Linear Classifiers (With slides from Najim Dehak)

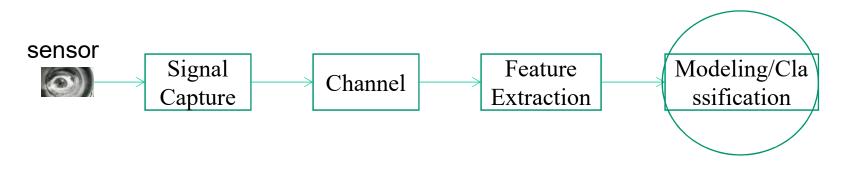
1

Recap

• Classification and KNN..

MLSP

• Application of Machine Learning techniques to the analysis of signals



- Modeling
 - Classification: Model-Based vs instances-Based

Machine Learning

- Supervised: We are given input samples (X) and output samples (y) of a function y = f(X). We would like to "learn" f, and evaluate it on new data. Types:
 - Classification: y is discrete (class labels).
 - **Regression:** y is continuous, e.g. linear regression.
- **Unsupervised:** Given only samples X of the data, we compute a function f such that y = f(X) is "simpler".
 - **Clustering:** y is discrete
 - Y is continuous: Matrix factorization, Kalman filtering, unsupervised neural networks.

Machine Learning

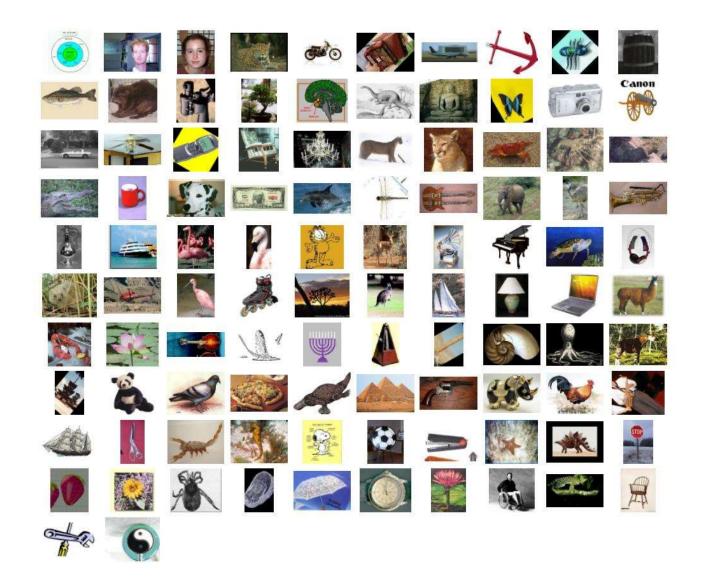
• Supervised:

- Is this image a cat, dog, car, house?
- How would this user score that restaurant?
- Is this email spam?
- Is this blob a supernova?

Unsupervised

- Cluster some hand-written digit data into 10 classes.
- What are the top 20 topics in Twitter right now?
- Find and cluster distinct accents of people at Berkeley. (?)

Multi-class Image Classification



k-Nearest Neighbor classification

Given a query item: Find k closest matches in a labeled dataset \downarrow

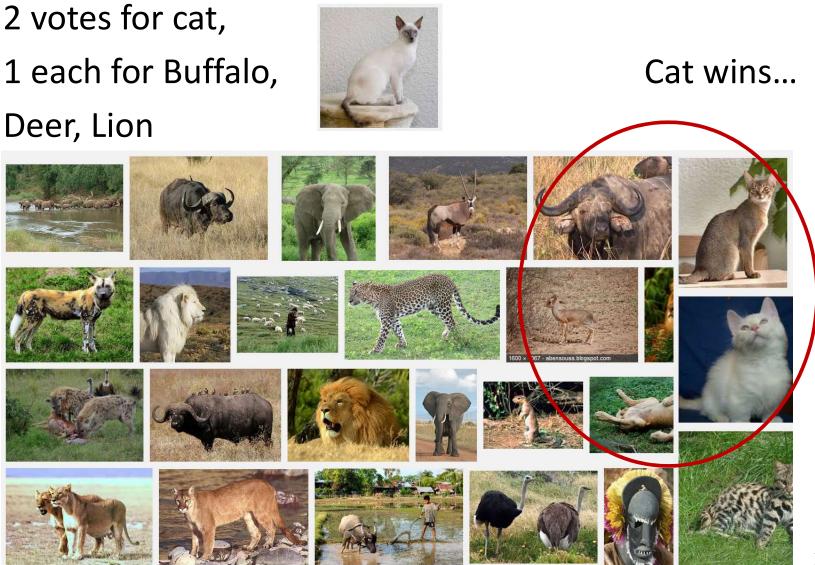
k-Nearest Neighbor classification

Given a query item: Find k closest matches

Return the most Frequent label

k-Nearest Neighbor classification

k-Nearest Neighbors

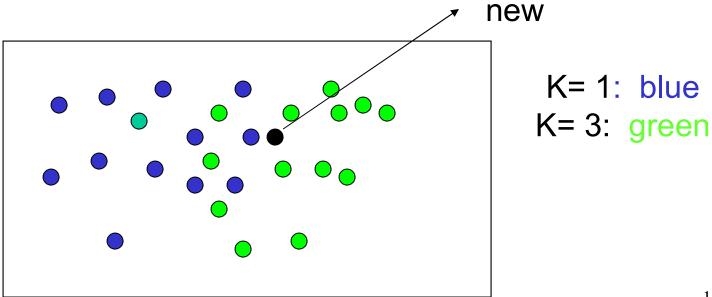


Nearest neighbor method

• Majority vote within the k nearest neighbors $\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$ new K= 1: blue K= 3: green

Nearest neighbor method

• Weighted majority vote $\widehat{Y}(x) = \frac{1}{k} \sum_{i \in N_k(x)} w(x, x_i) y_i$

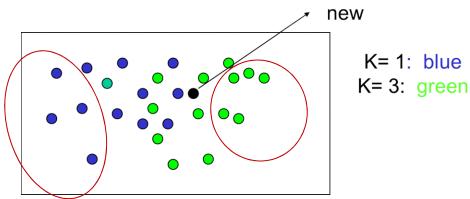


Nearest neighbor method

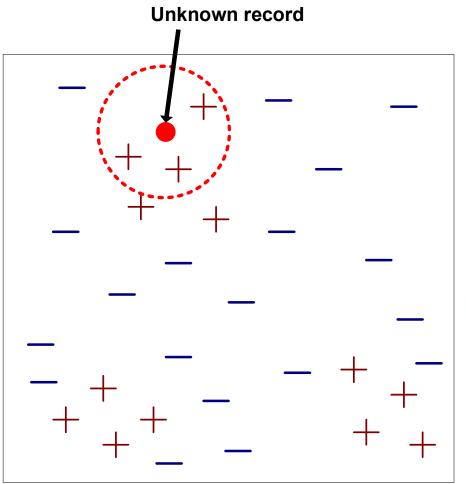
- Weighted majority vote within the k nearest neighbors
- Not *all* Ys are equally important
 - Outliers and training instances far away from the "confusing" regions don't really inform
 - Redundant training instances (very close to others) don't really add anything new

$$\widehat{Y}(x) = \frac{1}{\sum_{i \in N_k(x)} \alpha_i} \sum_{i \in N_k(x)} w(x, x_i) \alpha_i y_i$$

• α_i s may be binary (useful vs. useless)



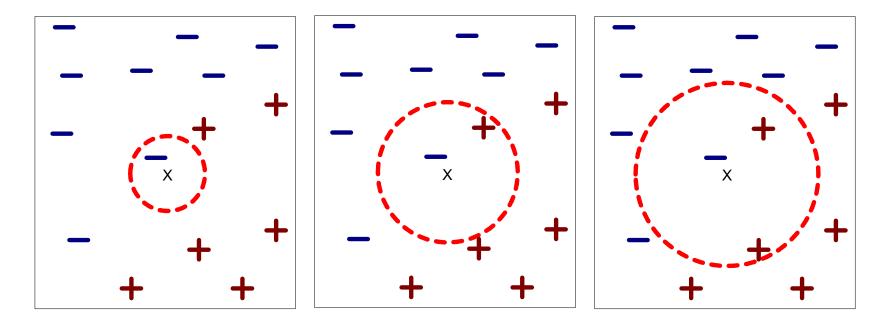
Nearest-Neighbor Classifiers



Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, number of nearest neighbors to retrieve
- To classify new record:
 - Compute distance to other training records
 - Identify k nearest neighbors
- Vote among nearest neighbors

Definition of Nearest Neighbor



(a) 1-nearest neighbor

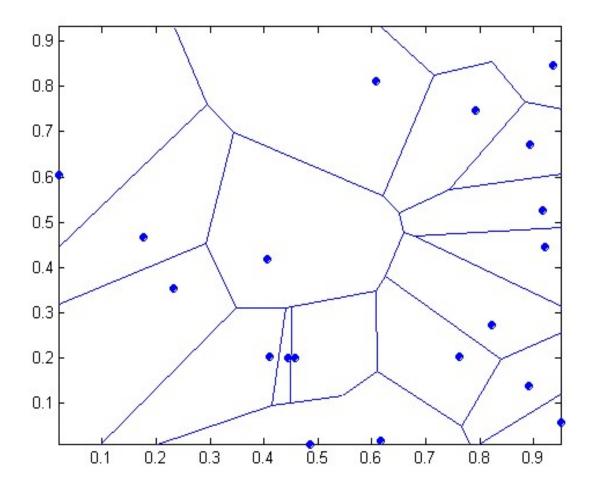
(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram



16

k-NN issues

The Data is the Model

- No training needed.
- Accuracy generally improves with more data.
- Matching is simple and fast (and single pass).
- Usually need data in memory, but can be run off disk.

Minimal Configuration:

- Only parameter is k (number of neighbors)
- Two other choices are important:
 - Weighting of neighbors (e.g. inverse distance)
 - Similarity metric

K-NN metrics

- Euclidean Distance: Simplest, fast to compute d(x, y) = ||x y||
- Cosine Distance: Good for documents, images, etc. $d(x,y) = 1 - \frac{x \cdot y}{\|x\| \|y\|}$
- Jaccard Distance: For set data:

$$d(X,Y) = 1 - \frac{|X \cap Y|}{|X \cup Y|}$$

• Hamming Distance: For string data:

$$d(x,y) = \sum_{i=1}^{n} (x_i \neq y_i)$$

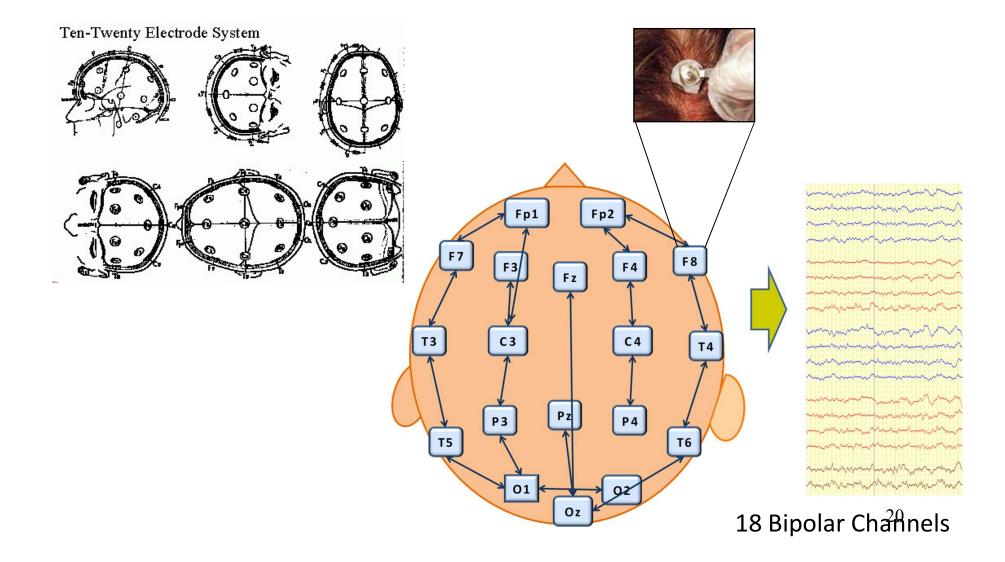
K-NN metrics

• Manhattan Distance: Coordinate-wise distance

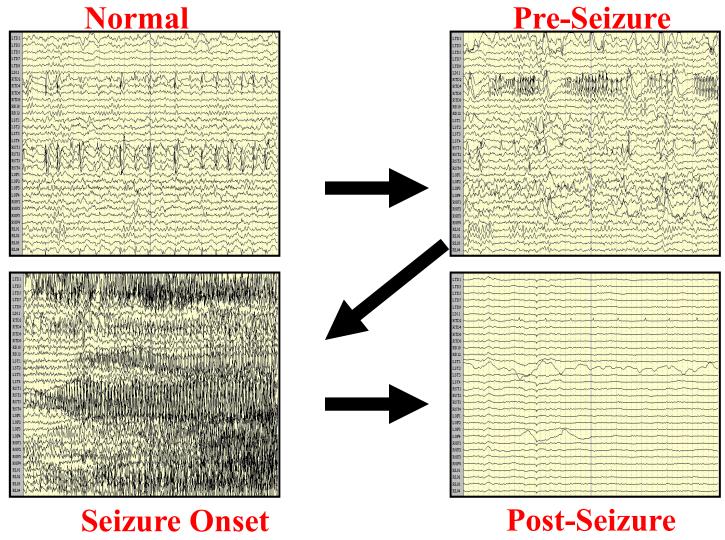
$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

- Edit Distance: for strings, especially genetic data.
- Mahalanobis Distance: Normalized by the sample covariance matrix unaffected by coordinate transformations.

