0v	00	0.5

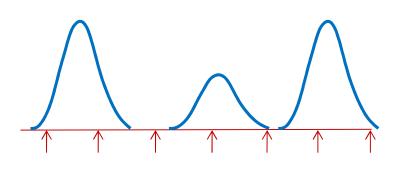
- rindlog raide (arrene are quaimzarien ierei
- Non-Linear quantization:
 - Each digital value represents a different range of analog values
 - Finer resolution in high-density areas
 - Mu-law / A-law assumes a Gaussian-like distribution of data
 - Digital-to-analog conversion represented by a "non-uniform" table



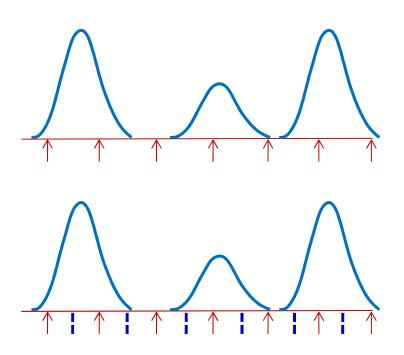
- If data distribution is not Gaussian-ish?
 - Mu-law / A-law are not optimal
 - How to compute the optimal ranges for quantization?
 - Or the optimal table

The Lloyd Quantizer ^Drobability of analog value Analog value (arrows show quantization levels)

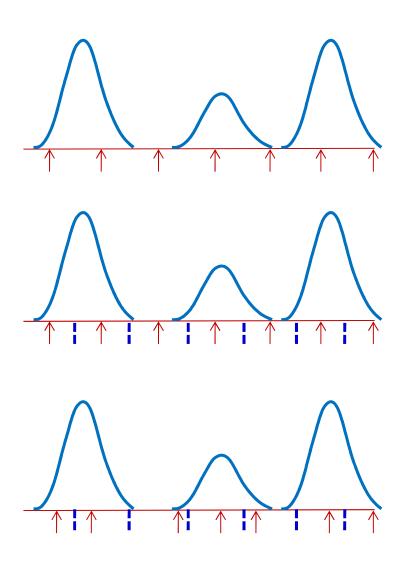
- Lloyd quantizer: An iterative algorithm for computing optimal quantization tables for non-uniformly distributed data
- Learned from "training" data



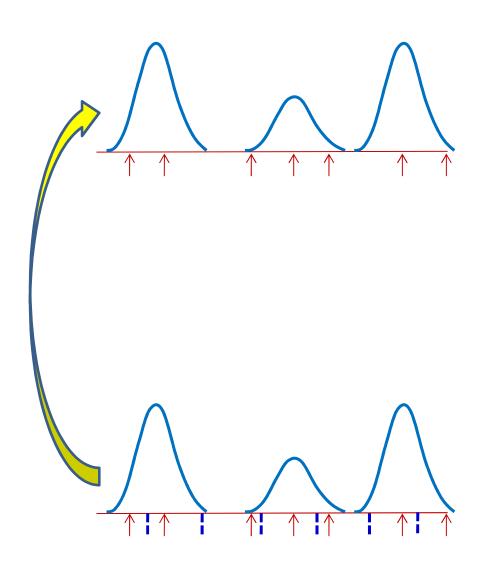
- Randomly initialize quantization points
 - Right column entries of quantization table



- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries



- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries
- Reestimate quantization points

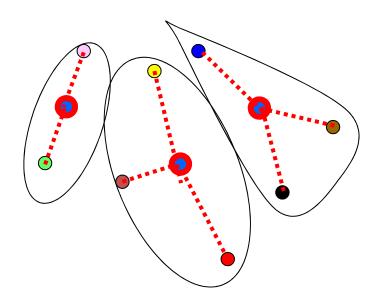


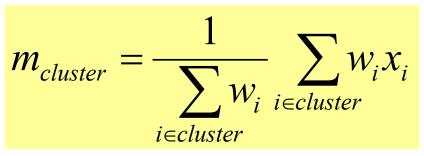
- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries
- Reestimate quantization points
- Iterate until convergence

