Machine Learning for Signal Processing Regression and Prediction

Instructor: Bhiksha Raj

Topics

- Nearest neighbor regression and classification
- Linear regression
- With an application to glitch elimination in sound
- And its relation to nearest-neighbor regression
- Regression in kernel spaces
- Kernel regression
- Regularization..

Topics

- Nearest neighbor regression and classification
- Linear regression
- With an application to glitch elimination in sound
- And its relation to nearest-neighbor regression
- Regression in kernel spaces
- Kernel regression
- Regularization..

The problems of classification and ${ }^{\text {mLSP }}$

regression

- Classification: Given a feature X, determine the class Y
- Given image features, classify if this is a face
- Regression: Given an input X, estimate another feature Y
- Given height, age, gender, etc. of a person, estimate weight
- In reality both are the same problem:
- The class is simply a categorical feature

Example-based estimation

- Classification:
- Have seen one or more people who are exactly 160 cm , 50 kg , and all are female
- Get a new test instance of a person who is exactly 160 cm , 50 kg . Is this person..
- Male?
- Female?
- Regression:
- Have seen one or more people who are exactly 160 cm , female, and their weight is more or less 50 kg
- Get a new test instance of a 160 cm female person. What is your best guess for her weight?

Example-based estimation

- Classification:
- Have seen one or more people who are exactly 160 cm , 50 kg , and all are female
- Get a new test instance of a person who is oun IS 49 KG? 50 kg . Is this person..
- Male?
- Female THE WEIGHT OF THE

BUT WHREssion:

- Have seen one or more people who are exactly 160 cm , female, and their weight is 50 kg
- Get a new test instance of a 160 cm female person. What is your best guess for her weight?

Example based prediction

- Problem: the gray circle is missing its color attribute. Predict it
- Find the nearest training instance
- Based on observed feature X
- Predict Y from it
- Y may be a class value or a continuous valued estimator

Nearest-neighbor based prediction

- Problem: the gray circle is missing its color attribute.
Predict it
- Find the nearest training

instance

- Based only the nearest neighbor???

Can you
What if the next-ne
different answer?
a different answer? Class value or a

Nearest-neighbor prediction

- Alternately, find the k closest training instances
- Called the k-nearest-neighbor method
- Predict desired attribute based on these k closest neighbors

K-nearest neighbor prediction

- Problem: the gray circle is missing its color attribute. Predict it
- Nearest neighbor
- K-nearest neighbor
- Example for $\mathrm{k}=3$

Distance functions

- How does one define the distance between two instances?
- Some attributes may be numeric
- Other attributes may nominal
- Numeric attributes: Usually the Euclidean distance between attribute values is used
- Nominal attributes: Usually a binary distance function distance is set to 1 if attribute values are different, 0 if they are the same
- Will assume numeric attributes for our signals..

Distance on numeric features

$$
d\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|^{2}
$$

$$
\begin{aligned}
& w\left(x_{1}, x_{2}\right)=x_{1}^{T} x_{2} \\
& d\left(x_{1}, x_{2}\right)=\frac{1}{x_{1}^{T} x_{2}}
\end{aligned}
$$

K-nearest neighbor prediction

- Find the K nearest neighbors
- Predict as the majority opinion
- But should we also consider the actual distance
- Is a farther neighbor as important as a closer one?

- What about numeric prediction?
- No notion of "majority"
- No two neighbors may have the same value for Y

Weighted K-nearest neighbor prediction

- Classification
- Score (class) = $\sum_{i:(i \in K N N) \&} \operatorname{class}(i)=\operatorname{class} w\left(x, x_{i}\right)$
$-\operatorname{class}(x)=\underset{\text { class }}{\operatorname{argmax}} \operatorname{Score}($ class $)$
- Regression:
$-Y(x)=\sum_{i \in K N N} w\left(x, x_{i}\right) Y_{i}$
- The weight $w\left(x, x_{i}\right)$ is inversely related to $d\left(x, x_{i}\right)$
- If $d\left(x, x_{i}\right)$ increases, $w\left(x, x_{i}\right)$ decreases

Weights of neighbors..

Weighted K-nearest neighbor prediction

- Classification
- Score (class) = $\sum_{i:(i \in K N N) \&} \operatorname{class}(i)=$ class $w\left(x, x_{i}\right)$
$-\operatorname{class}(x)=\underset{\text { class }}{\operatorname{argmax}} \operatorname{Score}($ class $)$
- Regression:
$-Y(x)=\sum_{i \in K N N} w\left(x, x_{i}\right) Y_{i}$
- The weight $w\left(x, x_{i}\right)$ is inversely related to $d\left(x, x_{i}\right)$

WHY RESTRICT TO K NEAREST NEIGHBORS? Considering that distant examples carry less weight

- If $d\left(x, x_{i}\right)$ increases, $w\left(x, x_{i}\right)$ decreases

Weighted example-based prediction

- Classification

$$
\begin{aligned}
& - \text { Score }(\text { class })= \\
& \quad \sum_{i: c l a s s(i)=\operatorname{class}} w\left(x, x_{i}\right) \\
& -\operatorname{class}(x)=\underset{\text { class }}{\operatorname{argmax}} \operatorname{Score}(\text { class })
\end{aligned}
$$

- Regression:
$-Y(x)=\sum_{i} w\left(x, x_{i}\right) Y_{i}$
- All training instances invoked!

Weights from numeric features

NN prediction with inner-product ${ }^{\text {MLSP }}$ weights

Nearest Neighbor Classification

$$
\begin{gathered}
\text { Score }_{\text {green }}=\sum_{i \in \text { green }\left(x_{\text {test }}^{T} x_{i}\right) \quad \text { Score }_{\text {red }}=\sum_{i \in \text { red }}\left(x_{\text {test }}^{T} x_{i}\right)}^{Y_{\text {test }}=\text { Score }_{\text {green }}>\text { Score }_{\text {red }} ? \text { Green, }} \begin{array}{c}
\text { else Red }
\end{array}
\end{gathered}
$$

Nearest Neighbor Regression

Nearest Neighbor Regression

Simply stretching any axis changes the inner products and, as a result, the relative weights of the training instances.

Stretching an axis can change the answer!
How do we fix this?