Scalp EEG Acquisition

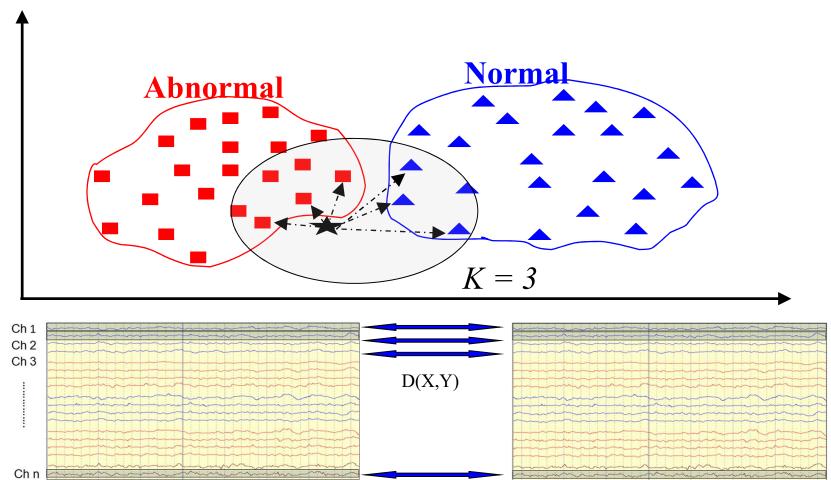


10-second EEGs: Seizure Evolution



Chaovalitwongse et al., Annals of Operations Research (2006)

K-Nearest Neighbor for seizure detection



Time series distances: (1) Euclidean, (2) Dynamic Time Warping

Example: Digit Recognition

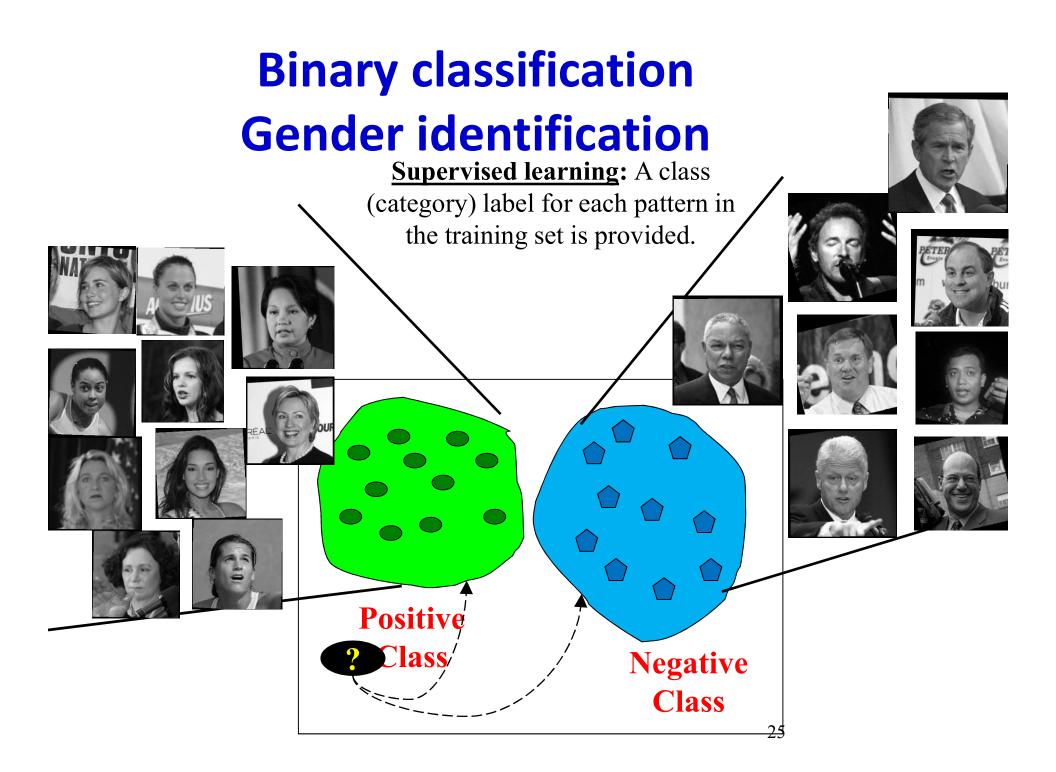
- Yann LeCunn MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: d = 784
 - 60,000 training samples
 - 10,000 test samples

	· · /
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67

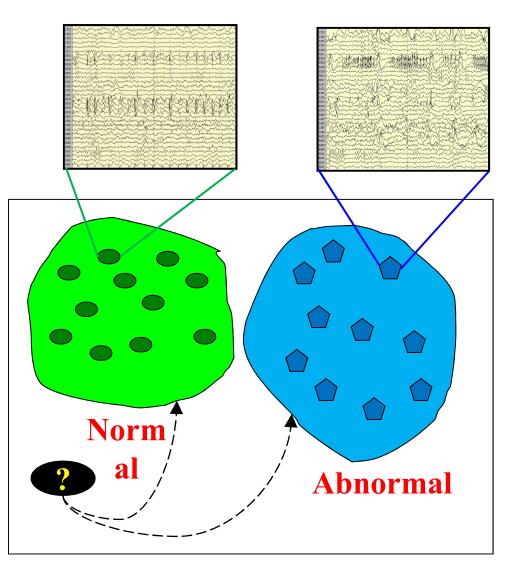
Test Error Rate (%)

More generally: Supervised classification

- A minor shift of gears..
- Given a set of labelled training instances, learn to classify a new test instance..
 - (K)NN was only one method



Multidimensional Time Series Classification in Medical Data



- Positive *versus* Negative
- Responsive versus Unresponsive
- Multidimensional Time Series Classification
- Multisensor medical signals (e.g., EEG, ECG, EMG)

Classification and *discriminant* functions

- Define a "discriminant function" $g_i(\mathbf{x})$ for each class ω_i such that:
- the classifier assigns a feature vector x to class ω_i if

 $g_i(\mathbf{x}) > g_i(\mathbf{x})$ for all $j \neq i$

For two-category case, $g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x})$

Decide ω_1 if $g(\mathbf{x}) > 0$; otherwise decide ω_2

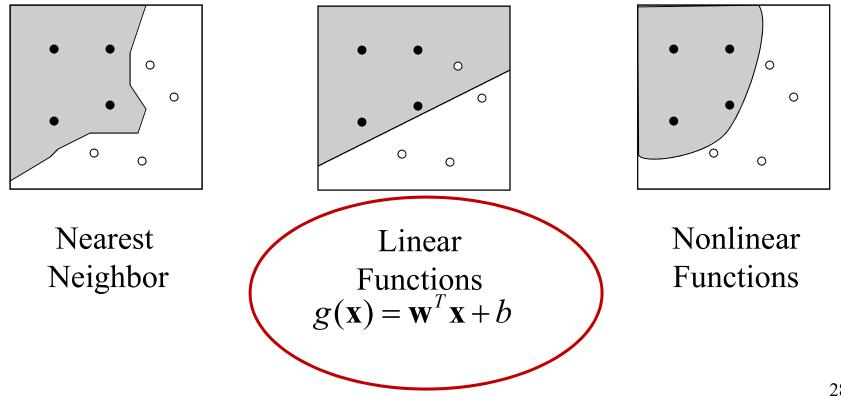
An example

Minimum-Error-Rate Classifier

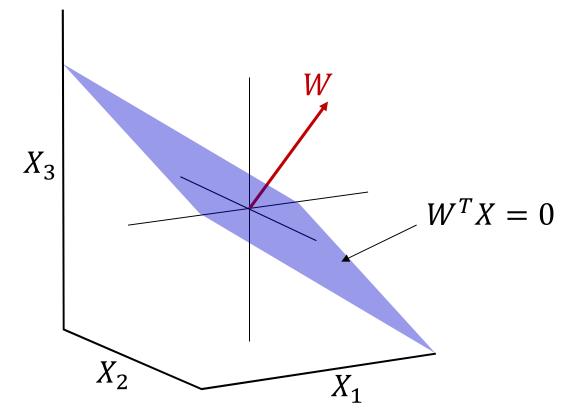
$$g(\mathbf{x}) \equiv p(\omega_1 \,|\, \mathbf{x}) - p(\omega_2 \,|\, \mathbf{x})$$

Discriminant Function

• It can be arbitrary functions of *x*, such as:

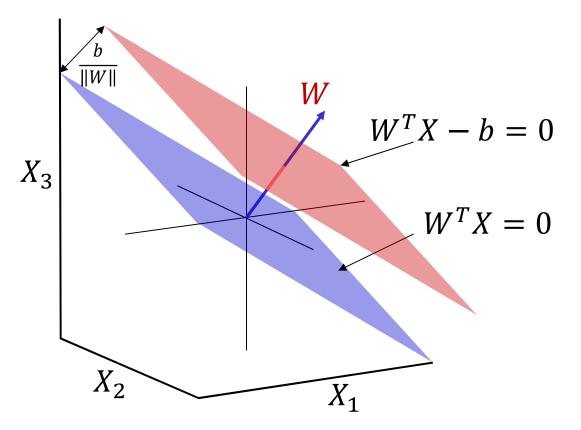


The equation for a hyperplane



• $W^T X = 0$ is the equation representing the set of all vectors that are orthogonal to W

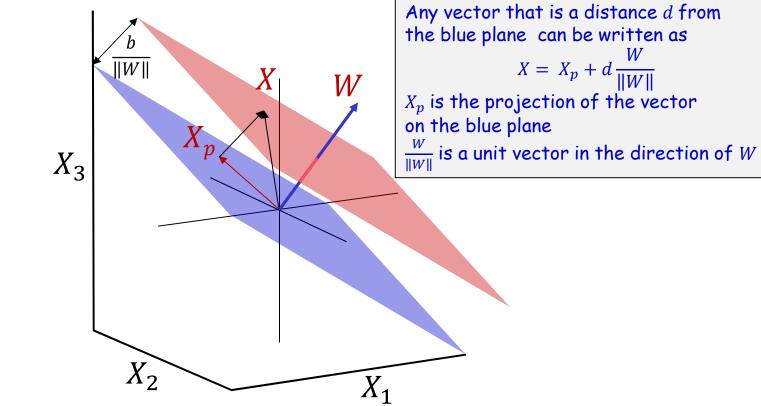
The equation for a hyperplane



• $W^T X - b = 0$ is the equation representing plane that is orthogonal to W and a distance $\frac{b}{\|W\|}$ from origin

