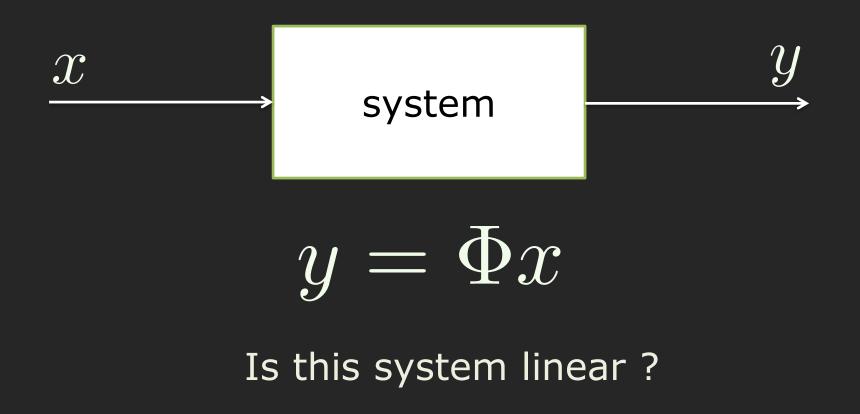
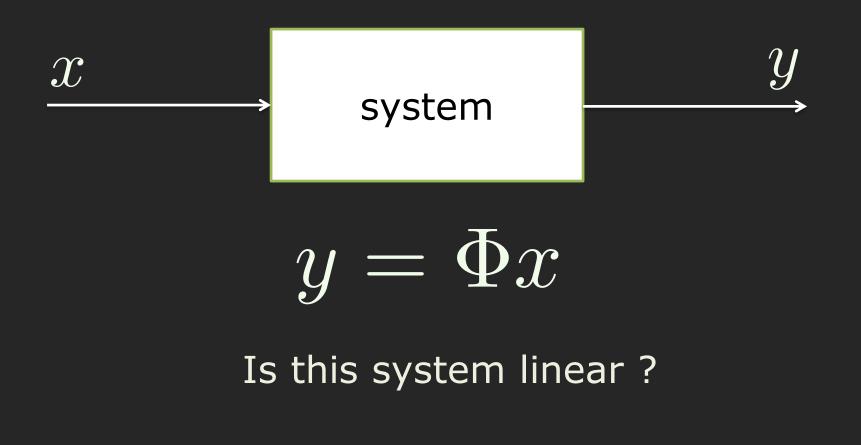
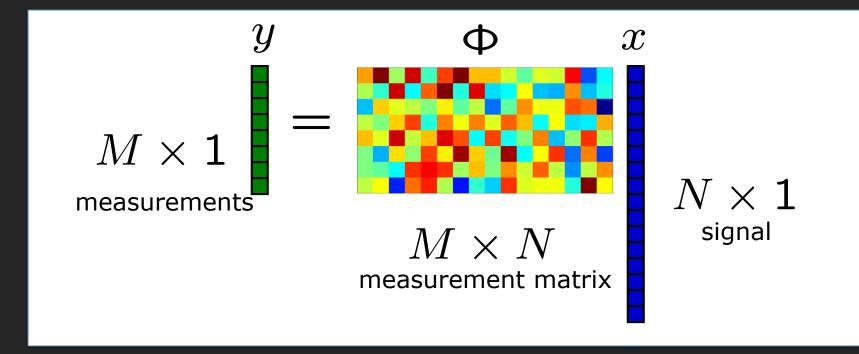
### Introduction to Compressive Sensing Aswin Sankaranarayanan