Normalizing the axes

- Normalize each axis by the inverse standard deviation (of the training data)
- So that the variance is 1
- Compute the answer on the normalized data

$$
\begin{gathered}
\widehat{\boldsymbol{x}}=\boldsymbol{C}^{-\mathbf{0 . 5} \boldsymbol{x}} \\
Y_{\text {test }}=\sum_{i}\left(\widehat{\boldsymbol{x}}_{\text {test }}^{T} \widehat{\boldsymbol{x}}_{i}\right) Y_{i}
\end{gathered}
$$

The whitening matrix

- Top: Skewed natural scatter of a data set
- Bottom: Scatter after whitening via

$$
\hat{\mathbf{x}}=\mathbf{C}^{-\frac{1}{2}} \mathbf{x}
$$

- Rotates and rescales the axes to make scatter circular (spherical)

Normalizing the axes

Lessons

- Classification are regression are two versions of the same problem
- Predicting an attribute of a data instance based on other attributes
- Nearest-neighbor based prediction: Predict the weighted average value of desired attribute from all the training instances
- Amazing fact they never told you: Every form of prediction/classification/regression is actually just a variant of weighted nearest-neighbor prediction

Changing Gears

Topics

- Nearest neighbor regression and classification
- Linear regression
- With an application to glitch elimination in sound
- And its relation to nearest-neighbor regression
- Regression in kernel spaces
- Kernel regression
- Regularization..

A Common Problem

- Can you spot the glitches?

How to fix this problem?

- "Glitches" in audio
- Must be detected
- How?
- Then what?
- Glitches must be "fixed"
- Delete the glitch
- Results in a "hole"
- Fill in the hole
- How?

Interpolation..

- "Extend" the curve on the left to "predict" the values in the "blank" region
- Forward prediction
- Extend the blue curve on the right leftwards to predict the blank region
- Backward prediction
- How?
- Regression analysis..

Detecting the Glitch

- Regression-based reconstruction can be done anywhere
- Reconstructed value will not match actual value
- Large error of reconstruction identifies glitches

What is a regression

- Analyzing relationship between variables
- Expressed in many forms
- Wikipedia
- Linear regression, Simple regression, Ordinary least squares, Polynomial regression, General linear model, Generalized linear model, Discrete choice, Logistic regression, Multinomial logit, Mixed logit, Probit, Multinomial probit,
- Generally a tool to predict variables

Regressions for prediction

- $\mathbf{y}=\mathrm{f}(\mathbf{x} ; \Theta)+\mathrm{e}$
- Different possibilities
$-\mathbf{y}$ is a scalar
- y is real
- \mathbf{y} is categorical (classification)
$-\mathbf{y}$ is a vector
$-\mathbf{x}$ is a vector
- \mathbf{x} is a set of real valued variables
- \mathbf{x} is a set of categorical variables
- \mathbf{x} is a combination of the two
$-\mathrm{f}($.$) is a linear or affine function$
$-f($.$) is a non-linear function$
$-\mathrm{f}($.$) is a time-series model$

A linear regression

- Assumption: relationship between variables is linear
- A linear trend may be found relating \mathbf{x} and \mathbf{y}
$-\mathbf{y}=$ dependent variable
- $\mathbf{x}=$ explanatory variable
- Given \mathbf{x}, \mathbf{y} can be predicted as an affine function of \mathbf{x}

An imaginary regression..

- http://pages.cs.wisc.edu/~kovar/hall.html
- Check this shit out (Fig. 1).

That's bonafide, 100\%-real data, my friends. I took it myself over the course of two weeks. And this was not a leisurely two weeks, either; I busted my ass day and night in order to provide you with nothing but the best data possible. Now, let's look a bit more
 closely at this data, remembering that it is absolutely first-rate. Do you see the exponential dependence? I sure don't. I see a bunch of crap.

Christ, this was such a waste of my time.
Banking on my hopes that whoever grades this will just look at the pictures, I drew an exponential through my noise. I believe the apparent legitimacy is enhanced by the fact that I used a complicated computer program to make the fit. I understand this is the same process by which the top quark was discovered.

Linear Repressions

- $\mathbf{y}=\mathbf{a}^{\mathrm{T}} \mathbf{x}+\mathbf{b}+\mathbf{e}$
$-\mathbf{e}=$ prediction error
- Given a "training" set of $\{\mathbf{x}, \mathbf{y}\}$ values: estimate a and \mathbf{b}
$-\mathbf{y}_{1}=\mathbf{a}^{\mathrm{T}} \mathbf{x}_{1}+\mathbf{b}+\mathbf{e}_{1}$
$-\mathbf{y}_{2}=\mathbf{a}^{\mathrm{T}} \mathbf{x}_{2}+\mathbf{b}+\mathbf{e}_{2}$
$-\mathbf{y}_{3}=\mathbf{a}^{\mathrm{T}} \mathbf{x}_{3}+\mathbf{b}+\mathbf{e}_{3}$
- ...
- If \mathbf{a} and \mathbf{b} are well estimated, prediction error will be small

Linear Regression to a scalar

$$
\begin{aligned}
& y_{1}=\boldsymbol{a}^{\mathrm{T}} \mathbf{x}_{1}+\mathrm{b}+\mathrm{e}_{1} \\
& y_{2}=\boldsymbol{a}^{\mathrm{T}} \mathbf{x}_{2}+\mathrm{b}+\mathrm{e}_{2} \\
& y_{3}=\boldsymbol{a}^{\mathrm{T}} \mathbf{x}_{3}+\mathrm{b}+\mathrm{e}_{3}
\end{aligned}
$$

- Define:

$$
\left.\begin{array}{l}
\mathbf{y}=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3} \ldots
\end{array}\right] \\
\mathbf{e}=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccc}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
1 & 1 & 1
\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{ll}
\boldsymbol{a}^{T} & b
\end{array}\right]
$$

- Rewrite

$$
\mathbf{y}=\mathbf{A X}+\mathbf{e}
$$

Learning the parameters

$$
\mathbf{y}=\mathbf{A X}+\mathbf{e}
$$

$\hat{\mathbf{y}}=\mathbf{A X} \quad$ Assuming no error

- Given training data: several \mathbf{x}, \mathbf{y}
- Can define a "divergence": $\mathrm{D}(\mathbf{y}, \hat{\mathbf{y}})$
- Measures how much $\hat{\mathbf{y}}$ differs from \mathbf{y}
- Ideally, if the model is accurate this should be small
- Estimate \mathbf{a}, \mathbf{b} to minimize $\mathrm{D}(\mathbf{y}, \hat{\mathbf{y}})$