- The set of all vectors that are a distance $\frac{b}{\|W\|}$ from the blue plane 30

The equation for a hyperplane

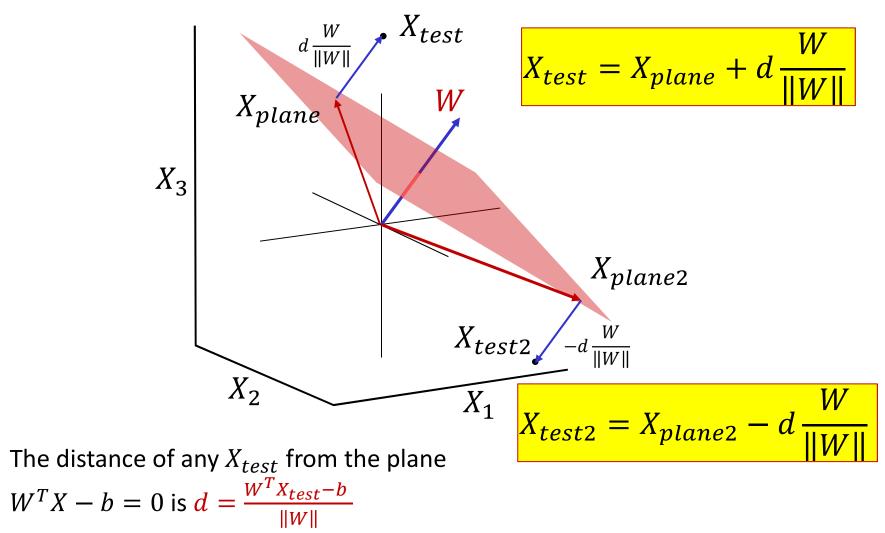


Trivial proof:

• On the red plane any $X = X_p + \left(\frac{b}{\|W\|}\right) \frac{W}{\|W\|}$

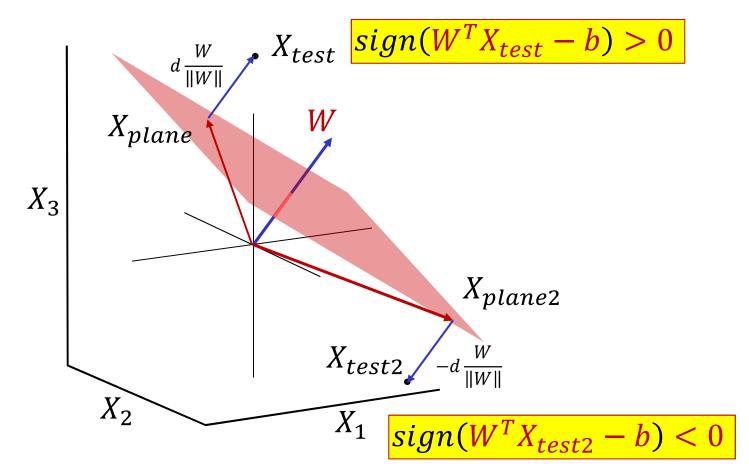
•
$$W^T X = W^T X_p + b \frac{W^T W}{\|W\|^2} = b$$
 31

Distance from a hyperplane



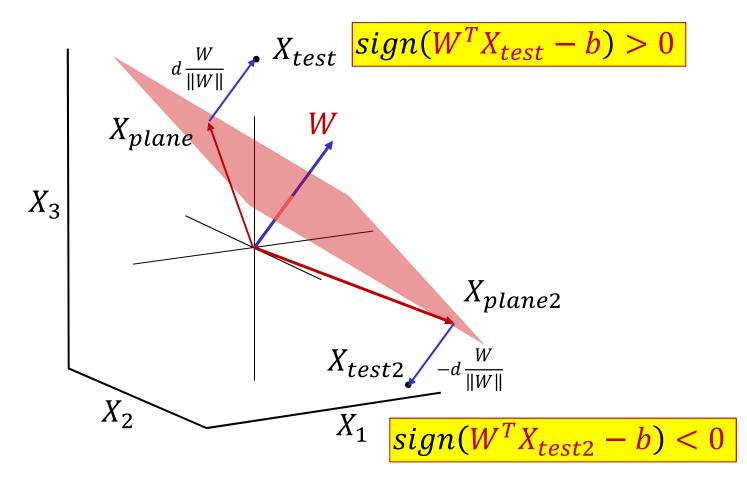
• This can be positive (in the direction of W) or negative (opposite to W) ₃₂

Sign of distance from hyperplane



• The sign of $W^T X - b$ signifies which side of the plane the point X is on

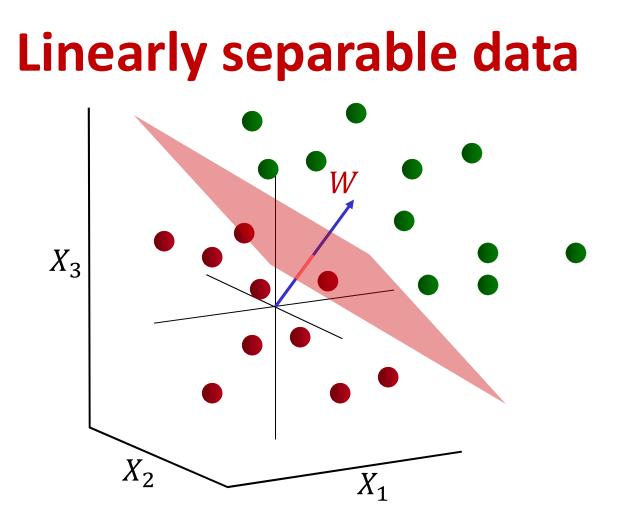
Linear Classifier



• The plane $W^T X - b$ is a linear classifier

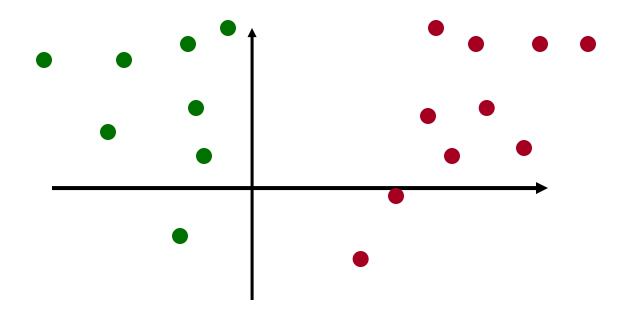
- The class is given by $sign(W^T X_{test} - b)$

34

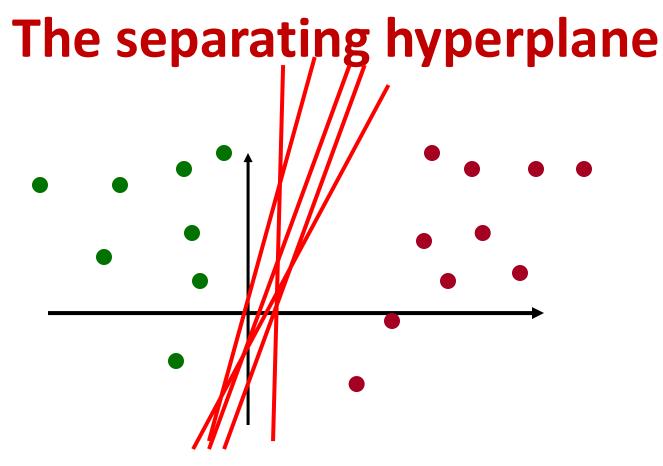


- Data where the two classes are separated by a hyperplane
 - And classification can be performed by $sign(W^T X_{test} b)$ for any separating hyperplane

2D illustration, linearly separable data

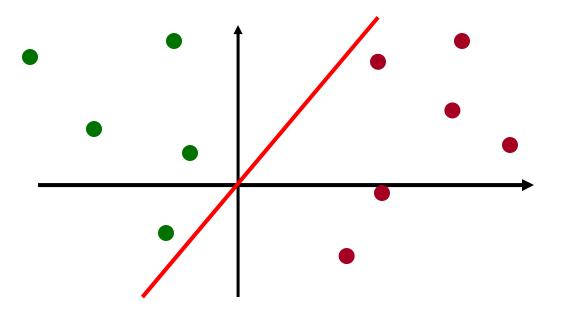


- Classes are linearly separable
- Dots represent "training" instances
- **Training problem**: Given these training instances find a separating hyperplane

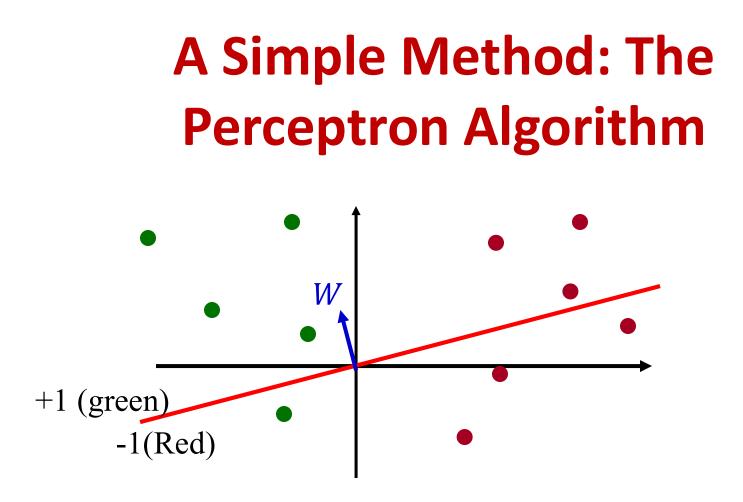


- Problem: Given these training instances find a separating hyperplane
- Many ways of finding this hyperplane
 - Any number of solution algorithms are possible

A Simplifying Assumption



- **Simplifying assumption:** The separating hyperplane always goes through origin
 - Easily enforced by appending a constant 1 to every vector



- Initialize: Randomly initialize the hyperplane
 - I.e. randomly initialize the normal vector W
 - Classification rule $sign(W^T X)$
 - The random initial plane will make mistakes

- Given N training instances $(X_1, Y_1), (X_2, Y_2), \dots, (X_N, Y_N)$
 - $Y_i = +1 \text{ or } -1$
- Initialize *W*
- Cycle through the training instances:
- While more classification errors

- For
$$i = 1 \dots N_{train}$$

 $O(X_i) = sign(W^T X_i)$
• If $O(X_i) \neq Y_i$
 $W = W + Y_i X_i$

Perceptron Algorithm: Summary

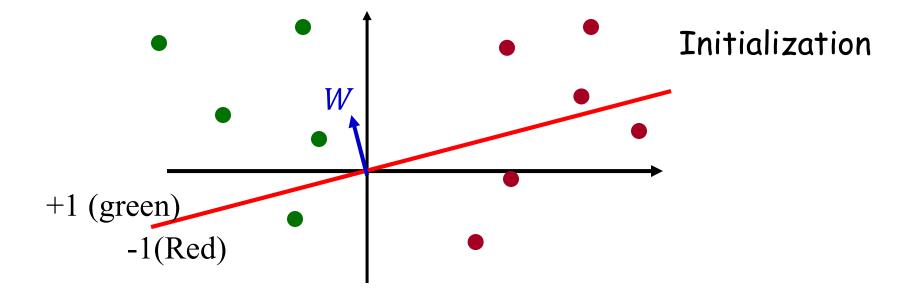
- Cycle through the training instances
- Only update *W* on misclassified instances
- If instance misclassified:

