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A limitation we saw earlier

* Mathematical restrictions on the number of
bases have no connection to reality
— Universe does not respect your mathematical
representations of the data

— In reality: number of building blocks that compose
any kind of data is unlimited

* Today: Learning linear compositional
representations without restrictions on the
number of basic units

10/17/2019
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So far
Can we use linear composition to identify
basic units that compose the signal?
MLSH

Just in case you missed it..

* Remember, #(Basis Vectors)= #unknowns

D -a=X

Basis Input data
Vectors .
Weights

Standard representations: number of bases <= dimension of data
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Key Topics in this Lecture

* Basics — Component-based representations
— Overcomplete and Sparse Representations,
— Dictionaries

Pursuit Algorithms
* How to learn a dictionary

* Why is an overcomplete representation
powerful?
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Representing Data | Representing Data

Dictionary (codebook) Dictionary Atoms
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Aa Each atom is a basic unit that can
| be used to “compose” larger units. @ 4
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elements in the
Dictionary
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Representing Data Representing Data
Linear Linear
combination of - combinatign of -—
elements in the elements in the
Dictionary Dictionary
Quick Linear Algebra Refresher Overcomplete Representations
* Remember, #(Basis Vectors)= #unknowns * What is the dimensionality of the input
D o= X image? (say 64x64 image)
» 4096
Basis
Vectors Input data * What is the dimensionality of the dictionary?
Weights (each image = 64x64 pixels)
(from
Dictionary)
> 4096 x N
Overcomplete Representations Overcomplete Representations
* What is the dimensionality of the input * What is the dimensionality of the input
image? (say 64x64 image) image? (say 64x64 image)
» 4096 > 4096
* What is the dimensionality of the dictionary? * What is the dimensionality of the dictionary?
(each image, X64 p ) (each image, X64 p )
> 4096 27?7 > 4096 VERY LARGE!!!
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Overcomplete Representations

¢ What is the dimensionality of the input

imaaga? [cav BAVAEA imaaa)
If N > 4096 (as it likely is)
we have an overcomplete representation

¢ What is the dimensionality of the dictionary?
(each image, X64 p )

> 4096 VERY LARGE!!!
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Quick Linear Algebra Refresher

* Remember, #(Basis Vectors)= #unknowns
D-a=X
Dictionary Input data
Units A
Weights
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Why Dictionary-based
Representations?

« Dictionary based representations are semantically more
meaningful

* Enable content-based description
— Bases can capture entire structures in data
— E.g. notes in music
— E.g. image structures (such as faces) in images

* Enable content-based processing

— Reconstructing, separating, denoising, manipulating speech/music
signals

— Coding, compression, etc.

« Statistical reasons: We will get to that shortly..
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Overcomplete Representations

* What is the dimensionality of the input

imaga? [cav EAvEA imaaa)

More generally:

If #(dictionary units) > dimensions of input

we have an overcomplete representation

VERY LARGE!!!

> 4095@
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Dictionary based Representations
* Overcomplete “dictionary”-based representations
are linear-composition-based representations with
more “atomic building blocks” than the
dimensionality of the data
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Bases matrix is wide - -
(more bases than dimensions) - —
[ | Input
|
MLSH
Problems

* How to obtain the dictionary
— Which will give us meaningful representations
* How to compute the weights?

-q—l -
T | =
Ty
e D m a -
|| L -
g H
L= -
—
—
—
N

Input




10/17/2019

MLSH
Problems
* How to obtain the dictionary
— Which will give us meaningful representations
{- How to compute the weights? ]
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Quick Linear Algebra Refresher
a=X

D: full rank
D
Unique solution

D@=x

We may have no
exact solution

b

Infinite Solutions

e
Using Pseudo-Inverse?

R N
_, All points on the red line
satisfy

< D-a=X
s \Polm with the smallest
> (9norm

This is equivalent to

minimize 1|2 subject to Do = X

o will generally be “dense”

W=
Quick Linear Algebra Refresher

* Remember, #(Basis Vectors)= #unknowns

D -a=X

Dictionary /

entries .
Weights

Input data

When can we solve for a?