#### Given y, can we recovery x?

### **Under-determined problems**

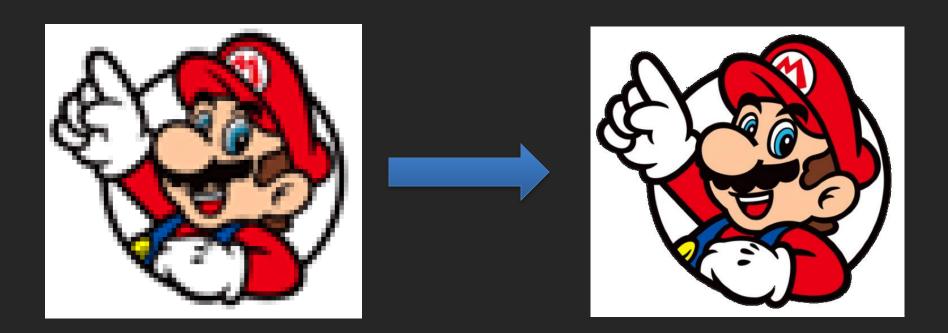


#### If M < N, then the system is information lossy

Image credit Graeme Pope

Image credit Sarah Bradford

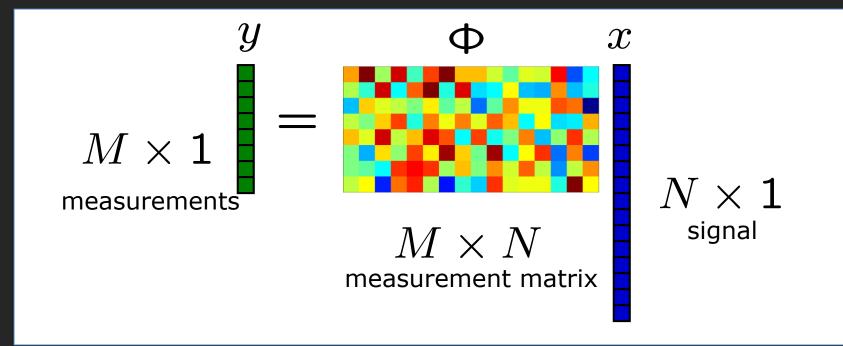
### Super-resolution



#### Can we increase the resolution of this image ?

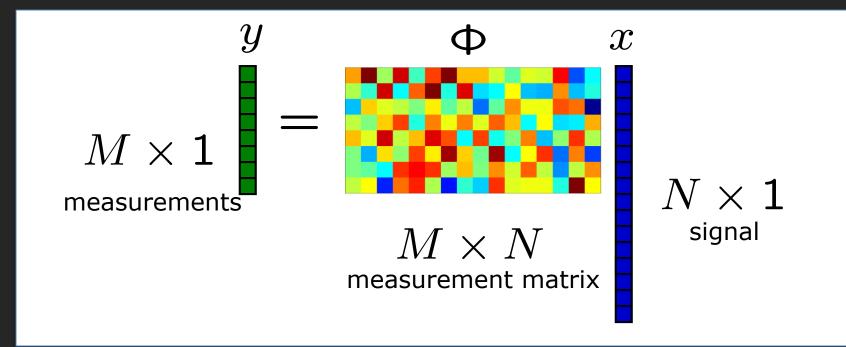
### (Link: Depixelizing pixel art)

### **Under-determined problems**



#### Fewer knowns than unknowns!

### **Under-determined problems**



#### Fewer knowns than unknowns!

An infinite number of solutions to such problems

Credit: Rob Fergus and Antonio Torralba

Credit: Rob Fergus and Antonio Torralba



### Is there anything we can do about this ?

### Complete the sentences

I cnt blv I m bl t rd ths sntnc.

Wntr s cmng, n .. Wntr s hr

Hy, I m slvng n ndr-dtrmnd lnr systm.