The prediction error as divergence

$$
\begin{gathered}
y_{1}=\mathbf{a}^{\mathrm{T}} \mathbf{x}_{1}+b+e_{1} \\
y_{2}=\mathbf{a}^{\mathrm{T}} \mathbf{x}_{\mathbf{2}}+b+e_{2} \\
y_{3}=\mathbf{a}^{\mathrm{T}} \mathbf{x}_{\mathbf{3}}+b+e_{3} \\
\mathbf{y}=\mathbf{a}^{T} \mathbf{X}+\mathbf{e}=\hat{\mathbf{y}}+\mathbf{e}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{D}(\mathbf{y}, \hat{\mathbf{y}})=\mathbf{E}=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+\ldots \\
& =\left(y_{1}-\mathbf{a}^{T} \mathbf{x}_{1}-b\right)^{2}+\left(y_{2}-\mathbf{a}^{T} \mathbf{x}_{2}-b\right)^{2}+\left(y_{3}-\mathbf{a}^{T} \mathbf{x}_{3}-b\right)^{2}+\ldots
\end{aligned}
$$

$$
\mathbf{E}=(\mathbf{y}-\mathbf{A} \mathbf{X})(\mathbf{y}-\mathbf{A} \mathbf{X})^{T}=\|\mathbf{y}-\mathbf{A} \mathbf{X}\|^{2}
$$

- Define divergence as sum of the squared error in predicting \mathbf{y}

Prediction error as divergence

- $y=\mathbf{A x}+e$
$-e=$ prediction error
- Find the "slope" a such that the total squared length of the error lines is minimized

Solving a linear regression
 $$
\mathbf{y}=\mathbf{A X}+\mathbf{e}
$$

- Minimize squared error

$$
\begin{aligned}
& \mathbf{E}=\|\mathbf{y}-\mathbf{A X}\|^{2} \\
& \mathbf{A}=\mathbf{y} \operatorname{pinv}(\mathbf{X})
\end{aligned}
$$

More Explicitly

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array} \ldots\right] \quad \mathbf{X}=\left[\begin{array}{cccc}
\mathbf{x}_{1} & \mathbf{x}_{2} \mathbf{x}_{3} & \ldots \\
1 & 1 & 1
\end{array}\right] \\
\mathbf{A}=\mathbf{y} \operatorname{pinv}(\mathbf{X})
\end{gathered}
$$

- \mathbf{X} is wider than it is tall

$$
\operatorname{pinv}(\mathbf{X})=\mathbf{X}^{T}\left(\mathbf{X X}^{T}\right)^{-1}
$$

$$
\mathbf{A}=\mathbf{y} \mathbf{X}^{T}\left(\mathbf{X X}^{T}\right)^{-1}
$$

Regression in multiple dimensions

$$
\begin{aligned}
& \mathbf{y}_{1}=\mathbf{A} \mathbf{x}_{\mathbf{1}}+\mathbf{b}+\mathbf{e}_{1} \\
& \mathbf{y}_{2}=\mathbf{A} \mathbf{x}_{\mathbf{2}}+\mathbf{b}+\mathbf{e}_{2}
\end{aligned}
$$

$$
\mathbf{y}_{3}=\mathbf{A} \mathbf{x}_{\mathbf{3}}+\mathbf{b}+\mathbf{e}_{3} \quad \mathrm{y}_{\mathrm{ij}}=\mathrm{j}^{\text {th }} \text { component of vector } \mathbf{y}_{\mathbf{i}}
$$

- Also called multiple regression
- Equivalent of saying:

y_{i} is a vector

$$
\mathbf{y}_{\mathrm{i}}=\mathbf{A} \mathbf{x}_{\mathbf{i}}+\mathbf{b}+\mathbf{e}_{\mathrm{i}}
$$

- Fundamentally no different from N separate single regressions
- But we can use the relationship between ys to our benefit

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{i}}=\mathrm{i}^{\text {ith }} \text { row of } \mathrm{A} \\
& \mathrm{~b}_{\mathrm{j}}=\mathrm{j}^{\text {th }} \text { component of } \mathbf{b} \\
& y_{i 1}=\mathbf{a}_{\mathbf{1}} \mathbf{x}_{\mathbf{i}}+\mathrm{b}_{1}+\mathrm{e}_{\mathrm{i} 1} \\
& \mathrm{y}_{\mathrm{i} 2}=\mathbf{a}_{\mathbf{2}} \mathbf{x}_{\mathbf{i}}+\mathrm{b}_{2}+\mathrm{e}_{\mathrm{i} 2} \\
& y_{i 3}=\mathbf{a}_{3} \mathbf{x}_{\mathbf{i}}+b_{3}+\mathrm{e}_{\mathrm{i} 3}
\end{aligned}
$$

Multiple Regression

$$
\begin{gathered}
\mathbf{Y}=\left[\begin{array}{lll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} \ldots
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
\mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right] \\
\mathbf{E}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \ldots
\end{array}\right] \quad \hat{\mathbf{A}}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right] \\
\mathbf{Y}=\hat{\mathbf{A}} \mathbf{X}+\mathbf{E} \quad \text { Frobenius norm } \\
D I V=\sum_{i}\left\|\mathbf{y}_{i}-\hat{\mathbf{A}} \overline{\mathbf{x}}_{i}\right\|^{2}=\|\mathbf{Y}-\hat{\mathbf{A}} \mathbf{X}\|_{F}^{2}
\end{gathered}
$$

- Minimizing

$$
\hat{\mathbf{A}}=\mathbf{Y} p i n v(\mathbf{X})=\mathbf{Y} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{X}^{T}\right)^{-1}
$$

Aside: The Frobenius norm

- The Frobenius norm is the square root of the sum of the squares of all the components of the matrix

$$
\|\mathbf{E}\|_{F}=\sqrt{\sum_{i, j} e_{i, j}^{2}}
$$

- The derivative of the squared Frobenius norm:

$$
\nabla_{A}\|\mathbf{Y}-\mathbf{A X}\|_{F}^{2}=0 \Rightarrow \mathbf{A}=\mathbf{Y} \mathbf{X}\left(\mathbf{X} \mathbf{X}^{T}\right)^{-1}
$$

