

So far

Can we use linear composition to identify basic units that compose the signal?

A limitation we saw earlier

- Mathematical restrictions on the number of bases have no connection to reality
- Universe does not respect your mathematical representations of the data
- In reality: number of building blocks that compose any kind of data is unlimited
- Today: Learning linear compositional representations without restrictions on the number of basic units

Just in case you missed it..

- Remember, \#(Basis Vectors)= \#unknowns

Standard representations: number of bases $<=$ dimension of data
Sparse and Overcomplete Representations.

Key Topics in this Lecture

- Basics - Component-based representations
- Overcomplete and Sparse Representations,
- Dictionaries
- Pursuit Algorithms
- How to learn a dictionary
- Why is an overcomplete representation powerful?

Overcomplete Representations

- What is the dimensionality of the input image? (say 64x64 image)
>4096
- What is the dimensionality of the dictionary? (each image $=64 \times 64$ pixels)
$>4096 \times \mathrm{N}$

Overcomplete Representations

- What is the dimensionality of the input image? (say 64x64 image)

4096

- What is the dimensionality of the dictionary?

- What is the dimensionality of the dictionary?

Sparse and Overcomplete Representations

Overcomplete Representations

- What is the dimensionality of the input image? (say 64x64 image)

4096

Why Dictionary-based Representations?

Quick Linear Algebra Refresher

- Remember, \#(Basis Vectors)= \#unknowns

When can we solve for α ?

Overcompleteness and Sparsity

- To solve an overcomplete system of the type:

$$
\text { D. } \alpha=X
$$

- Make assumptions about the data.
- Suppose, we say that \mathbf{X} is composed of no more than a fixed number (\mathbf{k}) of "bases" from D ($k \leq \operatorname{dim}(\mathbf{X})$)
- The term "bases" is an abuse of terminology..
- Now, we can find the set of \mathbf{k} bases that best fit the data point, \mathbf{X}.

Sparsity- Definition

- Sparse representations are representations that account for most or all information of a signal with a linear combination of a small number of atoms.
(from: www.see.ed.ac.uk/~tblumens/Sparse/Sparse.html)

The Sparsity Problem

The Sparsity Problem - We want to use as few dictionary entries as possible to do this.	MLS		
$\operatorname{Min}_{\underline{\alpha}}\\|\underline{\alpha}\\|_{0}$ s.t. $\underline{X}=\underline{\mathbf{D}} \underline{\alpha}$			
Spare enso oreampere eneress	${ }_{48}$		

The Sparsity Problem

- We want to use as few dictionary entries as possible to do this.

Counts the number of nonzero elements in α

The Sparsity Problem

- We want to use as few dictionary entries as possible to do this
- Ockham's razor: Choose the simplest explanation invoking the fewest variables

$$
\begin{aligned}
& \operatorname{Min}_{\underline{\alpha}}\|\underline{\alpha}\|_{0} \\
& \text { s.t. } \underline{X}=\mathbf{D} \underline{\alpha}
\end{aligned}
$$

The Sparsity Problem

- We want to use as few dictionary entries as possible to do this.

$$
\begin{array}{|l|}
\hline \operatorname{Min} \\
\underline{\underline{\alpha}} \\
\text { s.t. } \underline{X} \|_{0} \\
=\mathbf{D} \underline{\alpha} \\
\hline
\end{array}
$$

How can we solve the above?
Sparse and Overcomplete Representations

- We will look at 2 algorithms:
- Matching Pursuit (MP)
- Basis Pursuit (BP)

Obtaining Sparse Solutions

Matching Pursuit (MP)

- Greedy algorithm
- Finds an atom in the dictionary that best matches the input signal
- Remove the weighted value of this atom from the signal
- Again, find an atom in the dictionary that best matches the remaining signal.
- Continue till a defined stop condition is satisfied.

Algorithm Matching Pursuit
Input: Signal: $f(t)$.
Output: List of coefficients: $\left(a_{n}, g_{\gamma_{n}}\right)$.
Initialization:
$R f_{1} \leftarrow f(t) ;$
Repeat
find $g_{\gamma_{n}} \in D$ with maximum inner product $<R f_{n}, g_{\gamma_{n}}>$;
$a_{n} \leftarrow<R f_{n}, g_{\gamma_{n}}>$;
$R f_{n+1} \leftarrow R f_{n}-a_{n} g_{\gamma_{n}} ;$
$n \leftarrow n+1$;
Until stop condition (for example: $\left\|R f_{n}\right\|<$ threshold)
From http://en.wikipedia.org/wiki/Matching_pursuit
\qquad

Matching Pursuit

Matching Pursuit
- Main Problem
- Computational complexity
- The entire dictionary has to be searched at every
iteration