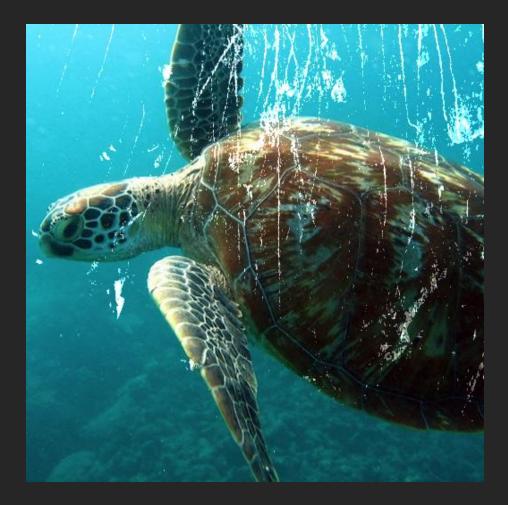


### Complete the matrix

| 5 | 3 |   |   | 7 |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| 6 |   |   | 1 | 9 | 5 |   |   |   |
|   | 9 | 8 |   |   |   |   | 6 |   |
| 8 |   |   |   | 6 |   |   |   | 3 |
| 4 |   |   | 8 |   | 3 |   |   | 1 |
| 7 |   |   |   | 2 |   |   |   | 6 |
|   | 6 |   |   |   |   | 2 | 8 |   |
|   |   |   | 4 | 1 | 9 |   |   | 5 |
|   |   |   |   | 8 |   |   | 7 | 9 |

how: ?

## Complete the image



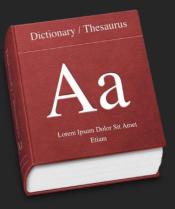
#### Model ?

### Dictionary of visual words

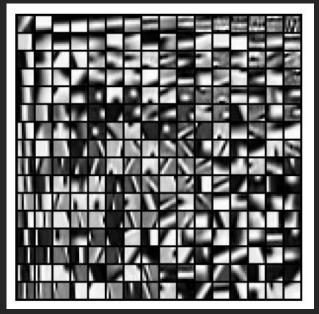
I cnt blv I m bl t rd ths sntnc.

Shrlck s th vc f th drgn

Hy, I m slvng n ndr-dtrmnd Inr systm.







### Dictionary of visual words

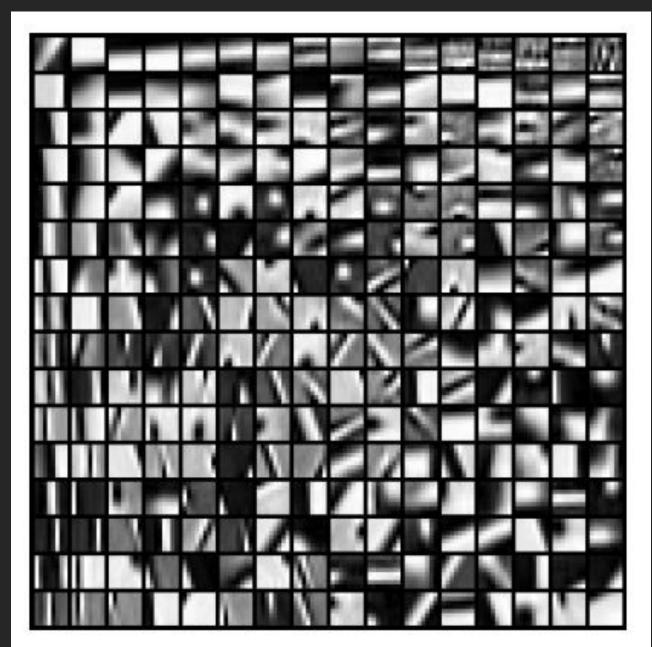
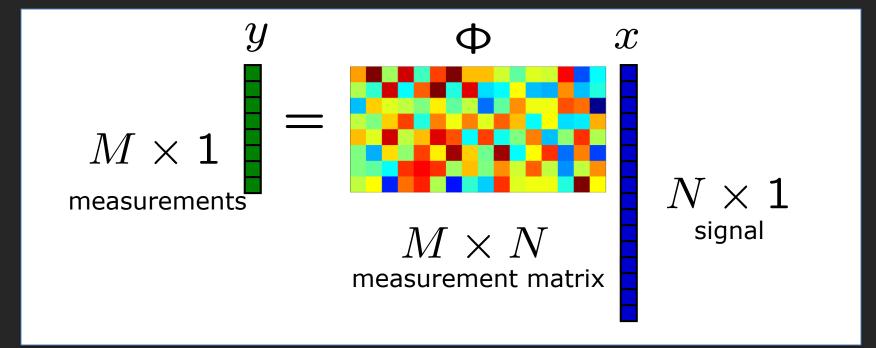