A Different Perspective

- \mathbf{y} is a noisy reading of $\mathbf{A x}$

$$
\mathbf{y}=\mathbf{A x}+\mathbf{e}
$$

- Error \mathbf{e} is Gaussian

$$
\mathbf{e} \sim N\left(0, \sigma^{2} \mathbf{I}\right)
$$

- Estimate A from $\mathbf{Y}=\left[\begin{array}{lll}\mathbf{y}_{1} & \mathbf{y}_{2} \ldots \mathbf{y}_{N}\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2} \ldots \mathbf{x}_{N}\end{array}\right]$

The Likelihood of the data

$$
\mathbf{y}=\mathbf{A} \mathbf{x}+\mathbf{e} \quad \mathbf{e} \sim N\left(0, \sigma^{2} \mathbf{I}\right)
$$

- Probability of observing a specific \mathbf{y}, given \mathbf{x}, for a particular matrix \mathbf{A}

$$
P(\mathbf{y} \mid \mathbf{x} ; \mathbf{A})=N\left(\mathbf{y} ; \mathbf{A x}, \sigma^{2} \mathbf{I}\right)
$$

$$
P(\mathbf{Y} \mid \mathbf{X} ; \mathbf{A})=\prod N\left(\mathbf{y}_{i} ; \mathbf{A} \mathbf{x}_{i}, \sigma^{2} \mathbf{I}\right)
$$

- Assuming IID for convenience (not necessary)

A Maximum Likelihood Estimate

$$
\begin{gathered}
\mathbf{y}=\mathbf{A}^{T} \mathbf{x}+\mathbf{e} \quad \mathbf{e} \sim N\left(0, \sigma^{2} \mathbf{I}\right) \quad \mathbf{Y}=\left[\begin{array}{ll}
\mathbf{y}_{1} & \mathbf{y}_{2} \ldots \mathbf{y}_{N}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ll}
\mathbf{x}_{1} & \mathbf{x}_{2} \ldots \mathbf{x}_{N}
\end{array}\right] \\
P(\mathbf{Y} \mid \mathbf{X})=\prod_{i} \frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{D}}} \exp \left(\frac{-1}{2 \sigma^{2}}\left\|\mathbf{y}_{i}-\mathbf{A}^{T} \mathbf{x}_{i}\right\|^{2}\right) \\
\log P(\mathbf{Y} \mid \mathbf{X} ; \mathbf{A})=C-\sum_{i} \frac{1}{2 \sigma^{2}}\left\|\mathbf{y}_{i}-\mathbf{A} \mathbf{x}_{i}\right\|^{2}
\end{gathered}
$$

- Maximizing the log probability is identical to minimizing the error
- Identical to the least squares solution

$$
\mathbf{A}=\mathbf{Y} \mathbf{X}^{T}\left(\mathbf{X X}^{T}\right)^{-1}=\mathbf{Y} \operatorname{pinv}(\mathbf{X})
$$

Returning to Multiple Regression

$$
\begin{aligned}
& \mathbf{Y}=\left[\begin{array}{lll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} \ldots
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccc}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
1 & 1 & \ldots
\end{array}\right] \quad \hat{\mathbf{A}}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right] \\
& \mathbf{E}=\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \ldots
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{Y}=\hat{\mathbf{A}} \mathbf{X}+\mathbf{E} \\
D I V=\sum_{i}\left\|\mathbf{y}_{i}-\hat{\mathbf{A}} \overline{\mathbf{x}}_{i}\right\|^{2}=\|\mathbf{Y}-\hat{\mathbf{A}} \mathbf{X}\|_{F}^{2}
\end{gathered}
$$

- Minimizing

$$
\hat{\mathbf{A}}=\mathbf{Y} p i n v(\mathbf{X})=\mathbf{Y} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{X}^{T}\right)^{-1}
$$

Predicting an output

- From a collection of training data, have learned \mathbf{A}
- Given \mathbf{x} for a new instance, but not \mathbf{y}, what is \mathbf{y} ?
- Simple solution:

$$
\hat{\mathbf{y}}=\mathbf{A x}+\mathbf{b}
$$

Applying it to our problem

- Prediction by regression
- Forward regression

- $x_{\mathrm{t}}=a_{1} x_{\mathrm{t}-1}+a_{2} x_{\mathrm{t}-2} \ldots a_{\mathrm{k}} x_{\mathrm{t}-\mathrm{k}}+e_{\mathrm{t}}$
- Backward regression
- $x_{\mathrm{t}}=b_{1} x_{\mathrm{t}+1}+b_{2} x_{\mathrm{t}+2} \ldots b_{\mathrm{k}} x_{\mathrm{t}+\mathrm{k}}+e_{\mathrm{t}}$

Applying it to our problem

- Forward prediction

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{t} \\
x_{t-1} \\
. . \\
x_{K+1}
\end{array}\right]=\left[\begin{array}{cccc}
x_{t-1} & x_{t-2} & . . & x_{t-K} \\
x_{t-2} & x_{t-3} & . . & x_{t-K-1} \\
\cdot . & . . & . . & . . \\
x_{K} & x_{K-1} & . . & x_{1}
\end{array}\right] \mathbf{a}_{t}+\left[\begin{array}{c}
e_{t} \\
e_{t-1} \\
. . \\
e_{K+1}
\end{array}\right]} \\
\mathbf{x}=\mathbf{X} \mathbf{a}_{t}+\mathbf{e}
\end{gathered}
$$

$$
\operatorname{pinv}(\mathbf{X}) \mathbf{x}=\mathbf{a}_{t}
$$

Applying it to our problem

- Backward prediction

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{t-K-1} \\
x_{t-K-2} \\
. \\
x_{1}
\end{array}\right]=\left[\begin{array}{cccc}
x_{t} & x_{t-1} & . & x_{t-K} \\
x_{t-1} & t_{t-2} & . & x_{t-K-1} \\
. & . . & . . & . \\
x_{K+1} & x_{K} & . . & x_{2}
\end{array}\right] \mathbf{b}_{t}+\left[\begin{array}{c}
e_{t-K-1} \\
e_{t-K-2} \\
\cdot \\
e_{1}
\end{array}\right]} \\
\overline{\mathbf{x}}=\overline{\mathbf{X}} \mathbf{b}_{t}+\mathbf{e} \\
\operatorname{pinv}(\overline{\mathbf{X}}) \overline{\mathbf{x}}=\mathbf{b}_{t}
\end{gathered}
$$