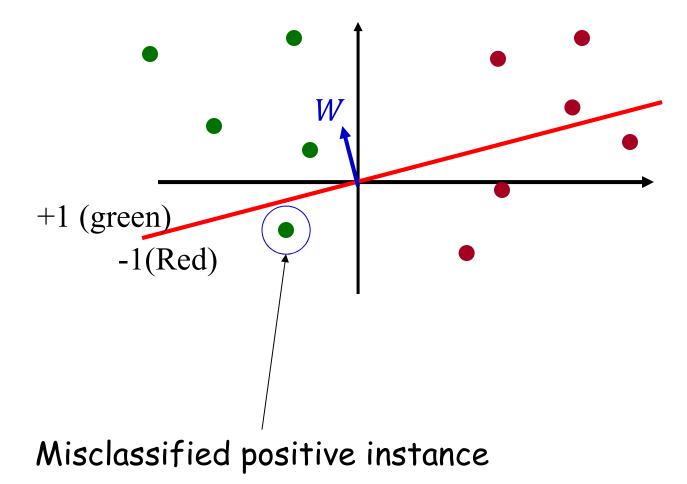
If instance is positive class

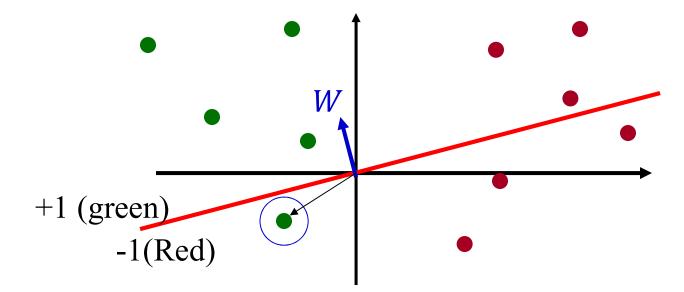
 $W = W + X_i$

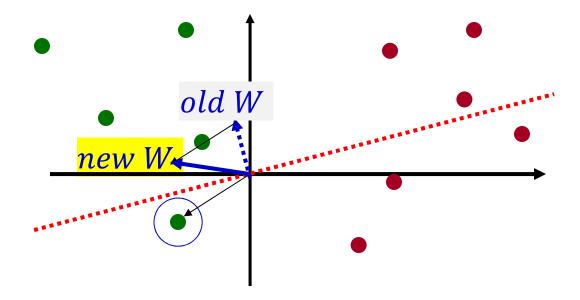
If instance is negative class

$$W = W - X_i$$

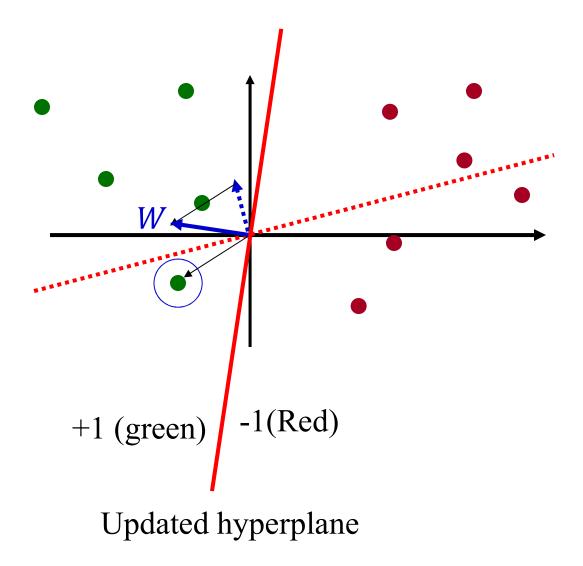








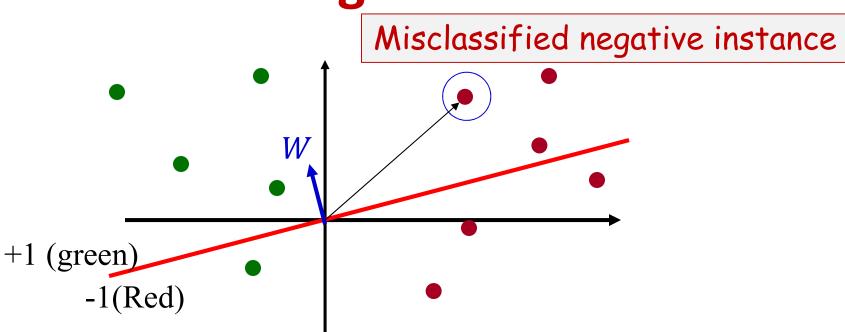
Updated weight vector



Convergence of Perceptron Algorithm

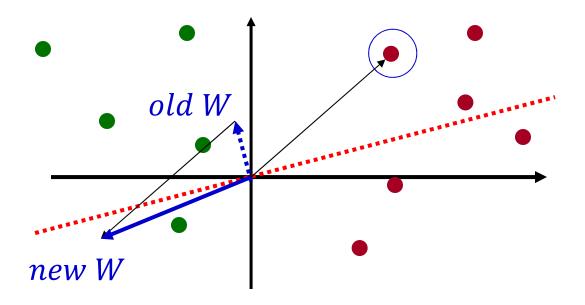
- Guaranteed to converge
 - After no more than $\frac{R^2}{v^2}$ misclassifications
 - *R* is length of longest training point
 - γ is the *best case* closest distance of a training point from the classifier
 - I.e the *largest* distance to the *closest* training instance to *any* appropriate classifier

Problems with perceptron algorithm



- Final solution depends on order of processing of inputs
 - Can get different solutions for the same initial vector by changing the order in which instances are considered

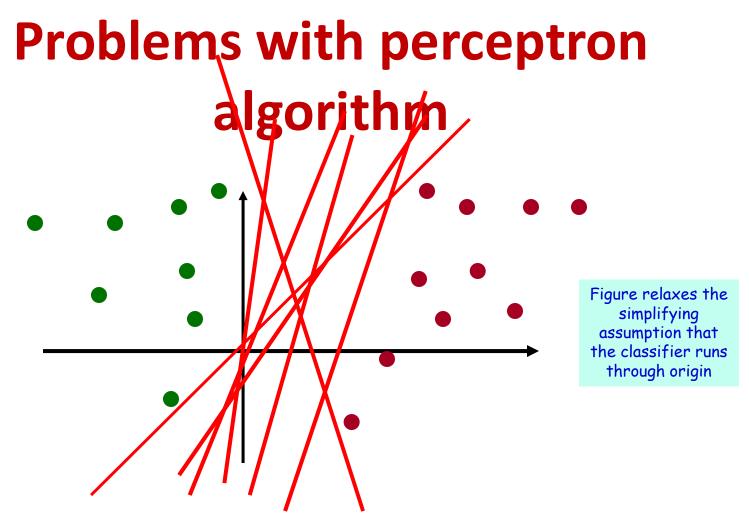
Problems with perceptron algorithm



- Final solution depends on order of processing of inputs
 - Can get different solutions for the same initial vector by changing the order in which instances are considered

Problems with perceptron algorithm +1 (green) -1 (Red)

- Final solution depends on order of processing of inputs
 - Can get different solutions for the same initial vector
 - No assurance about whether this solution will work for new test data



- Final solution depends on order of processing of inputs
 - Can get different solutions for the same initial vector
 - No assurance about whether this solution will work for new test data

Convergence of Perceptron Algorithm

- Guaranteed to converge
 - After no more than $\frac{R^2}{v^2}$ misclassifications
 - *R* is length of longest training point
 - γ is the *best case* closest distance of a training point from the classifier
 - I.e the *largest* distance to the *closest* training instance to *any* appropriate classifier
- Although the number of iterations is bounded by the distance of a "best-case" classifier, no guarantee that we will actually find this best-case classifier
 - Algorithm stops updating after perfect training classification

Modification of perceptron to find margin

- Instead of updating only on misclassified instances, update on any vector within 0.5γ of boundary
- Guaranteed to converge
- Problem you specify γ .
 - Overall optimality not guaranteed
 - But still, a pretty good algorithm

Enter: Support Vector Machines

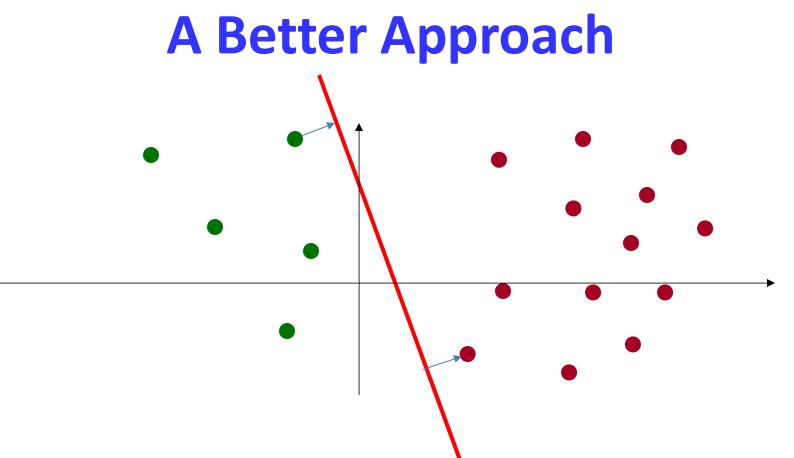
• Find a classifier that is maximally distant from the *closest* instances from either class

- Any linear classifier has some *closest* instances
- These instances will be at some distance from the boundary
- Changing the classifier will change both, the closest instance, and their distance from the boundary

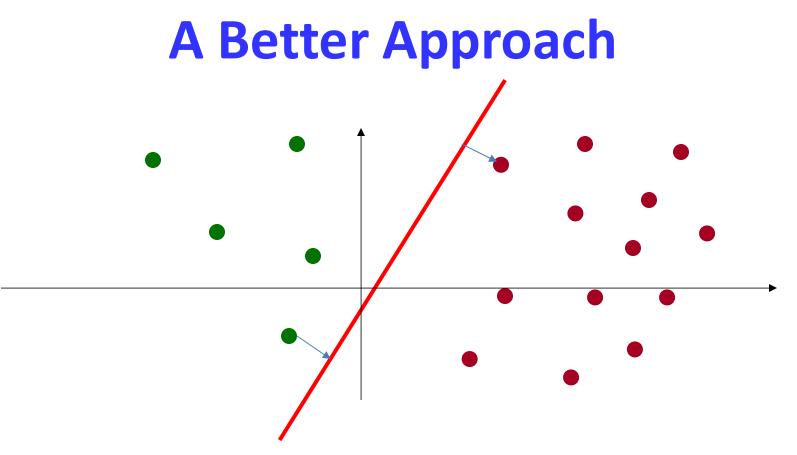
Returning to the *Perceptron* algorithm

- Guaranteed to converge
 - After no more than $\frac{R^2}{v^2}$ misclassifications
 - *R* is length of longest training point
 - γ is the *best case* closest distance of a training point from the classifier
 - I.e the *largest* distance to the *closest* training instance to *any* appropriate classifier
- No guarantee that we will actually find this best-case classifier
 - Algorithm stops updating after perfect training classification
- Can we actually *make* it find this best case classifier

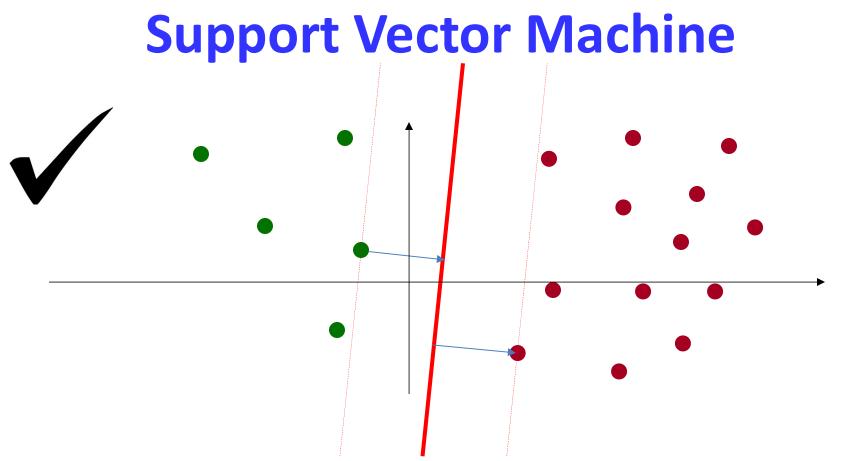
- Search through all classifiers such that the distance to the closest points is maximized
 - Very conservative
 - Focuses on worst-case scenario
 - Maximizes the chance that the classifier will work well on new unseen data