Quick Linear Algebra Refresher
a=X

D: full rank
D
Unique solution

We may have no
exact solution

@ Our Case

Infinite Solutions

™iLSH

#(Basis Vectors) > dimensions of the input
|
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fesaurus

pictionary | T

But no more than k=4 bases

s
Overcompleteness and Sparsity

To solve an overcomplete system of the type:

D.a=X
Make assumptions about the data.
Suppose, we say that X is composed of no
more than a fixed number (k) of “bases” from
D (k < dim(X))
— The term “bases” is an abuse of terminology..
Now, we can find the set of k bases that best
fit the data point, X.

rse and Overcomplete Representations

s
Overcompleteness and Sparsity

Atoms
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But no more than k=4 bases
are “active”
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Alternate view: Recall
quantization

V= Zwid,- . . .
T x

V=Dw |w|=1
wlp =1

* d; are the “representative” vectors of each cluster
 Restriction: only one of the w; is 1, the rest are 0

- Xw; =0

— w is unit length and one-sparse
¢ What if we let more than one entry of w to be non zero?

38

Representing Data

Thesaurus
vl The

Dictionar!

But no more than k=4 bases
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Overcompleteness and Sparsity

Atoms
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But no more than k=4 bases
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No more than 4 bases
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The Sparsity Problem

* We don’t really know k
* You are given a signal X

e Assuming X was generated using the
dictionary, can we find a that generated it?
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No more than 4 bases
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Sparsity- Definition

* Sparse representations are representations
that account for most or all information of a
signal with a linear combination of a small
number of atoms.

(from: www.see.ed.ac.uk/~tblumens/Sparse/Sparse.html)

Sparse and Overcomplete Representations

The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this.

Min |d],
st. X=Da




The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this.

Counts the number of non-
zero elements in a

Sparse and Overcomplete Representations 49

The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this.

Min d],
st. X=D«a

How can we solve the above?

s
Matching Pursuit (MP)

¢ Greedy algorithm

* Finds an atom in the dictionary that best
matches the input signal

* Remove the weighted value of this atom from
the signal

* Again, find an atom in the dictionary that best
matches the remaining signal.

¢ Continue till a defined stop condition is
satisfied.
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The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this

— Ockham’s razor: Choose the simplest explanation
invoking the fewest variables

Min [a],

st. X=D«a

™MLSH
Obtaining Sparse Solutions
* We will look at 2 algorithms:
— Matching Pursuit (MP)
— Basis Pursuit (BP)
MLSH

Matching Pursuit

* Find the dictionary atom that best matches

the given signal.
\_y
Weight = w2 % ‘
‘ 'S

-~

Sparse and Overcomplete Representat
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Matching Pursuit
* Remove weighted image to obtain updated
signal
Find best match for
————> this signal from the
dictionary
MLSH

Matching Pursuit

* Find best match for updated signal

Iterate till you reach a stopping condition,
norm(ResiduallnputSignal) < threshold

™LsH
Matching Pursuit

* Problems ???
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Matching Pursuit

* Find best match for updated signal

Matching Pursuit

Algorithm Matching Pursuit
Input: Signal: ﬂ!)
Output: List of coefficients: (Cﬁnag‘m)'
Initialization: i
Rf, — fit);
Repeat
find ., € I) with maximum inner product < Rfm G =i
Bl anlgdr,. =i
Rf;ul - an = Gn Gyt
n o+ n+l;
Until stop condition (for example: “an | | < threshold)

From http://en.wikipedia.org/wiki/Matching_pursuit

Sparse and Overcomplete Representations

Matching Pursuit

* Main Problem
— Computational complexity
— The entire dictionary has to be searched at every
iteration

iLsH
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Comparing MP and BP

Matching Pursuit

Hard thresholding

(remember the equations)

Greedy optimization at
each step
Weights obtained using
greedy rules

Sparse and Overcomplete Representations

WLSH
Basis Pursuit
* Remember,
Min |a],
st. X=D«
In the general case, this is intractable
s |

Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Min [,

st. X=D«
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Basis Pursuit (BP)
* Remember,
Min [,
st. X=D«a
MLSH
Basis Pursuit
* Remember,
Min [,
st. X=D«a
In the general case, this is intractable
Requires combinatorial optimization
MLSH

Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Min [,

st. X=D«a

This will provide identical solutions
when D obeys the Restricted
Isometry Property.

Sparse and Overcomplete Representations

11



Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Algin ”95”1 “—T—— Objective

st. X=D«a
LN

Constraint
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Basis Pursuit

* We can formulate the optimization term as:

Min {|lX Waﬂl}

A'is a penalty term on the non-zero elements
and promotes sparsity

ViLsH
Basis Pursuit
* We can formulate the optimization term as:
. 2
Min {|X -Da] + Ajaf }
Constraint Objective
ViLsH

MLSH
Basis Pursuit

+1 at o, >0

Min|X -Daf + e} | L -rinma, -0

J

-1 at a; <0

* |lodl; is not differentiable at o; = 0
* Gradient of ||a||, for gradient descent update
* At optimum, following conditions hold
V,|X -Da| + isign(a,) =0, if|e;|>0
V [X-Da| <4, ifa, =0

Basis Pursuit

Equivalent to LASSO; for more details, see this
paper by Tibshirani
http://www-stat.stanford.edu/~tibs/ftp/lasso.ps

Min (X ~Da]’ + 4al }

A is a penalty term on the non-zero elements
and promotes sparsity

s
Basis Pursuit

* There are efficient ways to solve the LASSO
formulation.