Generalized Lloyd Algorithm: K–means clustering

- K means is an iterative algorithm for clustering *vector* data
 - McQueen, J. 1967. "Some methods for classification and analysis of multivariate observations." Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297
- General procedure:
 - Initially group data into the required number of clusters somehow (initialization)
 - Assign each data point to the closest cluster
 - Once all data points are assigned to clusters, redefine clusters
 - Iterate

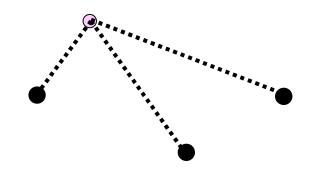
- Problem: Given a set of data vectors, find natural clusters
- Clustering criterion is **scatter**: distance from the centroid
 - Every cluster has a centroid
 - The centroid represents the cluster
- **Definition**: The **centroid** is the weighted mean of the cluster
 - Weight = 1 for basic scheme





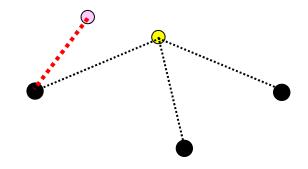
1. Initialize a set of centroids randomly

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$

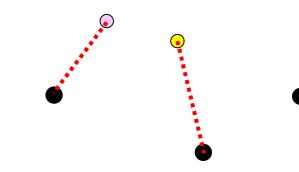


- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

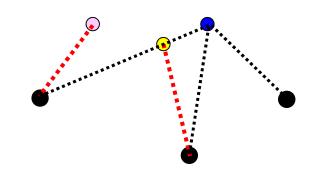
- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



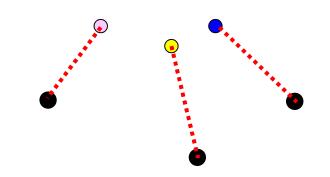
- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



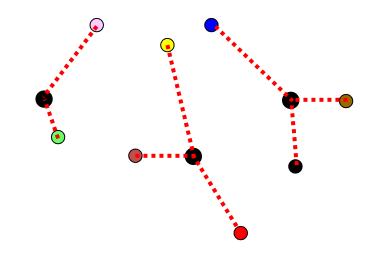
- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



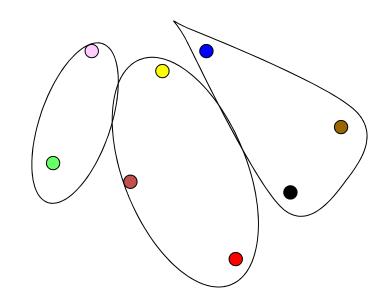
- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

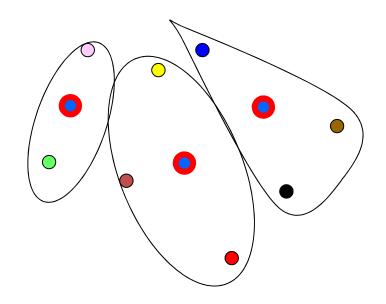


- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} w_i} \sum_{i \in cluster} w_i x_i$$

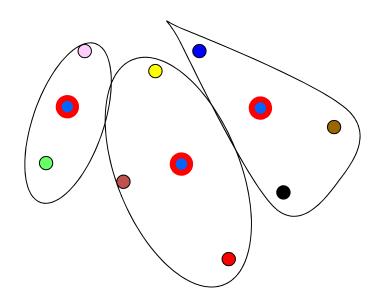


K-means

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} w_i} \sum_{i \in cluster} w_i x_i$$

5. If not converged, go back to 2



K-Means comments

- The distance metric determines the clusters
 - In the original formulation, the distance is L_2 distance
 - Euclidean norm, w_i = 1

distance_{cluster} $(x, m_{cluster}) = ||x - m_{cluster}||_2$

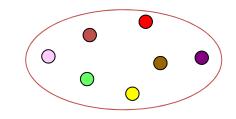
$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} x_i$$

- If we replace every x by $m_{cluster}(x)$, we get *Vector Quantization*
- K-means is an instance of *generalized* EM
- Not guaranteed to converge for all distance metrics