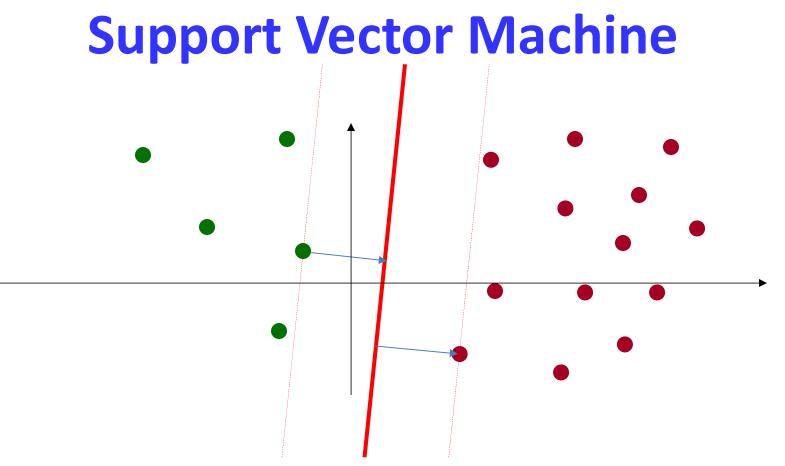
- Search through all classifiers such that the distance to the closest points is maximized
 - Very conservative
 - Focuses on worst-case scenario
 - Maximizes the chance that the classifier will work well on new unseen data



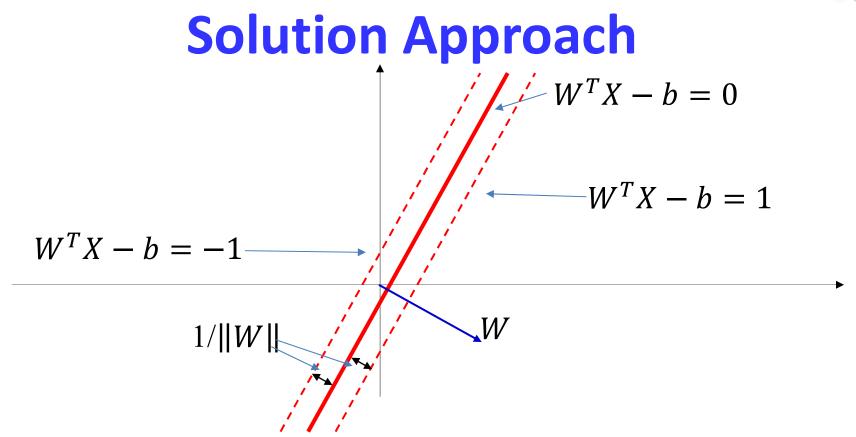
- Search through all classifiers such that the distance to the closest points is maximized
 - Very conservative
 - Focuses on *worst-case* scenario
 - Maximizes the chance that the classifier will work well on new unseen data



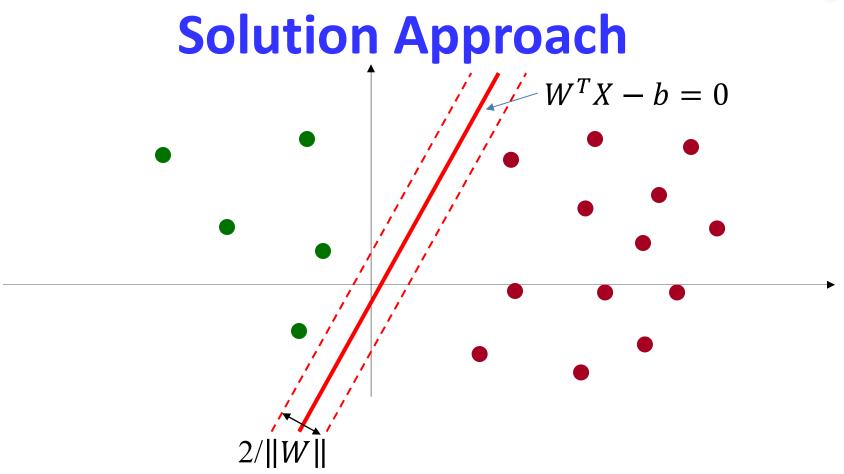
- Search through all classifiers such that the distance to the closest points is maximized
 - Very conservative
 - Focuses on worst-case scenario
 - Maximizes the chance that the classifier will work well on new unseen data



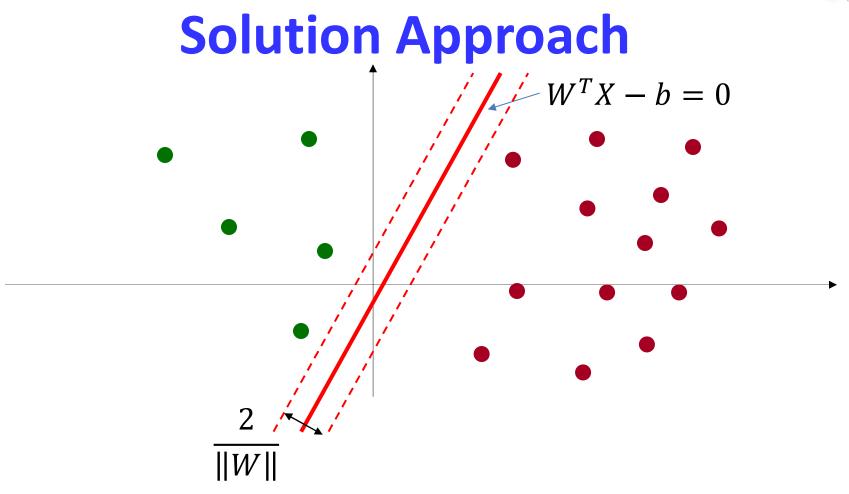
- Find the classifier such that the distance to the *closest* points is maximized
- I.e. solve *two* problems: find the closest points, and the classifier, such that the distance is maximum
 - Position the classifier in the *middle* so that the distance to the closest green = distance to the closest red
- Is this a combinatorial optimization problem??



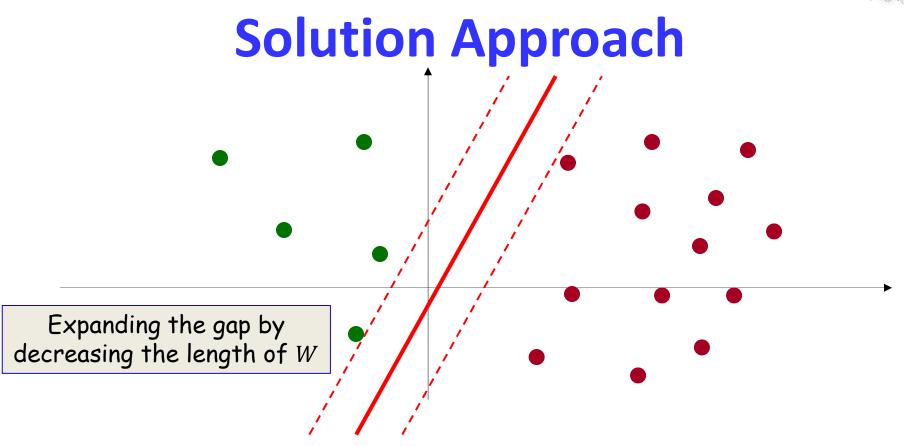
- For any hyperplane (linear classifier) $W^T X b = 0$
- Choose two hyperplanes $W^T X b = 1$ and $W^T X b = -1$
 - The distance of these hyperplanes from the classifier is 1/||W||
 - The total distance between the hyperplanes is 2/||W||



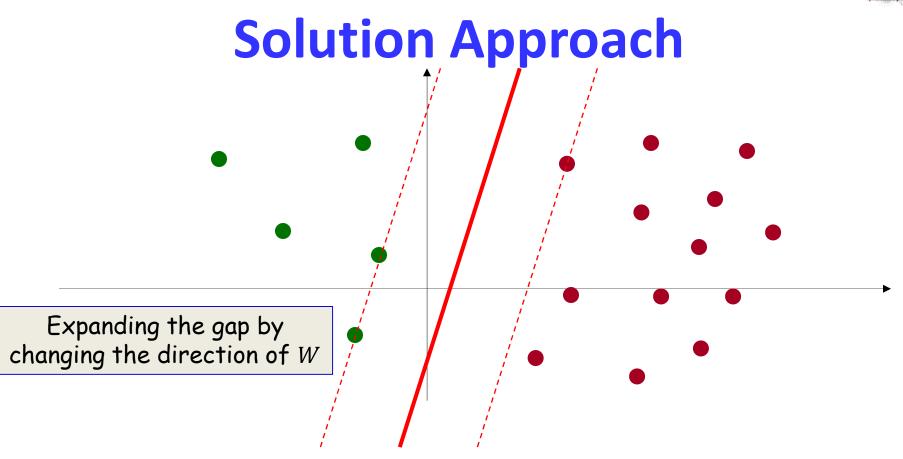
- Constraint: Perfect classification with a margin
- Choose the hyperplanes such that
 - All positive points are on the positive side of the positive hyperplane
 - All negative points are on the negative side of the negative hyperplane



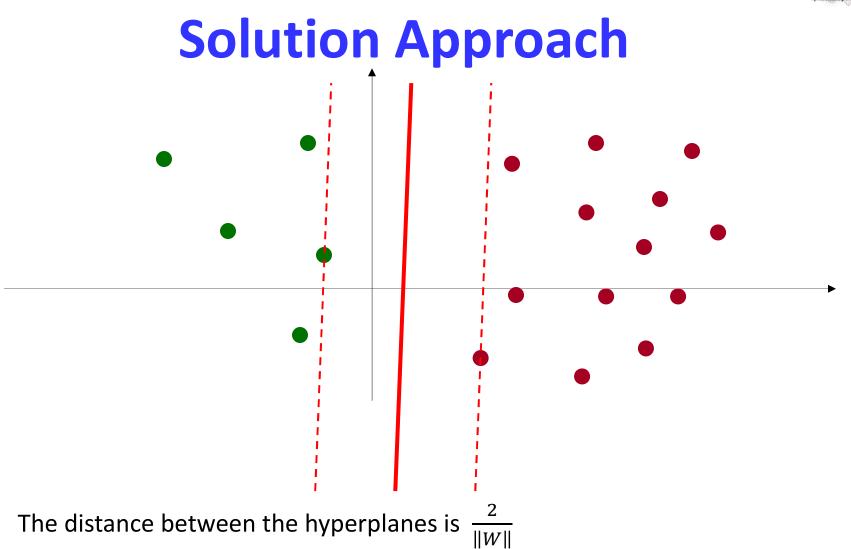
- The distance between the hyperplanes is $\frac{2}{\|W\|}$
- Find the W (and b) such that this is maximized, while maintaining the constraint that all training points are on the "outside" of the appropriate hyperplane



- The distance between the hyperplanes is $\frac{2}{\|W\|}$
- Find the W (and b) such that this is maximized, while maintaining the constraint that all training points are on the "outside" of the appropriate hyperplane