— http://web.stanford.edu/~hastie/glmnet_matlab/

* Simplest solution: Coordinate descent
algorithms
— On webpage..

12



e
L,vsL,

Overcomplete set
of 6 “"bases”

Minla],
st.X =Da

* L, minimization
— Two-sparse solution
— ANY pair of bases can explain X with 0 error 7

Comparing MP and BP

Matching Pursuit

Hard thresholding Soft thresholding

(remember the equations)

Greedy optimization at  Global optimization
each step
Weights obtained using  Can force N-sparsity
greedy rules with appropriately
Sparse and Overcomplete Reuvesechese n We|ghts

WS
Many Other Methods..

* Iterative Hard Thresholding (IHT)
* CoSAMP
* OMP

10/17/2019

e
L,vs L,

Overcomplete set

of 6 “"bases”

Minla,
st.X =Da

* L, minimization
— Two-sparse solution
— All else being equal, the two closest bases are

chosen Sparse and Overcomplete Representations 74
WiCSH
General Formalisms
S |Minfe],
* Lominimization |\ _p, Min|X -Da’

* L, constrained optimization

sefal, <C

Minl

* L, minimization |ss.x =Da

* L, constrained optimization  uin|x -Daf’

stfal, <C

Problems

* How to obtain the dictionary ]

— Which will give us meaningful representations
* How to compute the weights?

- -
i. [ | =l
i
e D m a -
|| L -
g H
L= -
—
—
—
N
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Trivial Solution

* D =Training data

¢ Impractical in most situations
— Popular approach: sample random vectors from
training data

More Structured ways of Constructing
Dictionaries

« Dictionary entries must be structurally
“meaningful”
— Represent true compositional units of data

¢ Have already encountered two ways of
building dictionaries
— NMF for non-negative data
— K-means ..

K-Means for Dictionaries

Each column is a codeword (centroid)
from the codebook

D o @

* o must be 1 sparse
* Only o entry must 1

[loc]lo=1

el =1

LS

10/17/2019

Dictionaries: Compressive Sensing

* Just random vectors!

™iLSH

K-Means for Composing Dictionaries

Train the codebook
from training data
using K-means

* Every vector is approximated by the centroid of the cluster
it falls into

* Cluster means are “codebook” entries
— Dictionary entries
— Also compositional units the compose the data

K-Means

* Learn Codewords to minimize the total
squared length of the training vectors from
the closest codeword

iLsH
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Length-unconstrained
K-Means for Dictionaries

Each column is a codeword (centroid)
from the codebook

D

* o must be 1 sparse

Q
EEEEEEEEN-EEES

* No restriction on o value

lecllo=1

omplete Represent

SVD K—-means

1. Initialize a set of centroids 2
randomly !

2. For each data point x, find the
projection from the centroid for
each cluster

7
Petusier = ‘x Metuster

3. Put data point in the cluster of the
closest centroid

Cluster for which pster i
maximum

4. When all data points are
clustered, recompute centroids

m = Principal Eigenvector({x | x € cluster}) |

cluster

What about this pattern?

° e Lo

L[] LX] LX) L]
* Dictionary entries that represent radial
patterns will not capture this structure
— 1-sparse representations will not do

WiLSH

10/17/2019

SVD K-Means

* Learn Codewords to minimize the total
squared projection error of the training
vectors from the closest codeword

iLsH
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What about this pattern?

* We need AFFINE patterns

* Each vector is modeled by a linear
combination of K (here 2) bases

Codebooks for K sparsity?

Each column is a codeword (centroid)
from the codebook

D

* o must be k sparse

Q
EEEE=EN-N-EEES

* No restriction on o value

lllo=k

e
Formalizing

Two objectives:
| Da; — Xi|

- Sparsity in coefficients llevill1

- Approximation

T
min Z 1 X; — Do || + || a1
Dei i

NON-Convex!!!