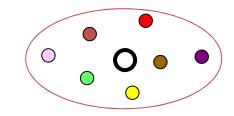
Initialization

- Random initialization
- Top-down clustering
 - Initially partition the data into two (or a small number of) clusters using K means
 - Partition each of the resulting clusters into two (or a small number of) clusters, also using K means
 - Terminate when the desired number of clusters is obtained

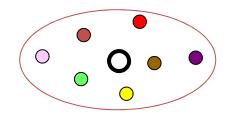
1. Start with one cluster



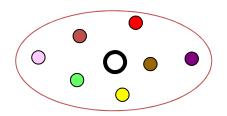
1. Start with one cluster

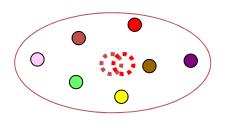


- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

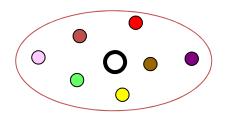


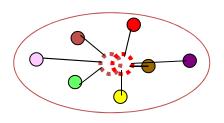
- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids





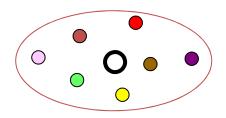
- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids

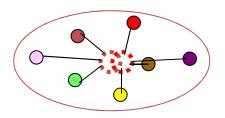


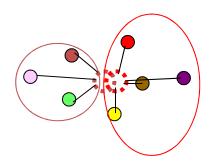


K-Means for Top–Down clustering

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence

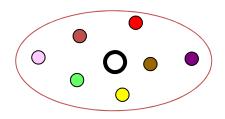


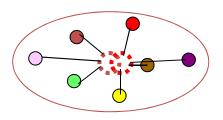


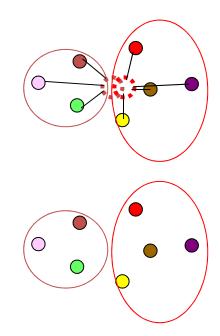


K-Means for Top–Down clustering

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence

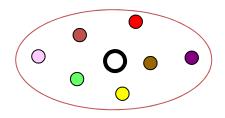


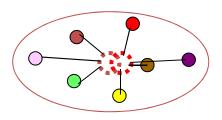


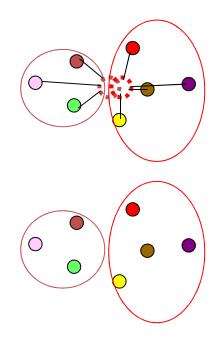


K-Means for Top–Down clustering

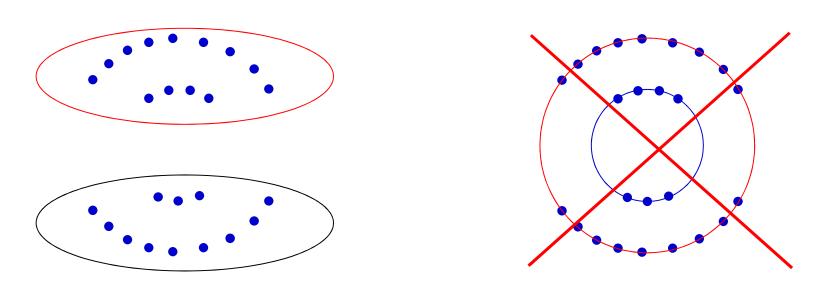
- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence
- 5. If the desired number of clusters is not obtained, return to 2