Image credit Graeme Pope

Image credit Graeme Pope

Result Studer, Baraniuk, ACHA 2012

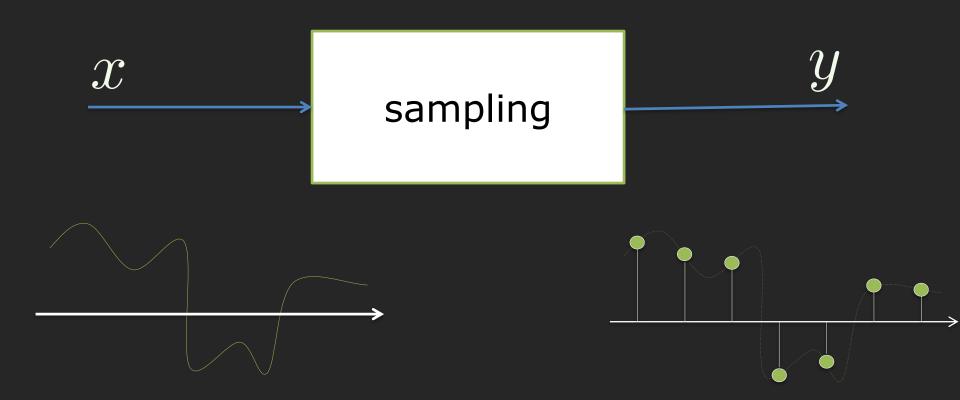
### **Compressive Sensing**



A toolset to solve under-determined systems by exploiting additional structure/models on the signal we are trying to recover.

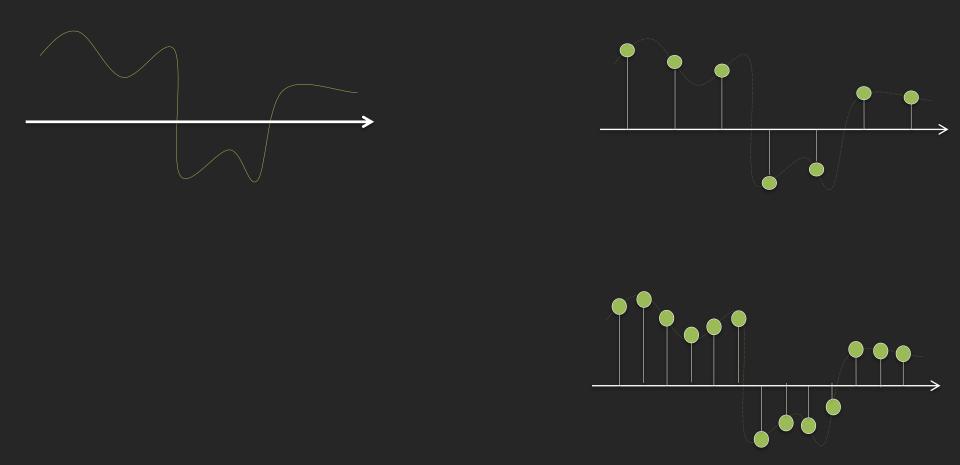
# modern sensors are linear systems!!!

# Sampling



Can we recover the analog signal from its discrete time samples ?

### Nyquist Theorem



An analog signal can be reconstructed perfectly from discrete samples *provided you sample it densely*.

### The Nyquist Recipe

sample faster

sample denser

the more you sample, the more detail is preserved

### The Nyquist Recipe

sample faster

sample denser

the more you sample, the more detail is preserved

But what happens if you do not follow the Nyquist recipe ?