10/17/2019

What about \t\his pattern?

ole
Every lineis a

e o of two bases

*\e
/%, 2-sparse

Constraint:
AN Line = a.b, + (1-a)b,

\“i'

* We need AFFINE patterns

* Each vector is modeled by a linear
combination of K (here 2) bases

o\® ®-_ (constrined) combination

™MLSH
Formalizing
Given training data
{X1, X, ... X7}
We want to find a dictionary D, such that
DOAZ' = Xz
with (Y5 sparse
MLSH

An iterative method

* Given D, estimate (X; to get sparse solution

— We can use any method
T

min Y | X; — Dol + [l

i=1

* Given «;, estimate D

T
min Z | X; — Doy ||? Difficult

i=1

16
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K'SVD D;jl=1

2. For each codeword (k):
* For each vectorx 0
e Subtract the contribution
of all other codewords to _ DE
obtain e;(x) i o |
*  Codeword-specific residual n
* Compute the principal
Eigen vector of {e,(x)}

3. Returnto step 1 ex(x) = x-Ljur % Dj

™LSH
K SVD
- D=
¢ Initialize Codebook
00200
[N ORRCRICRNG
00010
1. For every vector, 9170006
compute K-sparse 0= 90010
alphaS 30000
ORESRIONIOREY
— Using any pursuit CICIEGIE
algorithm
™LSH
K-SVD
* Termination of each iteration: Updated
dictionary
¢ Conclusion: A dictionary where any data vector
can be composed of at most K dictionary entries
— More generally, sparse composition
MILSH

) Problems
(+ How to obtain the dictionary
— Which will give us meaningful representations
* How to compute the weights?

K-SVD algorithm (skip)

Initialization : Set the random normalized dictionary matrix
D@ e R™K Set J=1.

Repeat until convergence,

Sparse Coding Stage: Use any pursuit algorithm to compute x;
fori=1,2,...,N

min {|ly; — Dx|[3} subjectto [jx/[o < Tp.

Codebook Update Stage: Fork = 1,2,..., K
o Define the group of examples that use d,
wp = {i| 1 SE< N, xi(k) # 0}
e Compute
E,=Y-) d,
#k
o Restrict B by choosing only the columns corresponding to

those elements that initially used dy. in their representation,
and obtain E.
o Apply SVD decomposition Ef = UAVT. Update:
=A(L1) v

di = w, xf =

SetJ=J+1.

iNEEEEI Q EE

Applications of Sparse Representations

* Many many applications
— Signal representation
— Statistical modelling

— We've seen one: Compressive sensing

* Another popular use

— Denoising

17
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Denoising

* As the name suggests, remove noise!
* We will look at image denoising as an example

Sparse and Overcomplete Representations

D=1[IG]

A toy example
I Identity matrix

G Translation of a
Gaussian pulse

Sparse and Overcomplete Representations

|
Denoising
¢ As the name suggests, remove noise!
|
A toy example
7\,

i

e

Image Denoising

* Here’s what we want

Image Denoising

e Here’s what we want

18



Image Denoising

* Here’s what we want

l‘?f"g L k
3! i ‘.l 7
¢

x

WS
Image Denoising
= + £
.
€=N(0, o) = =
WS

Image Denoising

* Remove the noise from Y, to obtain X as best
as possible

* Using sparse representations over learned
dictionaries

10/17/2019

™MLSH
The Image Denoising Problem
* Given an image
* Remove Gaussian additive noise from it
™MLSH

Image Denoising

* Remove the noise from Y, to obtain X as best
as possible.

Image Denoising

* Remove the noise from Y, to obtain X as best
as possible

* Using sparse representations over learned
dictionaries

* We will learn the dictionaries

19



Image Denoising

* Remove the noise from Y, to obtain X as best
as possible

* Using sparse representations over learned
dictionaries

* We will learn the dictionaries

* What data will we use? The corrupted image
itself!

MLSH
Image Denoising
* The data dictionary D

—Size=nxk(k>n)

— This is known and fixed, to start with

— Every image patch can be sparsely represented

using D

™LsH

Image Denoising

Min {|X ~Dal + i}

* In the above, X is a patch.

10/17/2019

Image Denoising

* We use the data to be denoised to learn the
dictionary.

* Training and denoising become an iterated
process.

* We use image patches of size Vn x Vn pixels
(i.e. if the image is 64x64, patches are 8x8)

Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min {|X~De] + 2d]}

MinflX e+ 2

lete Representations 118

s
Image Denoising

Min (X ~Dedf + 2]}

* In the above, X is a patch.

* If the larger image is fully expressed by the
every patch in it, how can we go from patches
to the image?