Finding the burst

- At each time
- Learn a "forward" predictor \mathbf{a}_{t}
- At each time, predict next sample $x_{\mathrm{t}}^{\text {est }}=\sum_{\mathrm{i}} a_{\mathrm{t}, \mathrm{k}} x_{\mathrm{t}-\mathrm{k}}$
- Compute error: ferr $r_{t}=\mid x_{\mathrm{t}}-$ - $\left._{\mathrm{t}}^{\text {est }}\right|^{2}$
- Learn a "backward" predict and compute backward error - berr ${ }_{\mathrm{t}}$
- Compute average prediction error over window, threshold
- If the error exceeds a threshold, identify burst

Filling the hole

- Learn "forward" predictor at left edge of "hole"
- For each missing sample
- At each time, predict next sample $x_{\mathrm{t}}^{\text {est }}=\sum_{\mathrm{i}} a_{\mathrm{t}, \mathrm{k}} x_{\mathrm{t}-\mathrm{k}}$
- Use estimated samples if real samples are not available
- Learn "backward" predictor at left edge of "hole"
- For each missing sample
- At each time, predict next sample $x_{\mathrm{t}}^{\text {est }}=\Sigma_{\mathrm{i}} b_{\mathrm{t}, \mathrm{k}} x_{\mathrm{t}+\mathrm{k}}$
- Use estimated samples if real samples are not available
- Average forward and backward predictions

Reconstruction zoom in

Incrementally learning the regression

$$
\mathbf{A}=\mathbf{Y} \mathbf{X}^{T}\left(\mathbf{X X}^{T}\right)^{-1}
$$

Requires knowledge of all (\mathbf{x}, y) pairs

- Can we learn A incrementally instead?
- As data comes in?
- The Widrow Hoff rule

Scalar prediction version

$$
\mathbf{a}^{t+1}=\mathbf{a}^{t}+\eta\left(y_{t}-\hat{y}_{t}\right) \mathbf{x}_{t} \quad \hat{y}_{t}=\left(\mathbf{a}^{t}\right)^{T} \mathbf{x}_{t}
$$

- Note the structure error
- Can also be done in batch mode!

Predicting a value

$$
\mathbf{A}=\mathbf{\mathbf { X X } ^ { T }}\left(\mathbf{x X}^{T}\right)^{-1}
$$

$$
\hat{\mathbf{y}}=\mathbf{A x}=\mathbf{Y} \mathbf{X}^{T}\left(\mathbf{X X}^{T}\right)^{-1} \mathbf{x}
$$

- What are we doing exactly?
- For the explanation we are assuming no " \mathbf{b} " (\mathbf{X} is 0 mean)
- Explanation generalizes easily even otherwise

$$
\mathbf{C}=\mathbf{X} \mathbf{X}^{T}
$$

- Let $\hat{\mathbf{x}}=\mathbf{C}^{-\frac{1}{2}} \mathbf{x}$ and $\hat{\mathbf{X}}=\mathbf{C}^{-\frac{1}{2}} \mathbf{X}$
- Whitening \mathbf{x}
- $N^{-0.5} \mathbf{C}^{-0.5}$ is the whitening matrix for \mathbf{x}

$$
\hat{\mathbf{y}}=\mathbf{Y} \mathbf{X}^{T} \mathbf{C}^{-\frac{1}{2}} \mathbf{C}^{-\frac{1}{2}} \mathbf{x}=\hat{\mathbf{X}}^{T} \hat{\mathbf{x}}_{i}
$$

Predicting a value

$$
\hat{\mathbf{y}}=\mathbf{Y} \hat{\mathbf{X}}^{T} \hat{\mathbf{x}}=\sum_{i} \mathbf{y}_{\mathbf{i}} \hat{\mathbf{x}}_{i} \hat{\mathbf{x}}^{\hat{x}}
$$

- What are we doing exactly?

Predicting a value

$$
\hat{\mathbf{y}}=\sum_{i} \mathbf{y}_{i}\left(\hat{\mathbf{x}}_{i}^{T} \hat{\mathbf{x}}\right)
$$

- Given training instances $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}\right)$ for $i=1$.. N , estimate \mathbf{y} for a new test instance of \mathbf{x} with unknown \mathbf{y} :
- \mathbf{y} is simply a weighted sum of the \mathbf{y}_{i} instances from the training data
- The weight of any \mathbf{y}_{i} is simply the inner product between its corresponding \mathbf{x}_{i} and the new \mathbf{x}
- With due whitening and scaling..

What are we doing: A different perspective

$$
\hat{\mathbf{y}}=\mathbf{A x}=\mathbf{Y} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{X}^{T}\right)^{-1} \mathbf{x}
$$

- Assumes $\mathbf{X X}{ }^{\mathrm{T}}$ is invertible
- What if it is not
- Dimensionality of \mathbf{X} is greater than number of observations?
- Underdetermined
- In this case $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ will generally be invertible

$$
\mathbf{A}=\mathbf{Y}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \quad \hat{\mathbf{y}}=\mathbf{Y}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{x}
$$

High-dimensional regression

$$
\hat{\mathbf{y}}=\mathbf{Y}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{x}
$$

- $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ is the "Gram Matrix"

$$
\begin{array}{r}
\mathbf{G}=\left[\begin{array}{cccc}
\mathbf{x}_{1}^{T} \mathbf{x}_{1} & \mathbf{x}_{1}^{T} \mathbf{x}_{2} & \ldots & \mathbf{x}_{1}^{T} \mathbf{x}_{N} \\
\mathbf{x}_{2}^{T} \mathbf{x}_{1} & \mathbf{x}_{2}^{T} \mathbf{x}_{2} & \ldots & \mathbf{x}_{2}^{T} \mathbf{x}_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{x}_{N}^{T} \mathbf{x}_{1} & \mathbf{x}_{N}^{T} \mathbf{x}_{2} & \cdots & \mathbf{x}_{N}^{T} \mathbf{x}_{N}
\end{array}\right] \\
\hat{\mathbf{y}}=\mathbf{Y} \mathbf{G}^{-1} \mathbf{X}^{T} \mathbf{x}
\end{array}
$$