Credit: Rob Fergus and Antonio Torralba



Image credit: Boston.com

### The Nyquist Recipe

sample faster

sample denser

the more you sample, the more detail is preserved

But what happens if you do not follow the Nyquist recipe ?



What you must learn is that these rules are no different than the rules of a computer system. Some of them can be bent. Others can be broken.

### Breaking resolution barriers

Observing a 2000 fps spinning tool with a 25 fps camera

Normal Video: 25fps



#### Compressively obtained video: 25fps



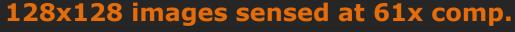
Recovered Video: 2000fps

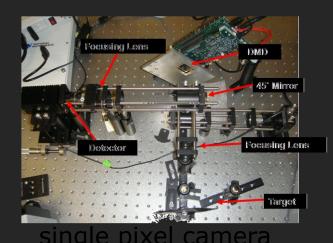


Slide/Image credit: Reddy et al. 2011

### **Compressive Sensing**

# Use of **motion flow-models** in the context of compressive video recovery





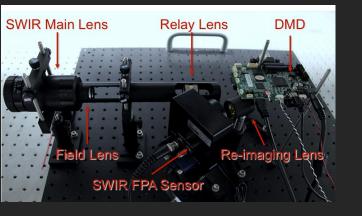
Naïve frame-to-frame recovery



CS-MUVI at 61x compression

Sankaranarayanan et al. ICCP 2012, SIAM J. Imaging Sciences, 2015\*

### **Compressive Imaging Architectures**

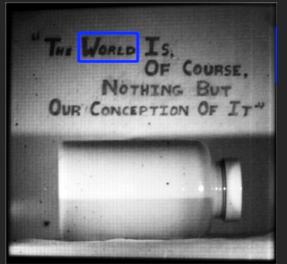


Scalable imaging architectures that deliver videos at **mega-pixel resolutions** in infrared