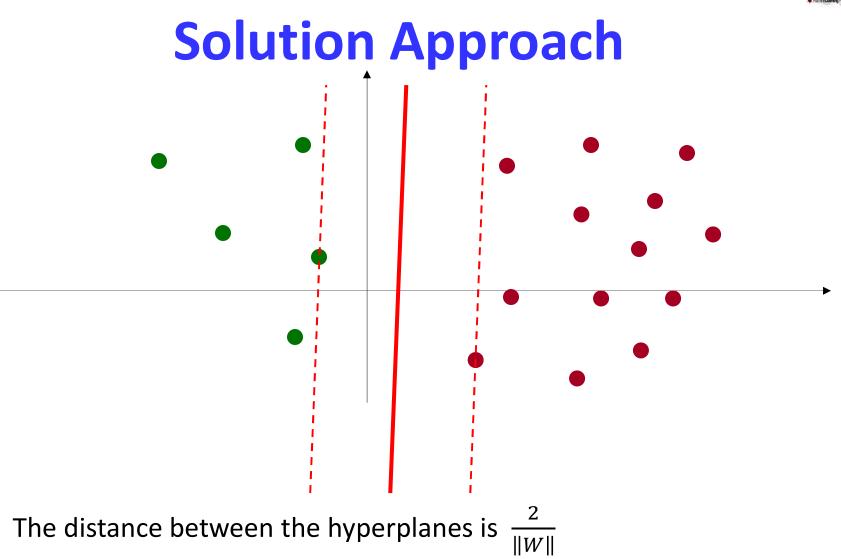


- The distance between the hyperplanes is $\frac{2}{\|W\|}$
- Find the W (and b) such that this is maximized, while maintaining the constraint that all training points are on the "outside" of the appropriate hyperplane



• Find the W (and b) such that this is maximized, while maintaining the constraint that all training points are on the "outside" of the appropriate hyperplane

•

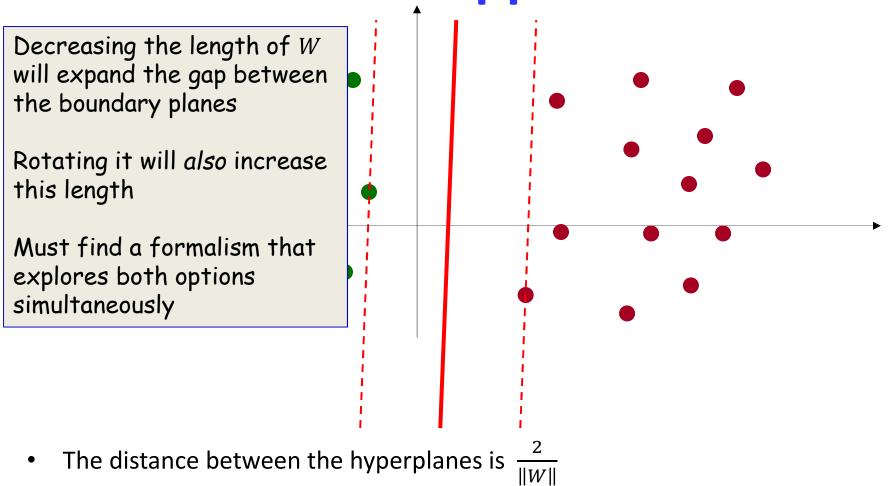


- Maximize this distance. I.e. ..
- Minimize ||W|| such that

•

- all training points are on the "outside" of the appropriate hyperplane 68

Solution Approach



- Maximize this distance. I.e. ..
- Minimize $||W||^2$ such that
 - all training points are on the "outside" of the appropriate hyperplane

Lets formalize this

- Constraint: Ensuring that all training instances are on the proper side of their respective hyperplanes
- For positive training instances X_i : $W^T X_i - b \ge 1$
- For negative instances

 $W^T X_i - b \le -1$

• Generically stated, for all instances we want $Y_i(W^T X_i - b) \ge 1$

Solution Formalism

- Minimize ||W|| such that
- For all training instances $Y_i(W^T X_i - b) \ge 1$
- Formally

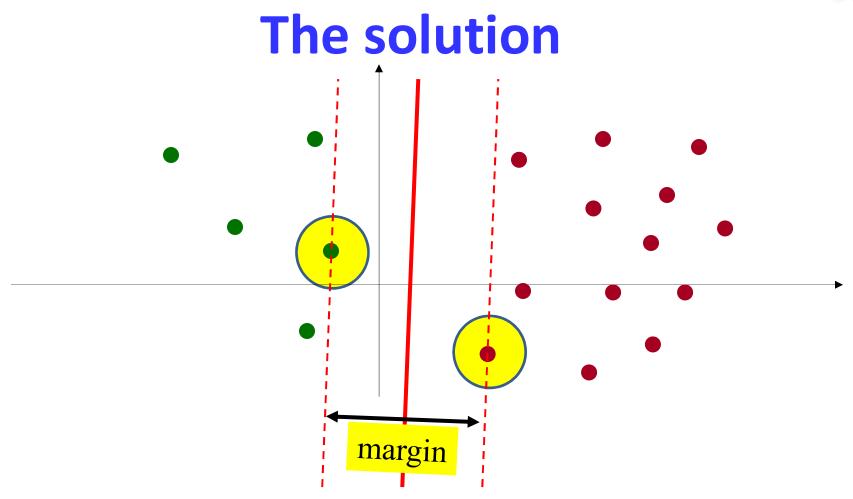
 $\widehat{W} = \underset{W,b}{\operatorname{argmin}} \|W\|^{2}$ s.t. $\forall i \quad Y_{i}(W^{T}X_{i} - b) \geq 1$

Solving the optimization

• This is a quadratic programming problem!

 $\widehat{W} = \underset{W,b}{\operatorname{argmin}} \|W\|^{2}$ s.t. $\forall i \quad Y_{i}(W^{T}X_{i} - b) \geq 1$

- A variety of techniques can be applied
 - Interior point methods, active set methods, gradient descent, conjugate gradient
 - The objective function is convex, QP will find the (near) optimal solution
- Most useful solution is based on *Lagrangian duals*
 - Later..

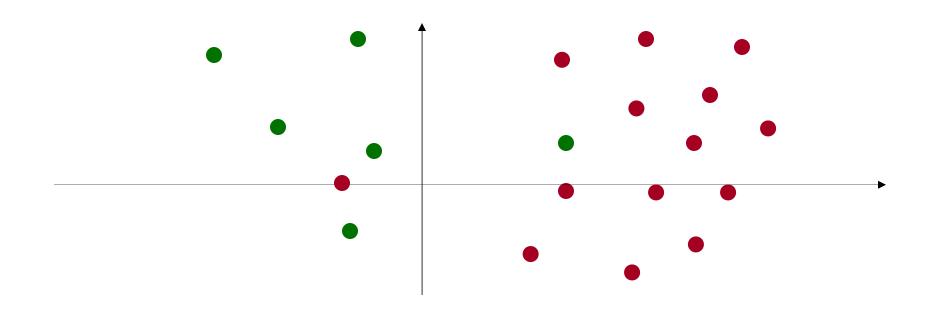


- Maximizes the *margin*
- This is a *max-margin* classifier
- The boundary samples are called support vectors
 - All the information about the classifier is in these support vectors

Challenges

- What if the classes are not linearly *separable*
- What if the classes are not *linearly* separable?
- What if the classes are not *linearly separable*?

What if they are not separable?



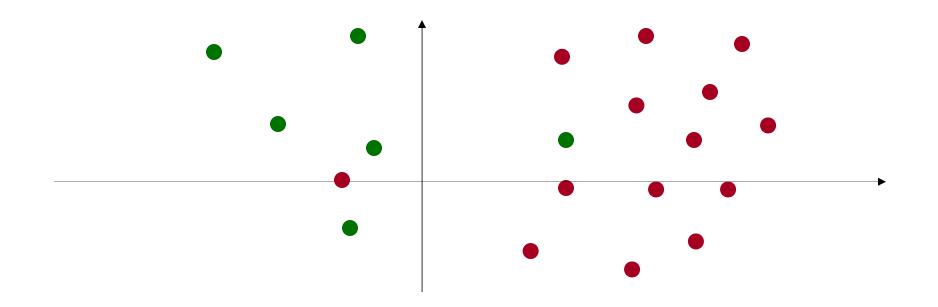
• What if the data are not separable?

Original Problem

• This is a quadratic programming problem!

 $\widehat{W} = \underset{W}{\operatorname{argmin}} \|W\|^{2}$ s.t. $\forall i \quad Y_{i}(W^{T}X_{i} - b) \geq 1$

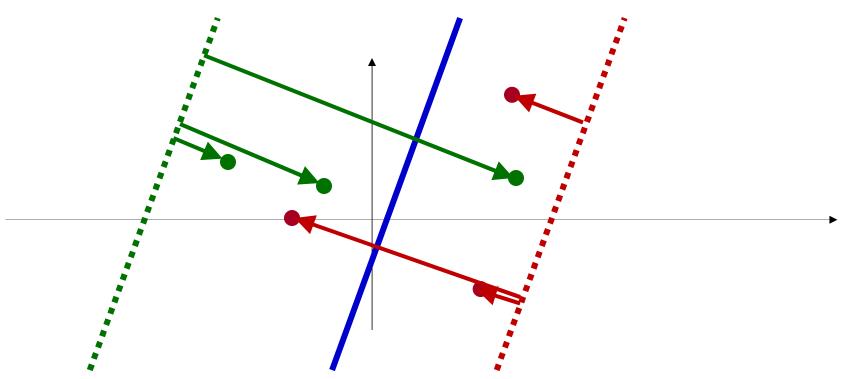
- Maximize the distance between the planes
- Subject to the constraint that all training data instances are on the "correct" side of the plane
- When data are not linearly separable, this constraint can never be satisfied



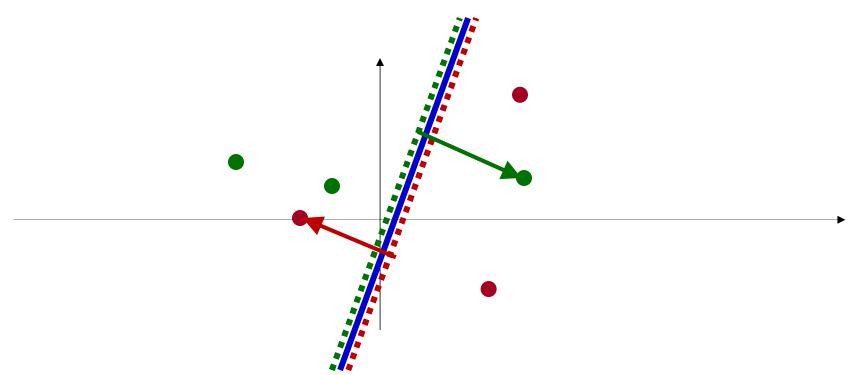
• What if the data are not separable?

- For every training instance, introduce a *slack* variable ξ
- The slack variable is the maximum distance you have to shift the boundary plane to move the point to the "correct" side

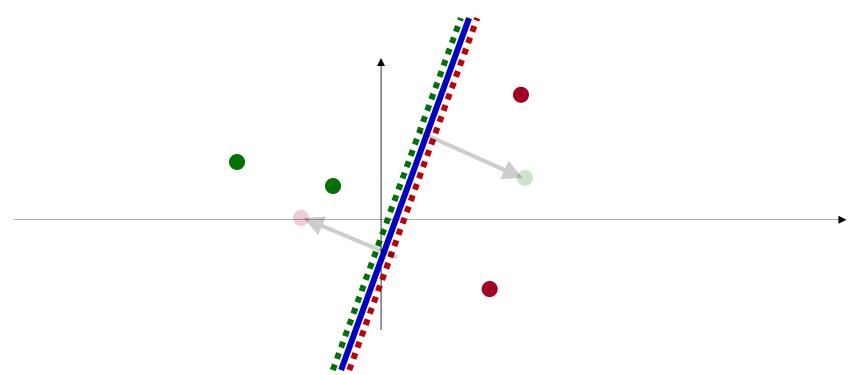
- For every training instance, introduce a *slack* variable ξ
- The slack variable is the *reverse* distance from the *margin* plane of the training instance
 - This will be non-zero only for some instances
 - Ideally this should be minimum