High-dimensional regression

$$
\hat{\mathbf{y}}=\mathbf{Y G}^{-1} \mathbf{X}^{T} \mathbf{x}
$$

- Normalize \mathbf{Y} by the inverse of the gram matrix

$$
\dddot{\mathbf{Y}}=\mathbf{Y G}^{-1}
$$

- Working our way down..

$$
\hat{\mathbf{y}}=\dddot{\mathbf{Y}} \mathbf{X}^{T} \mathbf{x}
$$

$$
\hat{\mathbf{y}}=\sum_{i} \dddot{\mathbf{y}}_{i} \mathbf{x}_{i}^{T} \mathbf{x}
$$

Linear Regression in High-dimensional Spaces

$$
\hat{\mathbf{y}}=\sum_{i} \dddot{\mathbf{y}}_{i} \mathbf{x}_{i}^{T} \mathbf{x}
$$

$$
\dddot{\mathbf{Y}}=\mathbf{Y G}^{-1}
$$

- Given training instances $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}\right)$ for $i=1$.. N , estimate \mathbf{y} for a new test instance of \mathbf{x} with unknown \mathbf{y} :
- \mathbf{y} is simply a weighted sum of the normalized \mathbf{y}_{i} instances from the training data
- The normalization is done via the Gram Matrix
- The weight of any \mathbf{y}_{i} is simply the inner product between its corresponding \mathbf{x}_{i} and the new \mathbf{x}

Topics

- Nearest neighbor regression and classification
- Linear regression
- With an application to glitch elimination in sound
- And its relation to nearest-neighbor regression
- Regression in kernel spaces
- Kernel regression
- Regularization..

Relationships are not always linear

- How do we model these?
- Multiple solutions

Non-linear regression

- $\mathrm{y}=\mathbf{A} \varphi(\mathbf{x})+\mathrm{e}$
$\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})=\left[\phi_{1}(\mathbf{x}) \phi_{2}(\mathbf{x}) \ldots \phi_{N}(\mathbf{x})\right]$
$\mathbf{X} \rightarrow \Phi(\mathbf{X})=\left[\varphi\left(\mathbf{x}_{1}\right) \varphi\left(\mathbf{x}_{2}\right) \ldots \varphi\left(\mathbf{x}_{K}\right)\right]$
- $\mathbf{Y}=\mathbf{A} \Phi(\mathbf{X})+\mathbf{e}$
- Replace \mathbf{X} with $\Phi(\mathbf{X})$ in earlier equations for solution

$$
\mathbf{A}=\mathbf{Y}\left(\Phi(\mathbf{X}) \Phi(\mathbf{X})^{T}\right)^{-1} \Phi(\mathbf{X})^{T}
$$

Problem

- $\mathbf{Y}=\mathbf{A} \Phi(\mathbf{X})+\mathbf{e}$
- Replace \mathbf{X} with $\Phi(\mathbf{X})$ in earlier equations for solution

$$
\mathbf{A}=\mathbf{Y}\left(\Phi(\mathbf{X}) \Phi(\mathbf{X})^{T}\right)^{-1} \Phi(\mathbf{X})^{T}
$$

- $\Phi(\mathbf{X})$ may be in a very high-dimensional space
- The high-dimensional space (or the transform $\Phi(\mathbf{X})$) may be unknown..
- Note: For any new instance \mathbf{x} :

$$
\hat{\mathbf{y}}=\mathbf{A} \Phi(\mathbf{x})=\mathbf{Y}\left(\Phi(\mathbf{X}) \Phi(\mathbf{X})^{T}\right)^{-1} \Phi(\mathbf{X})^{T} \Phi(\mathbf{x})=\mathbf{Y} \mathbf{G}^{-1} \Phi(\mathbf{X})^{T} \Phi(\mathbf{x})
$$

The regression is in high dimensions

- Linear regression: $\hat{\mathbf{y}}=\sum_{i} \dddot{\mathbf{y}}_{i} \mathbf{x}_{i}^{T} \mathbf{x} \quad \dddot{\mathbf{Y}}=\mathbf{Y G}^{-1}$
- High-dimensional regression

$$
\begin{aligned}
& \dddot{\mathbf{Y}}=\mathbf{Y G}^{-1} \\
& \hat{\mathbf{y}}=\sum_{i} \dddot{\mathbf{y}}_{i} \Phi\left(\mathbf{x}_{i}\right)^{T} \Phi(\mathbf{x})
\end{aligned}
$$

Doing it with Kernels

- High-dimensional regression with Kernels:

$$
\begin{gathered}
K(\mathbf{x}, \mathbf{y})=\Phi(\mathbf{x})^{T} \Phi(\mathbf{y}) \\
\mathbf{G}=\left[\begin{array}{cccc}
K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & K\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\
K\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & K\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \ldots & K\left(\mathbf{x}_{2}, \mathbf{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
K\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & K\left(\mathbf{x}_{N}, \mathbf{x}_{2}\right) & \cdots & K\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right)
\end{array}\right]
\end{gathered}
$$

- Regression in Kernel Hilbert Space..
$\dddot{\mathbf{Y}}=\mathbf{Y G}^{-1}$

$$
\hat{\mathbf{y}}=\sum_{i} \dddot{\mathbf{y}}_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Topics

- Nearest neighbor regression and classification
- Linear regression
- With an application to glitch elimination in sound
- And its relation to nearest-neighbor regression
- Regression in kernel spaces
- Kernel regression
- Regularization..

A different way of finding nonlinear relationships: Locally linear regression

- Previous discussion: Regression parameters are optimized over the entire training set
- Minimize

$$
\mathbf{E}=\sum_{\text {all } i}\left\|\mathbf{y}_{i}-\mathbf{A}^{T} \mathbf{x}_{i}-\mathbf{b}\right\|^{2}
$$

- Single global regression is estimated and applied to all future \mathbf{x}
- Alternative: Local regression
- Learn a regression that is specific to \mathbf{x}

Being non-committal: Local Regression

- Estimate the regression to be applied to any \mathbf{x} using training instances near \mathbf{x}

$$
\mathbf{E}=\sum_{\mathbf{x}_{j} \in \operatorname{neighborhood}(\mathbf{x})}\left\|\mathbf{y}_{i}-\mathbf{A}^{T} \mathbf{x}_{i}-\mathbf{b}\right\|^{2}
$$

- The resultant regression has the form

$$
\mathbf{y}=\sum_{\mathbf{x}_{j} \in \operatorname{neighborhood}(\mathbf{x})} w\left(\mathbf{x}, \mathbf{x}_{j}\right) \mathbf{y}_{j}+\mathbf{e}
$$

- Note : this regression is specific to \mathbf{x}
- A separate regression must be learned for every \mathbf{x}

Local Regression

$$
\mathbf{y}=\sum_{\mathbf{x}_{j} \in \text { neighborhood }(\mathbf{x})} w\left(\mathbf{x}, \mathbf{x}_{j}\right) \mathbf{y}_{j}+\mathbf{e}
$$

- But what is w() ?