20



Image Denoising

Mip (X -Y[;+ Y|
= ij

+§:ﬂy
p

R,X -Dga,

2
2

%y

J

10/17/2019

Image Denoising

-

Min (X -,

+§:ﬂy
ij

%y

J

Error bounding in each patch
-R; selects the (ij)* patch
-Terms in summation = no.
of patches

Sparse and Overcomplete Represen

Image Denoising

A ) 21

(X=Y) is the error between the
input and denoised image. 1 is a
penalty on the error.

Image Denoising

* But, we don’t “know” our dictionary D.
* We want to estimate D as well.

LsH

Image Denoising

Mip {u|X-Y]}+ Y]
= , ij

R,X -Da,

2
2

+

A forces sparsity

Image Denoising

* But, we don’t “know” our dictionary D.
* We want to estimate D as well.

tu|x -3+ 2R, X~ Da,
ij

+§:lg
ij

2
2

@

J

We can use the previous equation itself!!!

21



Image Denoising

2
2

R,X-Da,

Min -7+ 3|
—_— i

+Z /11,1.
i

il

J

How do we estimate all 3 at once?

Image Denoising

2
2

R,X-Dg,

Min -7+ 3|
—_— i

+Z /11,1.
i

il

J

How do we estimate all 3 at once?
Fix 2, and find the optimal 3.

s
Image Denoising

vin apy Y|
- ij

+Z%— 0}
i

Initialize X =Y, initialize D

R,X -Dga,

2
2

%y

0

You know how to solve the remaining
portion for a — MP, BP!

Sparse and Overcomplete Representation

10/17/2019

Image Denoising

2
2

Min, (X -Y|[+ ZHM(_ Do,
- ij

+Z lij
ij

@

J

How do we estimate all 3 at once?

We cannot estimate them at the same time!

Image Denoising

2
2

I%f’}( (| X - Y||z + ZHM(_ Do,
- ij

+Z lij
ij

Initialize X =Y

@

J

Image Denoising

* Now, update the dictionary D.
* Update D one column at a time, following the

K-SVD algorithm
* K-SVD maintains the sparsity structure

iLsH
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Image Denoising

* Now, update the dictionary D.

* Update D one column at a time, following the
K-SVD algorithm

¢ K-SVD maintains the sparsity structure

* |teratively update a and D

Image Denoising

2
2

Min |x-Y[,+ R, X -Da,
— ij

*@Q%—)—) Const. wrt X

i
We know D and a

The quadratic term above has a closed-
form solution

Image Denoising

¢ Summarizing... We wanted to obtain 3 things

s

10/17/2019

Image Denoising

LT N
AT Y AN

AN A
TN 2 SN 2 NN
P RS T RSl T T

Learned Dictionary for Face Image denoising

From: M. Elad and M. Aharon, Image denoising via learned
dictionaries and sparse representation, CVPR, 2006.

Image Denoising

R,X-Da,

2
2

Min {u|x - Y[+ 3|
— i

w—) Const. wrt X

y

We know D and a

X =(ul +) RIR) (Y +) R/ Da,)
i i

=
Image Denoising

* Summarizing... We wanted to obtain 3 things

» Weights a
» Dictionary D
» Denoised Image X

23



Image Denoising

¢ Summarizing... We wanted to obtain 3 things
» Weights a — Your favorite pursuit algorithm

» Dictionary D — Using K-SVD
» Denoised Image X

Sparse and Overcomplete Representations 139

Image Denoising

¢ Summarizing... We wanted to obtain 3 things
» Weights a

» Dictionary D
» Denoised Image X- Closed form solution

Sparse and Overcomplete Representations 141

Image Denoising

* Here’s what we want

R

10/17/2019

Image Denoising

* Summarizing... We wanted to obtain 3 things

> Weights a - Your favmf alearithm

» Dictionary D — Using K-SVD Iterating
» Denoised Image X

Sparse and Overcomplete Representations 140

Image Denoising

* Here’s what we want

Sparse and Overcomplete Representations 122

e
Comparing to Other Techniques

Non-Gaussian data

PCA of ICA Which is which?

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

Sparse and Overcomplete Representations 144
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Comparing to Other Techniques

Non-Gaussian data

S

PCA ICA

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

Sparse and Overcomplete Representations

145

LsH

Comparing to Other Techniques

Data still in 2-D space

ICA Overcomplete

/

Doesn’t capture the underlying representation,
which Overcomplete representations can do...

Sparse and Overcomplete Representations

LsH

10/17/2019

s
Comparing to Other Techniques

Non-Gaussian data

data here

PCA ICA

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

Sparse and Overcomplete Representations 146

Summary

* Overcomplete representations can be more
powerful than component analysis
techniques.

* Dictionary can be learned from data.

* Relative advantages and disadvantages of the
pursuit algorithms.
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