Basis Pursuit			
- Remember,			
$\operatorname{Min}_{\underline{\alpha}}\\|\underline{\alpha}\\|_{0}$ s.t. $\underline{X}=\mathbf{D} \underline{\alpha}$			
In the general case, this is intractable			
	${ }^{6}$		

Comparing MP and BP	
Matching Pursuit	Basis Pursuit
Hard thresholding	Soft thresholding
(remember the equations)	

Many Other Methods.. - Iterative Hard Thresholding (IHT) - CoSAMP - OMP	
smem momemememememe	

Trivial Solution
- D $=$ Training data
- Impractical in most situations
- Popular approach: sample random vectors from
training data

Dictionaries: Compressive Sensing

- Just random vectors!

More Structured ways of Constructing Dictionaries

- Dictionary entries must be structurally
"meaningful"
- Represent true compositional units of data
- Have already encountered two ways of building dictionaries
- NMF for non-negative data
-K-means ..

K-Means for Composing Dictionaries

- Every vector is approximated by the centroid of the cluster it falls into
- Cluster means are "codebook" entries
- Dictionary entries
- Also compositional units the compose the data

Sparse and Overcomplete Representations

- Learn Codewords to minimize the total squared length of the training vectors from the closest codeword

		MLSA				
K SVD						
- Initialize Codebook $\mathrm{D}=$						
			0	20	0	
			0	0	0	
1. For every vector,						
compute K-sparse $\quad \alpha=$						
alphas						
- Using any pursuit						
Sparse and doercomplete Represemations						

Applications of Sparse Representations
- MLs:
- Signal representation
- Statistical modelling
-..
- We've seen one: Compressive sensing
- Another popular use
- Denoising

Denoising
- As the name suggests, remove noise!
- We will look at image denoising as an example

The Image Denoising Problem

- Given an image
- Remove Gaussian additive noise from it

Image Denoising
- Remove the noise from \mathbf{Y}, to obtain \mathbf{X} as best
as possible
- Using sparse representations over learned
dictionaries

Image Denoising
- Remove the noise from \mathbf{Y}, to obtain \mathbf{X} as best
as possible
- Using sparse representations over learned
dictionaries
- We will learn the dictionaries

Image Denoising

- Remove the noise from \mathbf{Y}, to obtain \mathbf{X} as best as possible
- Using sparse representations over learned dictionaries
- We will learn the dictionaries
- What data will we use? The corrupted image itself!

Image Denoising

- The data dictionary D
- Size $=n \times k(k>n)$
- This is known and fixed, to start with
- Every image patch can be sparsely represented using D

Image Denoising

- We use the data to be denoised to learn the dictionary.
- Training and denoising become an iterated process.
- We use image patches of size $\sqrt{ } n \times \sqrt{ }$ pixels (i.e. if the image is 64×64, patches are 8×8)

Image Denoising

$$
\begin{aligned}
& \underset{\underline{D, \alpha_{i j}, X}}{\operatorname{Min}}\left\{\mu\|\underline{X}-Y\|_{2}^{2}+\sum_{i j}\left\|\underline{R_{i j} X}-\mathbf{D} \underline{\alpha}_{i j}\right\|_{2}^{2}\right. \\
& \left.+\sum_{i j} \lambda_{i j}\left\|\alpha_{\underline{i j}}\right\|_{0}\right\}
\end{aligned}
$$

How do we estimate all 3 at once?
Image Denoising
$\operatorname{Min}_{\frac{D, \alpha_{i}, X}{}}\left\{\mu\|\underline{X}-Y\|_{2}^{2}+\sum_{i j}\left\|\underline{R_{i j} X}-\mathbf{D} \underline{\alpha_{i j}}\right\|_{2}^{2}\right.$
$\left.+\sum_{i j} \lambda_{i j}\left\|\underline{\alpha_{i j}}\right\|_{0}\right\}$
How do we estimate all 3 at once?
We cannot estimate them at the same time!

Image Denoising
- Now, update the dictionary D.
- Update D one column at a time, following the
K-SVD algorithm
- K-SVD maintains the sparsity structure

Image Denoising
- Now, update the dictionary D.
- Update D one column at a time, following the
K-SVD algorithm
- K-SVD maintains the sparsity structure
- Iteratively update α and D

Image Denoising
- Summarizing... We wanted to obtain 3 things
$>$ Weights α
$>$ Dictionary \mathbf{D}
$>$ Denoised Image \mathbf{X}

Image Denoising
- Summarizing... We wanted to obtain 3 things
$>$ Weights $\alpha-$ Your favorite pursuit algorithm
$>$ Dictionary D - Using K-SVD
$>$ Denoised Image X