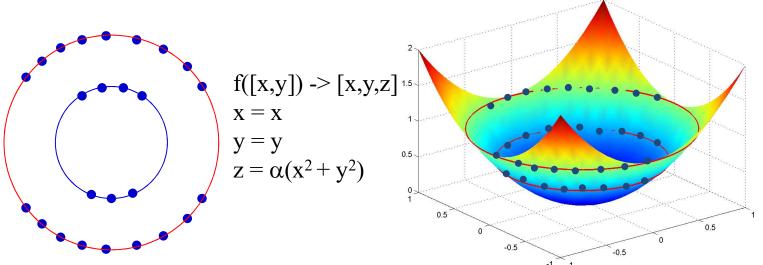


Non-Euclidean clusters

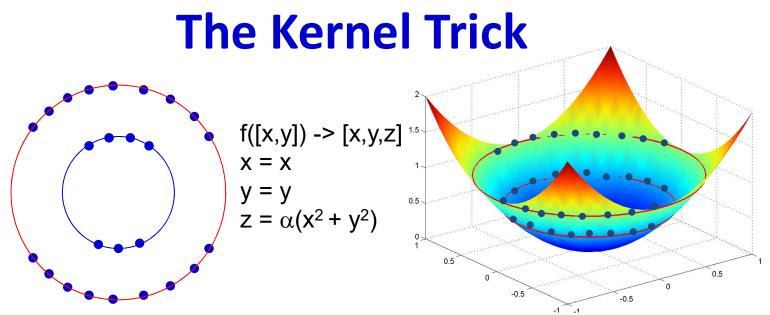


- Basic K-means results in good clusters in Euclidean spaces
 - Alternately stated, will only find clusters that are "good" in terms of Euclidean distances
- Will not find other types of clusters

Non-Euclidean clusters



- For other forms of clusters we must modify the distance measure
 - E.g. distance from a circle
- May be viewed as a distance in a higher dimensional space
 - I.e Kernel distances
 - Kernel K-means
- Other related clustering mechanisms:
 - Spectral clustering
 - Non-linear weighting of adjacency
 - Normalized cuts..



- Transform the data into a synthetic higher-dimensional space where the desired patterns become natural clusters based on *Euclidean* distance
 - E.g. the quadratic transform above
- Problem: What is the function/space?
- Problem: Distances in higher dimensional-space are more expensive to compute
 - Yet only carry the same information in the lower-dimensional space

Distance in higher-dimensional space

 Transform data x through a *possibly unknown* function Φ(x) into a higher (potentially infinite) dimensional space

 $-z = \Phi(x)$

• The distance between two points is computed in the higher-dimensional space

 $-d(\mathbf{x}_1, \mathbf{x}_2) = ||\mathbf{z}_1 - \mathbf{z}_2||^2 = ||\Phi(\mathbf{x}_1) - \Phi(\mathbf{x}_2)||^2$

d(x₁, x₂) can be computed without computing z
 – Since it is a direct function of x₁ and x₂

Distance in higher-dimensional space

 Distance in lower-dimensional space: A combination of dot products

$$- ||z_1 - z_2||^2 = (z_1 - z_2)^{\mathsf{T}}(z_1 - z_2) = z_1 \cdot z_1 + z_2 \cdot z_2 - 2 z_1 \cdot z_2$$

Distance in higher-dimensional space

$$- d(\mathbf{x}_1, \mathbf{x}_2) = ||\Phi(\mathbf{x}_1) - \Phi(\mathbf{x}_2)||^2$$

= $\Phi(\mathbf{x}_1) \cdot \Phi(\mathbf{x}_1) + \Phi(\mathbf{x}_2) \cdot \Phi(\mathbf{x}_2) - 2 \Phi(\mathbf{x}_1) \cdot \Phi(\mathbf{x}_2)$

- $d(\mathbf{x}_1, \mathbf{x}_2)$ can be computed without knowing $\Phi(\mathbf{x})$ if:
 - $\Phi(\mathbf{x}_1)$. $\Phi(\mathbf{x}_2)$ can be computed for any \mathbf{x}_1 and \mathbf{x}_2 without knowing $\Phi(.)$

The Kernel function

- A kernel function K(x₁, x₂) is a function such that:
 K(x₁, x₂) = Φ(x₁). Φ(x₂)
- Once such a kernel function is found, the distance in higher-dimensional space can be found in terms of the kernels

$$- d(\mathbf{x}_{1}, \mathbf{x}_{2}) = || \Phi(\mathbf{x}_{1}) - \Phi(\mathbf{x}_{2}) ||^{2}$$

= $\Phi(\mathbf{x}_{1}) \cdot \Phi(\mathbf{x}_{1}) + \Phi(\mathbf{x}_{2}) \cdot \Phi(\mathbf{x}_{2}) - 2 \Phi(\mathbf{x}_{1}) \cdot \Phi(\mathbf{x}_{2})$
= $K(\mathbf{x}_{1}, \mathbf{x}_{1}) + K(\mathbf{x}_{2}, \mathbf{x}_{2}) - 2K(\mathbf{x}_{1}, \mathbf{x}_{2})$

• But what is K(**x**₁,**x**₂)?