visible image



SWIR image



A mega-pixel image obtained from a 64x64 pixel array sensor

Chen et al. CVPR 2015, Wang et al. ICCP 2015

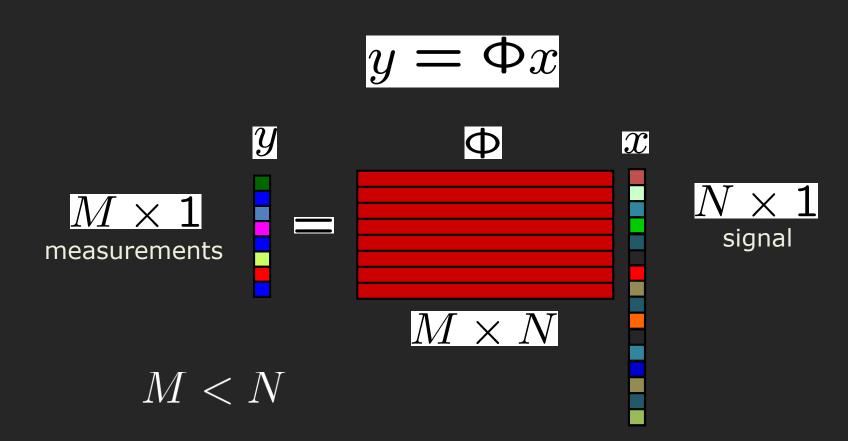
### Advances in Compressive Imaging

Carnegie Mellon University

### Linear Inverse Problems

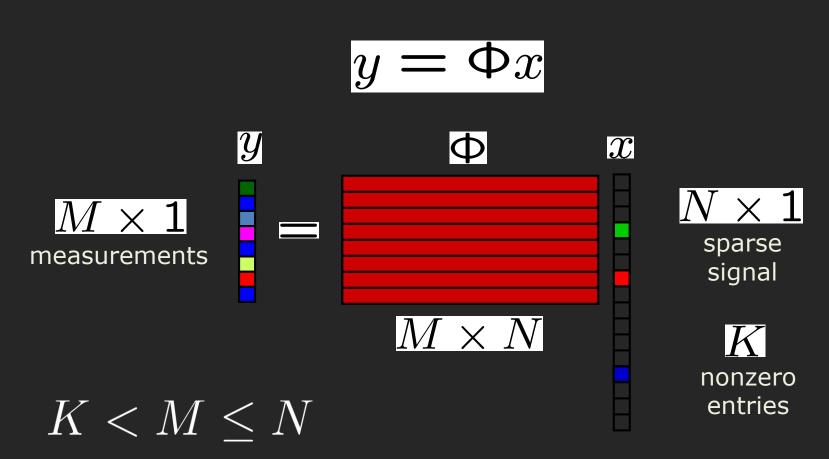
- Many classic problems in computer can be posed as linear inverse problems
- Notation
  - Signal of interest  $x \in \mathbb{R}^N$
  - **Observations**  $y \in \mathbb{R}^M$  measurement matrix - Measurement model  $y = \Phi x + e$  measurement noise
- Problem definition: given y, recoverx

### Linear Inverse Problems



Measurement matrix has a (*N*-*M*) dimensional **null-space** Solution is no longer **unique** 

### Sparse Signals



### How Can It Work?

|y|

 $|\mathcal{X}|$ 

 $\mathbf{D}$ 

K columns

 ${\mathcal X}$ 

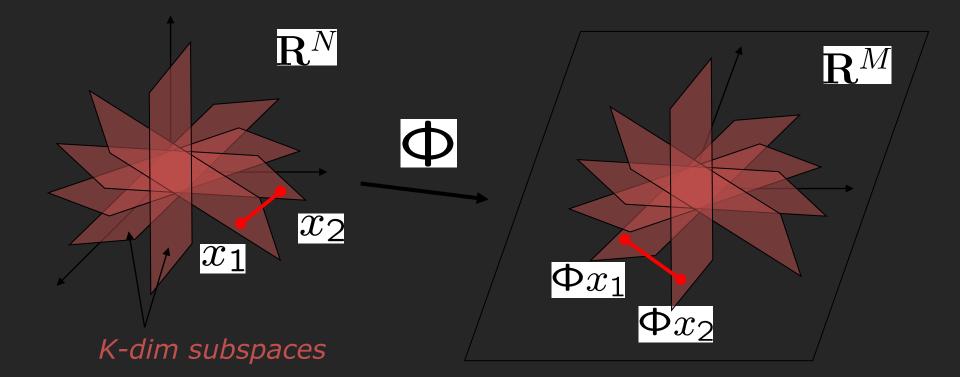


# ... and so loses information in general

• But we are only interested in *sparse* vectors

### Restricted Isometry Property (RIP)

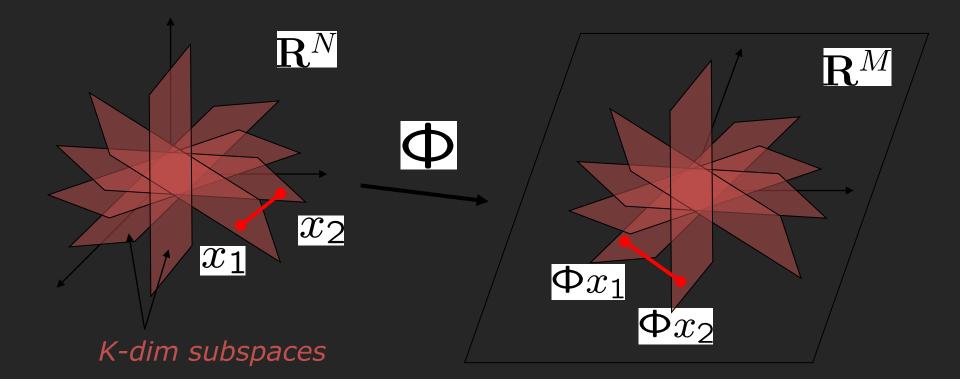
• Preserve the structure of sparse/compressible signals



### Restricted Isometry Property (RIP)

• RIP of order 2K implies: for all K-sparse  $x_1$  and  $x_2$ 

$$(1 - \delta_{2K}) \leq rac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1 + \delta_{2K})$$



### How Can It Work?

|y|

 $|\mathcal{X}|$ 

 $\mathbf{O}$ 

K columns

 Matrix Φ not full rank...