- For linear regression d() is an inner product
- More generic form: Choose d() as a function of the distance between \mathbf{x} and \mathbf{x}_{j}
- If w() falls off rapidly with $\mid \mathbf{x}$ and $\mathbf{x}_{j} \mid$ the "neighbhorhood" requirement can be relaxed

$$
\mathbf{y}=\sum_{\text {all }} w\left(\mathbf{x}, \mathbf{x}_{j}\right) \mathbf{y}_{j}+\mathbf{e}
$$

Kernel Regression: $\mathbf{d}()=\mathbf{K}()$

$$
\hat{\mathbf{y}}=\frac{\sum_{i} K_{h}\left(\mathbf{x}-\mathbf{x}_{i}\right) \mathbf{y}_{i}}{\sum_{i} K_{h}\left(\mathbf{x}-\mathbf{x}_{i}\right)}
$$

- Typical Kernel functions: Gaussian, Laplacian, other density functions
- Must fall off rapidly with increasing distance between \mathbf{x} and \mathbf{x}_{j}
- Regression is local to every \mathbf{x} : Local regression
- Actually a non-parametric MAP estimator of \mathbf{y}
- But first.. MAP estimatorss, 18797

Topics

- Nearest neighbor regression and classification
- Linear regression
- With an application to glitch elimination in sound
- And its relation to nearest-neighbor regression
- Regression in kernel spaces
- Kernel regression
- Regularization..

Returning to Linear Regression

Model:

$$
y=\widehat{A} x+\widehat{b}
$$

$\widehat{A}, \widehat{\boldsymbol{b}}=\underset{A, b}{\operatorname{argmin}}(\boldsymbol{Y}-(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}))^{2}$

Without outliers

- The problem with fitting a linear model to minimize L2 error
- Highly sensitive to outliers

Returning to Linear Regression

Model:

$$
y=\widehat{A} x+\widehat{b}
$$

$\widehat{A}, \widehat{\boldsymbol{b}}=\underset{A, b}{\operatorname{argmin}}(\boldsymbol{Y}-(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}))^{2}$

- The problem with fitting a linear model to minimize L2 error
- Highly sensitive to outliers

A problem with regressions

$$
\mathbf{A}=\mathbf{Y X}^{\tau}\left(\mathbf{x X}^{\tau}\right)^{-1}
$$

- Least-squares fit is sensitive
- Error is squared
- Small variations in data \rightarrow large variations in weights
- Outliers affect it adversely
- Unstable
- If dimension of $\mathbf{X}>=$ no. of instances
- $\left(\mathbf{X X}^{\mathrm{T}}\right)$ is not invertible

Conservative solution

- Default: Y is extremely sensitive to X
- Results in large changes in regression estimate in response to small changes in input
- Alternate default assumption: Y does not depend on X
- Prediction is just a horizontal line at $Y=0$
- Useless
- Conservative Compromise: Y is weakly related to X
- Large increments in X result in small increments in Y
- Willing to change opinion if we see a large number of instances where a large increment in X resulted in a large change in Y
- Seeing just a few instances will not satisfy us
- Reduced sensitivity to outliers

The Believer's Linear Regression

Model:

$$
y=\widehat{A} x+\widehat{b}+e r r
$$

$$
\widehat{A}, \widehat{b}=\underset{A, b}{\operatorname{argmin}}(\boldsymbol{Y}-(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}))^{2}
$$

- Response of standard regression given only two training instances
- Belief: Observed data tell the entire truth
- Model completely fit to trends in data
- A single point is a trend

The Disbeliever's Linear

Model:

$$
y=e r r
$$

Alternately stated:

$$
\begin{aligned}
& y=A x+b+e r r \\
& A=b=0
\end{aligned}
$$

- All data are noise
- The truth is that Y is a zero-mean random variable
- The observed data are outcomes of noise variations

The Conservative Regression

Model:

$$
y=A x+b+e r r
$$

Strong belief that A and b are close to 0

- After seeing only one point..

The Conservative Regression

Model:

$$
y=A x+b+e r r
$$

Strong belief that A and b are close to 0

- The data provide evidence, but belief in the default is strong

The Conservative Regression

Model:

$$
y=A x+b+e r r
$$

Strong belief that A and b are close to 0

$$
\widehat{A}, \widehat{b}=\underset{A, b}{\operatorname{argmin}} \sum_{i}\left\|y_{i}-\left(A x_{i}+b\right)\right\|^{2}+\lambda\left(A^{2}+b^{2}\right), \quad \lambda>0
$$

- Minimize the error of prediction by the model
- But also insist that A and b be as small as possible
- $\boldsymbol{\lambda}$ gives measure of "insistence" that A and b be small
- Externally set

The Conservative Regression

Model:

$$
y=A \widehat{x}+e r r
$$

Strong belief that A is close to 0
Using the augmented \times notation (padding x with a 1) to include bias term

$$
\widehat{A}=\underset{A}{\operatorname{argmin}} \sum_{i}\left\|y_{i}-A \widehat{x}_{i}\right\|^{2}+\lambda\|A\|_{F}^{2}, \quad \lambda>0
$$

- Minimize the error of prediction by the model
- But also insist that A should be as small as possible
$-\lambda$ gives measure of "insistence" that A must be small
- Externally set

Simple solution

- Conventional solution:

$$
\begin{aligned}
& \widehat{A}=\underset{A}{\operatorname{argmin}}\|\boldsymbol{Y}-\boldsymbol{A} \widehat{\boldsymbol{X}}\|_{F}^{2} \\
& \widehat{A}=\boldsymbol{Y} \widehat{X}\left(\widehat{X} \widehat{X}^{T}\right)^{-1}
\end{aligned}
$$