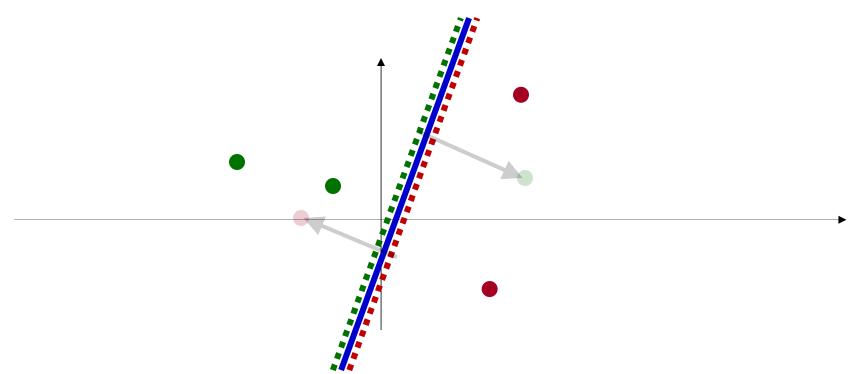
- The total length of slack variables varies with the boundary
- If you push the boundaries too far you will have a greater length of slack variable
 - Which contradicts our desire that they should be minimum



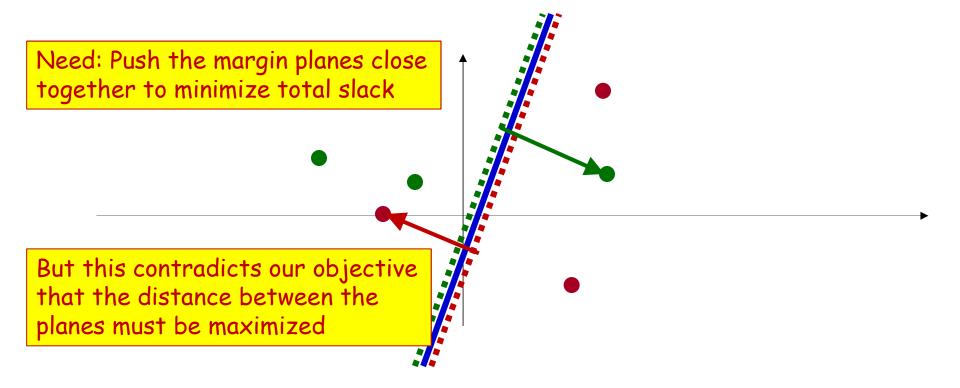
- If they are very close, only the *inseparable points* will have non-zero slack variable
 - The minimum slack value is when the margin planes coincide with the linear classifier



- If they are very close, only the *inseparable points* will have non-zero slack variable
 - The minimum slack value is when the margin planes coincide with the linear classifier
- For linearly separable classes, if the boundary planes are close enough, the total slack length will be 0



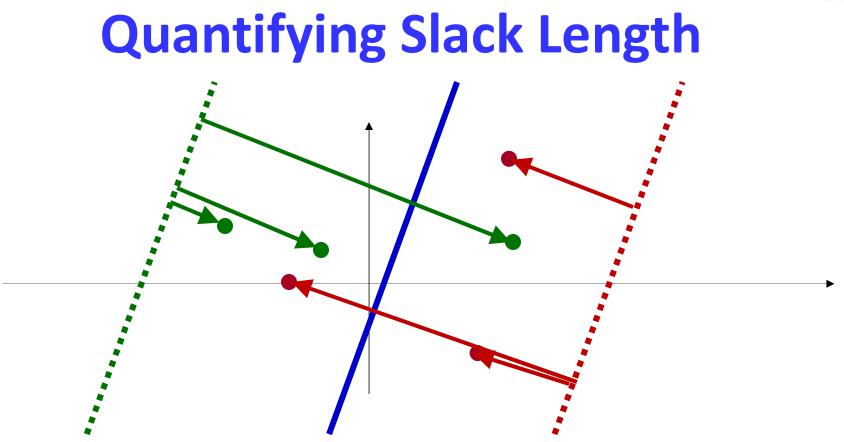
• Problem: If they are too close, the planes violate our desire to *maximize* the margin



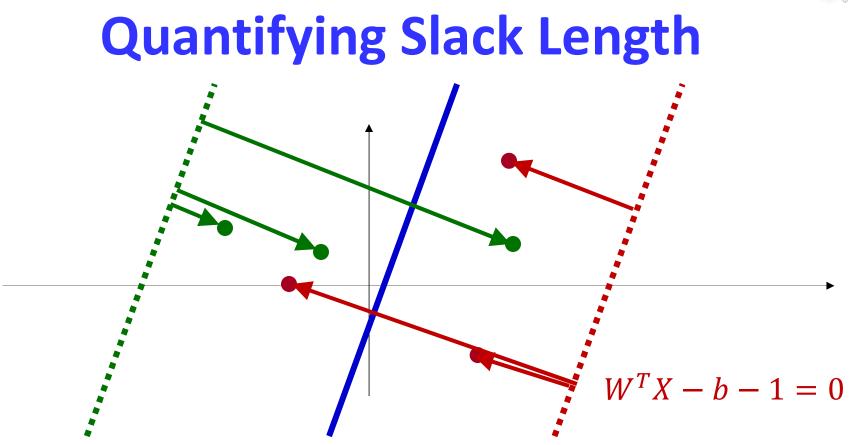
• Contradicting requirements..

New Objective

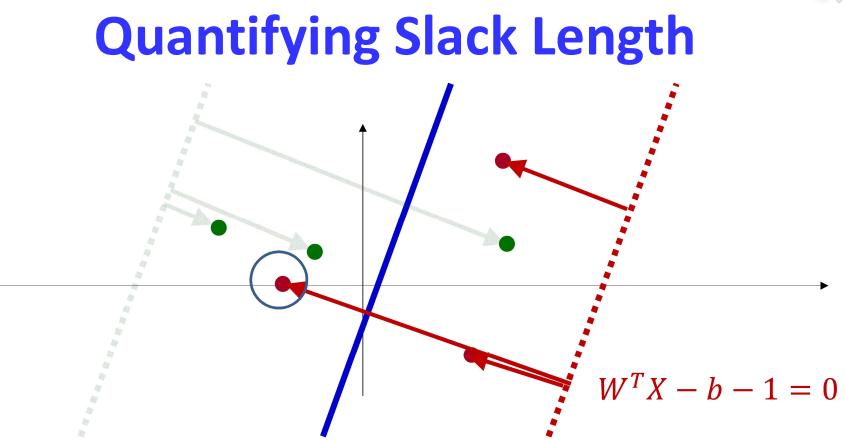
- Simultaneously
 - Maximize distance between planes
 - Minimize total slack length



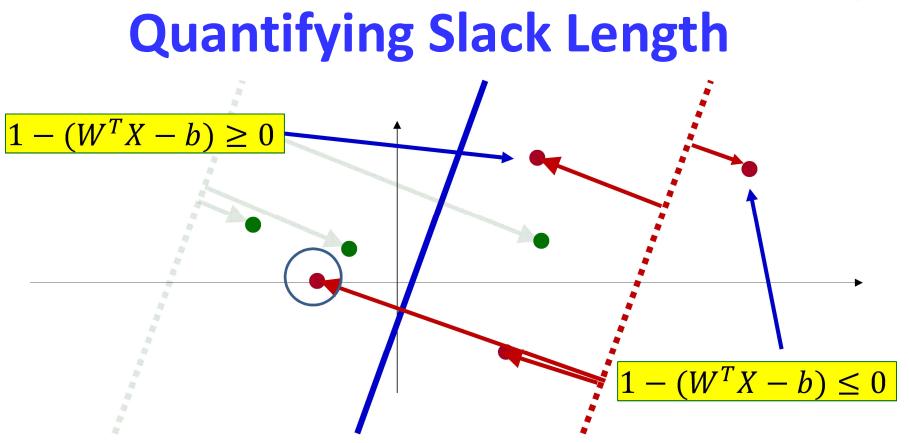
• We need a formula for the total slack length first..



- The *positive* margin plane is given by
- $W^T X b 1 = 0$
- This plane is at a distance is $\frac{1}{\|W\|}$ from the decision boundary on the *positive* side of the decision plane (in the direction of W)
 - Ideally all positive training points would be to the right of it



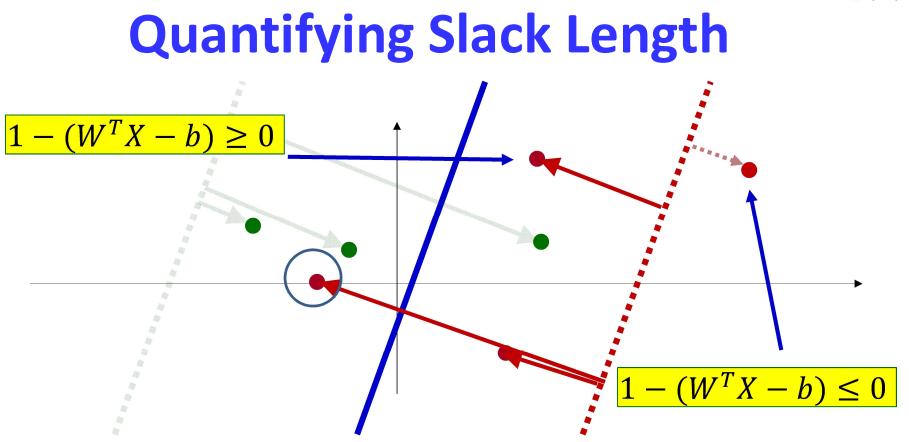
- The (unnormalized) distance of any X from this plane $W^T X b 1$
- This will be negative for instances on the "wrong" side (in the direction away from W), but positive for those on the "right" side



• The *negated* (unnormalized) distance of any *X* from this plane

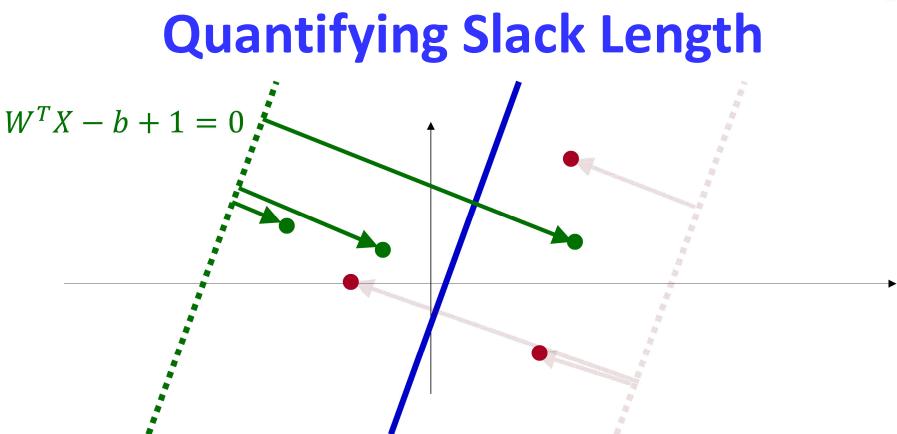
 $1 - (W^T X - b)$

• This will be positive for instances on the wrong side of the margin plane, but negative for instances on the right side of it

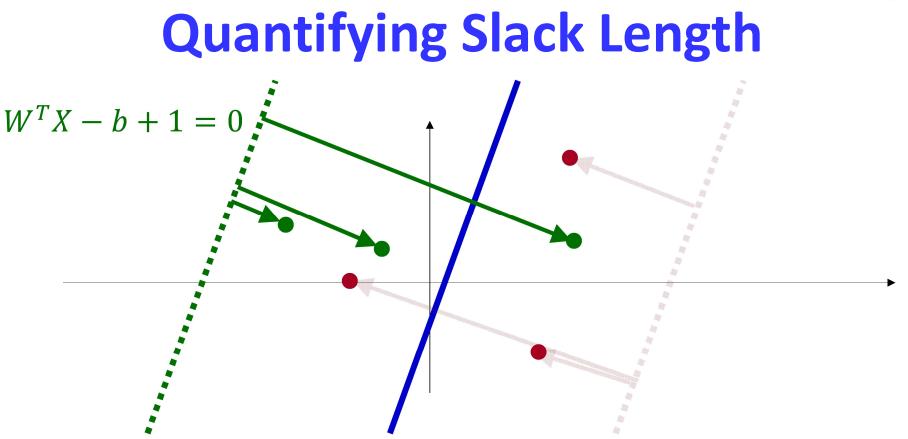


- We do not care about the actual distance of instances to the *right* of the plane
- So the slack value of any point is