#### ... and so loses information in general

• **Design**  $\Phi$  so that each of its  $M \times 2K$  submatrices are full rank (RIP)

### How Can It Work?

|y|

 $|\mathcal{X}|$ 

K columns

 Matrix Φ not full rank...



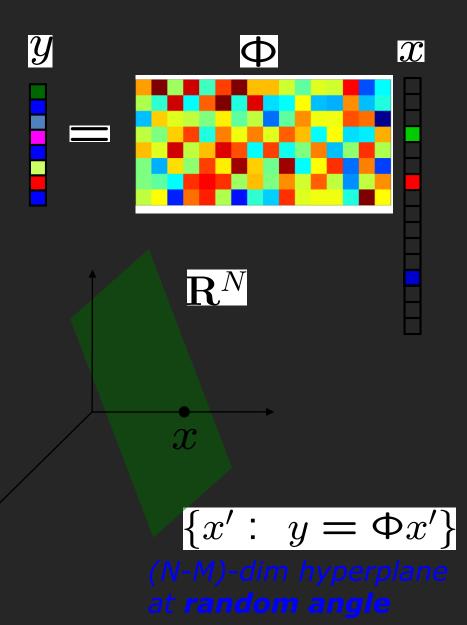
#### ... and so loses information in general

- **Design**  $\Phi$  so that each of its  $M \times 2K$  submatrices are full rank (RIP)
- Random measurements provide RIP with



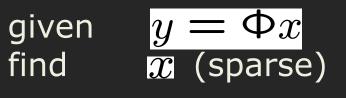
# CS Signal Recovery

- Random projection Φ not full rank
- Recovery problem: given  $y = \Phi x$  find x
- Null space
- Search in null space for the "sparsest" II



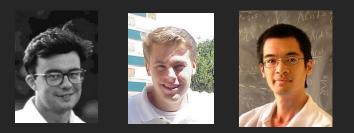
# ℓ<sub>1</sub> Signal Recovery

- Recovery: (ill-posed inverse problem)
- Optimization:



$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

• Convexify the  $\ell_0$  optimization



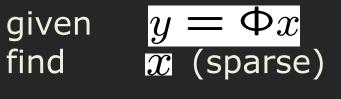
Candes Romberg Tao



Donoho

# ℓ<sub>1</sub> Signal Recovery

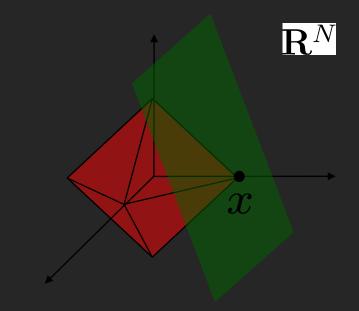
- Recovery: (ill-posed inverse problem)
- Optimization:



$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

• Convexify the  $\ell_0$  optimization

 Polynomial time alg (linear programming)



### **Compressive Sensing**

Let. 
$$y = \Phi x_0 + e$$

 $\hat{x} = \arg\min_{x} \|x\|_{1} \quad s.t. \quad \|y - \Phi x\|_{2} \le \|e\|$ 

If  $\Phi$  satisfies RIP with  $\delta_{2K} \leq \sqrt{2} - 1$ ,

#### Then

$$\|\hat{x} - x_0\|_1 \le C_1 \|e\|_2 + C_2 \|x_0 - x_{0,K}\|_2 / \sqrt{K}$$

**Best K-sparse approximation**