A property of the dot product

- For any vector \mathbf{v} , $\mathbf{v}^{\mathsf{T}}\mathbf{v} = ||\mathbf{v}||^2 \ge 0$
 - This is just the length of $\ensuremath{\mathbf{v}}$ and is therefore non-negative
- For any vector $\mathbf{u} = \sum_{i} a_{i} \mathbf{v}_{i}$, $||\mathbf{u}||^{2} \ge 0$ => $(\sum_{i} a_{i} \mathbf{v}_{i})^{\mathsf{T}} (\sum_{i} a_{i} \mathbf{v}_{i}) \ge 0$ => $\sum_{i} \sum_{j} a_{i} a_{j} \mathbf{v}_{i} \cdot \mathbf{v}_{j} \ge 0$
- This holds for ANY real {a₁, a₂, ...}

The Mercer Condition

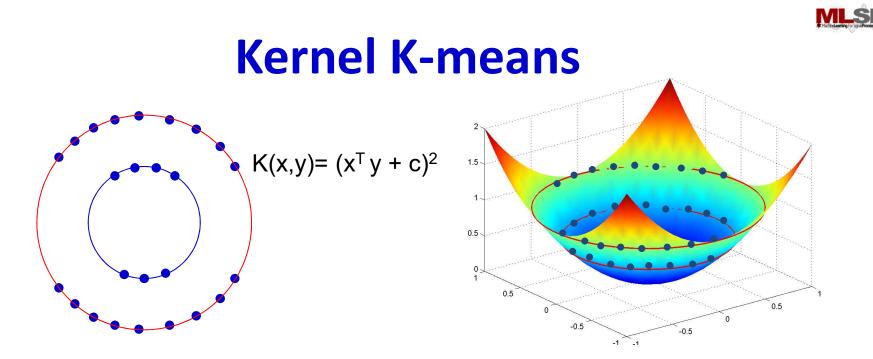
- If z = Φ(x) is a high-dimensional vector derived from x then for all real {a₁, a₂, ...} and any set {z₁, z₂, ... } = {Φ(x₁), Φ(x₂),...} - Σ_i Σ_j a_i a_j z_i.z_j >= 0 - Σ_i Σ_j a_i a_j Φ(x_i).Φ(x_j) >= 0
- If $K(\mathbf{x}_1, \mathbf{x}_2) = \Phi(\mathbf{x}_1)$. $\Phi(\mathbf{x}_2)$ => $\sum_i \sum_j \mathbf{a}_i \mathbf{a}_j \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)$ >= 0
- Any function K() that satisfies the above condition is a valid kernel function

The Mercer Condition

- $K(\mathbf{x}_1, \mathbf{x}_2) = \Phi(\mathbf{x}_1) \cdot \Phi(\mathbf{x}_2)$ => $\Sigma_i \Sigma_j a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) >= 0$
- A corollary: If any kernel K(.) satisfies the Mercer condition
 - $d(\mathbf{x}_1, \mathbf{x}_2) = K(\mathbf{x}_1, \mathbf{x}_1) + K(\mathbf{x}_2, \mathbf{x}_2) 2K(\mathbf{x}_1, \mathbf{x}_2)$ satisfies the following requirements for a "distance"
 - d(x,x) = 0- d(x,y) >= 0- d(x,w) + d(w,y) >= d(x,y)

Typical Kernel Functions

- Linear: $K(x,y) = x^Ty + c$
- Polynomial $K(\mathbf{x}, \mathbf{y}) = (\mathbf{a}\mathbf{x}^{\mathsf{T}}\mathbf{y} + \mathbf{c})^{\mathsf{n}}$
- Gaussian: $K(x,y) = \exp(-||x-y||^2/\sigma^2)$
- Exponential: $K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x}-\mathbf{y}||/\lambda)$
- Several others
 - Choosing the right Kernel with the right parameters for your problem is an artform



• Perform the K-mean in the Kernel space

- The space of $z = \Phi(x)$

• The algorithm..