- With regularization

$$
\widehat{\boldsymbol{A}}=\underset{A}{\operatorname{argmin}}\|\boldsymbol{Y}-\boldsymbol{A} \widehat{\boldsymbol{X}}\|_{F}^{2}+\lambda\|A\|_{F}^{2}
$$

- Also called Tikhonov Regularization or Ridge regression
- Minmization gives us

$$
\widehat{A}=Y \widehat{X}\left(\widehat{X} \widehat{X}^{T}+\lambda I\right)^{-1}
$$

- This is exactly the same as conventional estimation, with additional diagonal loading of the correlation matrix of \widehat{X}
- Can be alternately explained as "stabilizing" the correlation matrix, for inversion

Other forms of regularization: L1 regularization

- An alternate regularization

$$
\widehat{\boldsymbol{A}}=\underset{A}{\operatorname{argmin}}\|\boldsymbol{Y}-\boldsymbol{A} \widehat{\boldsymbol{X}}\|_{F}^{2}+\lambda|\mathbf{A}|_{1}
$$

- The one-norm $|\mathbf{A}|_{1}$ sums the magnitude of components of A
- The minimization causes A to be sparse
- No closed form solution
- Quadratic programming solutions required
- Dual formulation

$$
\widehat{A}=\underset{A}{\operatorname{argmin}}\|\boldsymbol{Y}-\boldsymbol{A} \widehat{\boldsymbol{X}}\|_{F}^{2} \text { subject to }|\mathbf{A}|_{1} \leq t
$$

- "LASSO" - Least absolute shrinkage and selection operator

Regularization

$$
\begin{array}{r}
E=\left\|\mathbf{y}-\mathbf{a}^{T} X\right\|^{2}+\Omega(\mathbf{a}) \\
\downarrow(\mathbf{a})=\sigma\|\mathbf{a}\|_{2}^{2}
\end{array}
$$

Map Estimation

A Maximum Likelihood Estimator maximizes

$$
\mathbb{P}(\text { data } \mid \text { parameters })
$$

A Maximum A Posteriori Estimator maximizes

$$
\mathbb{P}(\text { parameters } \mid \text { data })
$$

$\mathbb{P}($ parameters \mid data $)=\frac{\mathbb{P}(\text { data } \mid \text { parameters }) \cdot \mathbb{P}(\text { parameters }}{\mathbb{P}(\text { data })}$

MAP estimate priors

- Left: Gaussian Prior on W

- Right: Laplacian Prior

MAP estimate of weights

$$
\begin{gathered}
d L=\left(2 \mathbf{a}^{T} \mathbf{X} \mathbf{X}^{T}+2 \mathbf{y} \mathbf{X}^{T}+2 \boldsymbol{I}\right) d \mathbf{a}=0 \\
\mathbf{a}=\left(\mathbf{X X}^{T}+\boldsymbol{\sigma}\right)^{-1} \mathbf{X Y}^{T}
\end{gathered}
$$

- Equivalent to diagonal loading of correlation matrix
- Improves condition number of correlation matrix
- Can be inverted with greater stability
- Will not affect the estimation from well-conditioned data
- Also called Tikhonov Regularization
- Dual form: Ridge regression
- MAP estimate of weights
- Not to be confused with MAP estimate of Y

MAP estimation of weights with Laplacian prior

- Assume weights drawn from a Laplacian
$-P(\mathbf{a})=\lambda^{-1} \exp \left(-\lambda^{-1}|\mathbf{a}|_{1}\right)$
- Maximum a posteriori estimate

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{A}} C^{\prime}-\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}-\lambda^{-1}|\mathbf{a}|_{1}
$$

- No closed form solution
- Quadratic programming solution required
- Non-trivial

MAP estimation of weights with Laplacian prior

- Assume weights drawn from a Laplacian

$$
-P(\mathbf{a})=\lambda^{-1} \exp \left(-\lambda^{-1}|\mathbf{a}|_{1}\right)
$$

- Maximum a posteriori estimate

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{A}} C^{\prime}-\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}-\lambda^{-1}|\mathbf{a}|_{1}
$$

- Identical to L_{1} regularized least-squares estimation

L_{1}-regularized LSE

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{A}} C^{\prime}-\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}-\lambda^{-1}|\mathbf{a}|_{1}
$$

- No closed form solution
- Quadratic programming solutions required
- Dual formulation

$$
\hat{\mathbf{a}}=\arg \max _{\mathbf{A}} C^{\prime}-\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T}\left(\mathbf{y}-\mathbf{a}^{T} \mathbf{X}\right)^{T} \text { subject to } \quad|\mathbf{a}|_{1} \leq t
$$

- "LASSO" - Least absolute shrinkage and selection operator

LASSO Algorithms

- Various convex optimization algorithms
- LARS: Least angle regression
- Pathwise coordinate descent..
- Matlab code available from web

Regularized least squares

- Regularization results in selection of suboptimal (in least-squares sense) solution
- One of the loci outside center
- Tikhonov regularization selects shortest solution
- L_{1} regularization selects sparsest solution

Next up..

- Classification with linear regression models
- AKA linear classifiers

LASSO and conn oressive sensing

- Given \mathbf{Y} and \mathbf{X}, estimate sparse \mathbf{a}
- LASSO:
- X = explanatory variable
- Y = dependent variable
- $\mathbf{a}=$ weights of regression
- CS:
$-\mathbf{X}=$ measurement matrix
- Y = measurement
- $\mathbf{a}=$ data

An interesting problem: Predicting War!

- Economists measure a number of social indicators for countries weekly
- Happiness index
- Hunger index
- Freedom index
- Twitter records
- Question: Will there be a revolution or war next week?

An interesting problem: Predicting War!

- Issues:
- Dissatisfaction builds up - not an instantaneous phenomenon
- Usually
- War / rebellion build up much faster
- Often in hours
- Important to predict
- Preparedness for security
- Economic impact

Predicting War

Given

- Sequence of economic indicators for each week
- Sequence of unrest markers for each week
- At the end of each week we know if war happened or not that week
- Predict probability of unrest next week
- This could be a new unrest or persistence of a current one

Predicting Time Series

- Need time-series models
- HMMs - later in the course