The mean of a cluster

• The average value of the points in the cluster *computed in the high-dimensional space*

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)$$

• Alternately the weighted average

$$m_{cluster} = \frac{1}{\sum_{i \in cluster}} \sum_{i \in cluster} w_i \Phi(x_i) = C \sum_{i \in cluster} w_i \Phi(x_i)$$

The mean of a cluster

• The average value of the points in the cluster *computed in the high-dimensional space*

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)$$

RECALL: We may never actually be able to compute this mean because $\Phi(x)$ is not known

• Alternately the weighted average

$$m_{cluster} = \frac{1}{\sum_{i \in cluster}} \sum_{i \in cluster} w_i \Phi(x_i) = C \sum_{i \in cluster} w_i \Phi(x_i)$$

- Initialize the clusters with a random set of K points
 - N_{cluster} is no. of points in cluster

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)$$

• For each data point x, find the closest cluster

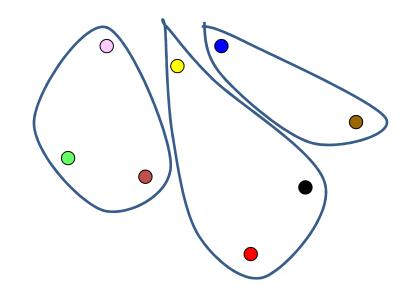
$$cluster(x) = \min_{cluster} d(x, cluster) = \min_{cluster} || \Phi(x) - m_{cluster} ||^{2}$$

$$d(x, cluster) = || \Phi(x) - m_{cluster} ||^{2} = \left(\Phi(x) - \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_{i}) \right)^{T} \left(\Phi(x) - \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_{i}) \right)$$

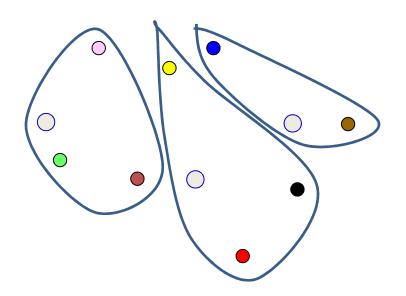
$$= \left(\Phi(x)^{T} \Phi(x) - \frac{2}{N_{cluster}} \sum_{i \in cluster} \Phi(x)^{T} \Phi(x_{i}) + \frac{1}{N_{cluster}^{2}} \sum_{i \in cluster} \sum_{j \in cluster} \Phi(x_{i})^{T} \Phi(x_{j}) \right)$$

$$= K(x, x) - \frac{2}{N_{cluster}} \sum_{i \in cluster} K(x, x_{i}) + \frac{1}{N_{cluster}^{2}} \sum_{i \in cluster} \sum_{j \in cluster} K(x_{i}, x_{j})$$
Computed entirely using only the kernel function!

1. Initialize a set of *clusters* randomly



1. Initialize a set of *clusters* randomly



The centroids are *virtual*: we don't actually compute them explicitly!

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$

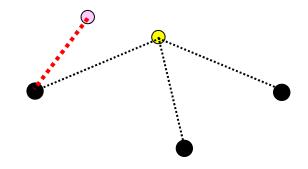
- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster

• $d_{cluster} = distance(x, m_{cluster})$

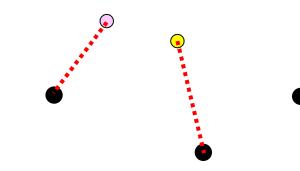
$$d_{cluster} = K(x, x) - 2C \sum_{i \in cluster} w_i K(x, x_i) + C^2 \sum_{i \in cluster} \sum_{j \in cluster} w_i w_j K(x_i, x_j)$$

- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

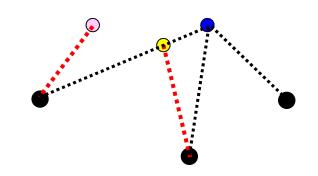
- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



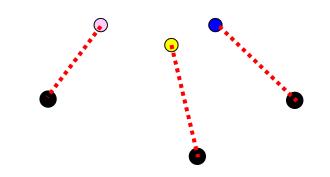
- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



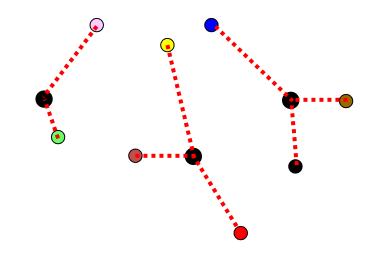
- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



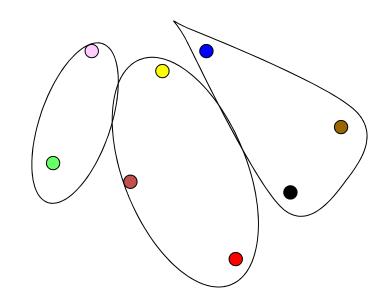
- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

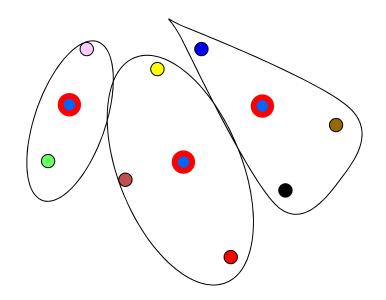


- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$



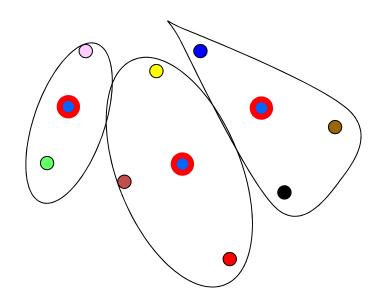
- We do not explicitly compute the means
- May be impossible we do not know the high-dimensional space
- We only know how to compute inner products in it

Kernel K–means

- 1. Initialize a set of clusters randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$

5. If not converged, go back to 2



- We do not explicitly compute the means
- May be impossible we do not know the high-dimensional space
- We only know how to compute inner products in it

How many clusters?

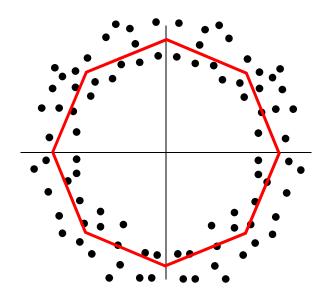
- Assumptions:
 - Dimensionality of kernel space > no. of clusters
 - Clusters represent separate *directions* in Kernel spaces
- Kernel correlation matrix ${\bf K}$
 - $-\mathbf{K}_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$
- Find Eigen values Λ and Eigen vectors ${\bf e}$ of kernel matrix
 - No. of clusters = no. of dominant λ_i (1^T e_i) terms

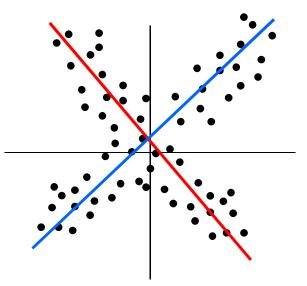
Spectral Methods

- "Spectral" methods attempt to find "principal" subspaces of the high-dimensional kernel space
- Clustering is performed in the principal subspaces
 - Normalized cuts
 - Spectral clustering
- Involves finding Eigenvectors and Eigen values of Kernel matrix
- Fortunately, provably analogous to Kernel Kmeans

Other clustering methods

- Regression based clustering
- Find a regression representing each cluster
- Associate each point to the cluster with the best regression
 - Related to kernel methods





Clustering..

- Many many other variants
 - Many applications..
 - Important: Appropriate choice of feature
 - Appropriate choice of feature may eliminate need for kernel trick..
- Key Features:
 - Identifies latent structure in the distribution of the data
 - Provides an L2-sense optimal quantized representation of the data
 - We will build on this in the next class