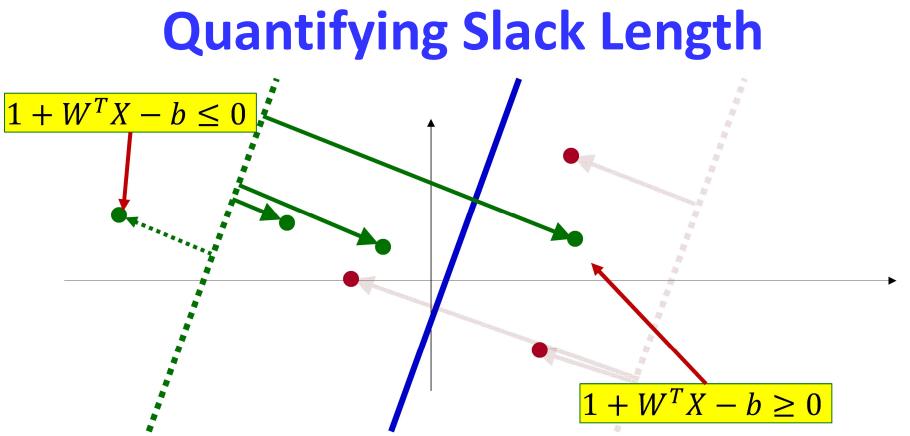
 $\max(0,1-(W^TX-b))$



- The *negative* margin plane is given by $W^T X - b + 1 = 0$
 - Ideally all negative training points would be to the left of it

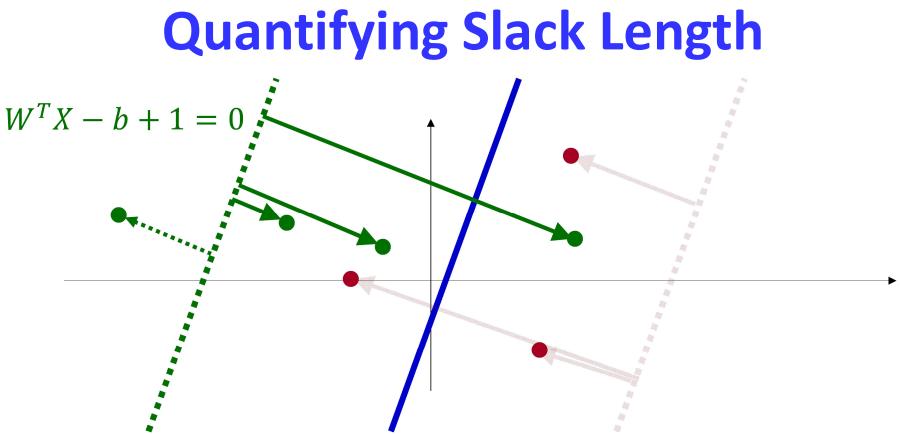


- The (unnormalized) distance of any X from this plane $W^T X - b + 1 = 1 + W^T X - b$
- This will be positive for vectors on the "wrong" side, but negative for vectors on the right side



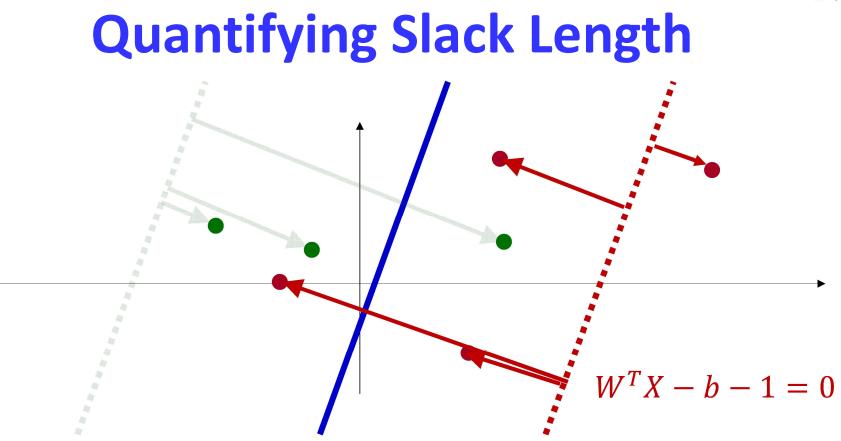
- We do not care about the actual distance of instances to the *left* of the plane
- So the slack value of any point is

 $\max(0, 1 + W^T X - b)$

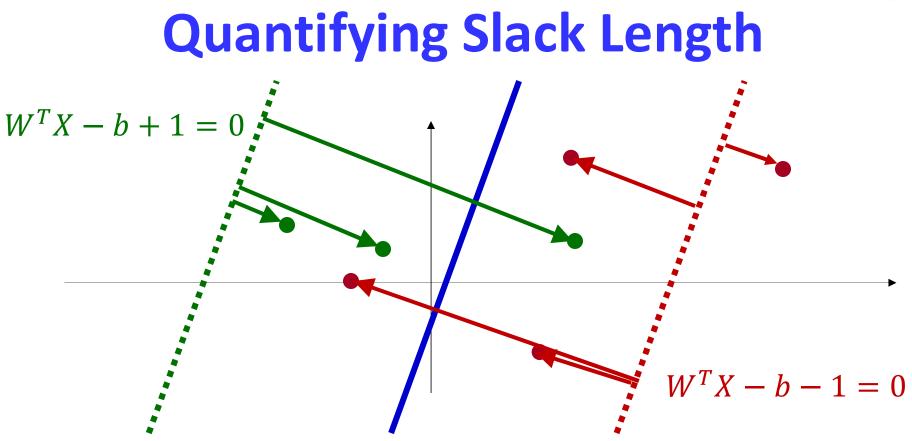


Combining the following for negative instances

$$\max(0, 1 + (W^T X - b))$$



• And the following for positive instances $max(0, 1 - (W^TX - b))$



- Generic Slack length for any point $\max(0, 1 - y(W^TX - b))$
- This is also called a *hinge loss*

Total Slack Length

- Total slack length for *all* training instances $\sum_{i} \max(0, 1 y(W^{T}X b))$
- This must be minimized

Overall Optimization

- Minimize ||W||² to maximize the distance between margin planes
- Minimize total slack length to minimize the distance of *misclassified* instances to margin planes

$$\sum_{i} \max(0, 1 - y(W^T X - b))$$

– This will make the margin planes *closer*

• The two objectives must be traded off..

Support Vector Machine for Inseparable data

• Minimize

$$\underset{W,b}{\operatorname{argmin}} \frac{1}{N} \sum_{i} \max(0, 1 - y(W^{T}X - b)) + \lambda \|W\|^{2}$$

- λ is a "regularization" parameter that decides the relative importance of the two terms
- This is just a regular optimization problem that can be solved through gradient descent

Support Vector Machine for Inseparable data

- λ is typically set using *held-out* training data
 - Train the classifier for various values of λ
 - Test each of these classifiers on some held-out portion of the training data that was not included in training the SVM
 - Pick the λ for which the classifier gave best performance
 - Retrain the SVM using the entire training data and this λ
- Frequently, instead of a single held-out set, λ is set through K-fold cross validation

Equivalent Slack Formalism

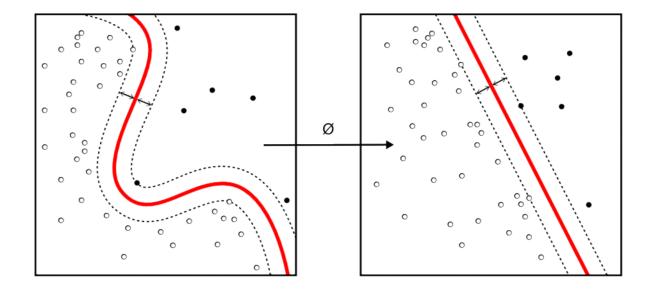
$$\underset{W,b}{\operatorname{argmin}} \|W\|^2 + C \sum_i \xi_i$$

• Subject to

$$Y_i(W^T X_i - b) \ge 1 - \xi_i$$

- This is a quadratic programming problem
- Slack parameter *C* is determined through held-out data as earlier (or through K-fold cross-validation)

How to deal with *non-linear* boundaries?



• First some math..

Recall: The Lagrange Method

• Optimize f(x, y) subject to g(x, y) = c

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$

to maximize
$$f(x, y)$$
: $\max_{x,y} \left(\min_{\lambda} L(x, y, \lambda) \right)$
to minimize $f(x, y)$: $\min_{x,y} \left(\max_{\lambda} L(x, y, \lambda) \right)$

Optimization with inequality constraints

• Optimization problem with constraints

$$\min_{x} f(x)$$

s.t. $g_i(x) \le 0, \ i = \{1, ..., k\}$
 $h_j(x) = 0, \ j = \{1, ..., l\}$

- Lagrange multipliers $\lambda_i \ge 0, \nu \in \Re$ $L(x, \lambda, \nu) = f(x) + \sum_{i=1}^k \lambda_i g_i(x) + \sum_{j=1}^l \nu_j h_j(x)$
- The optimization problem

 $\operatorname*{argmin}_{x}\max_{\lambda,v}L(x,\lambda,v)$

Revisiting the *linearly separable* case

• This is a quadratic programming problem!

$$\widehat{W} = \underset{W}{\operatorname{argmin}} \|W\|^{2}$$

s.t. $\forall i \quad Y_{i}(W^{T}X_{i} - b) \geq 1$

• Can be stated using Lagrangians as

$$\underset{W,b}{\operatorname{argmin}} \max_{\alpha > 0} \|W\|^2 + \sum_i \alpha_i (Y_i (W^T X_i - b) - 1)$$

Linearly separable case: Lagrangian formalism

• Can be stated using Lagrangians as

$$\underset{W,b}{\operatorname{argmin}} \max_{\alpha > 0} \|W\|^2 + \sum_i \alpha_i (Y_i (W^T X_i - b) - 1)$$

• The optimum satisfies the *Karush Kuhn-Tucker* conditions, hence we can rewrite it as

$$\underset{\alpha > 0}{\operatorname{argmax}} \min_{W, b} \|W\|^2 + \sum_i \alpha_i (Y_i (W^T X_i - b) - 1)$$

Linearly separable case: Lagrangian formalism

• Under the KKT conditions

$$\underset{\alpha>0}{\operatorname{argmax}} \min_{W,b} \|W\|^2 + \sum_i \alpha_i (Y_i (W^T X_i - b) - 1)$$

Taking the derivative w.r.t W and setting to 0, we get

$$2W = -\sum_{i} \alpha_{i} Y_{i} X_{i}$$

Linearly separable case: Lagrangian formalism

• Under the KKT conditions

$$\underset{\alpha>0}{\operatorname{argmax}} \min_{W,b} \|W\|^2 + \sum_i \alpha_i (Y_i (W^T X_i - b) - 1)$$

Taking the derivative w.r.t b and setting to 0, we get

$$0=\sum_i \alpha_i Y_i$$

Linearly separable case:

• Restating (and ignoring the factor of 2)

$$\underset{\alpha>0}{\operatorname{argmax}} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j} - b \sum_{i} \alpha_{i} Y_{i}$$

• Since the last term is 0

$$\operatorname{argmax}_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j}$$
$$s. t. \alpha_{i} \ge 0$$
$$\sum_{i} \alpha_{i} Y_{i} = 0$$

Large Margin Linear Classifier with Slack

• Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

such that

$$0 \le \alpha_i \le C$$
$$\sum_{i=1}^n \alpha_i y_i = 0$$

The usual simple SVM can also be solved through the ugly form

$$\operatorname{argmax}_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j}$$
$$s. t. C \ge \alpha_{i} \ge 0$$
$$\sum_{i} \alpha_{i} Y_{i} = 0$$

- This is for the linear case. Note that the optimization is in terms of $X_i^T X_j$
- Also $W = -\sum_i \alpha_i Y_i X_i$
- So the classifier on any test instance has the form:

$$sign\left(-\sum_{i}\alpha_{i}Y_{i}X_{test}^{T}X_{i}-b\right)$$

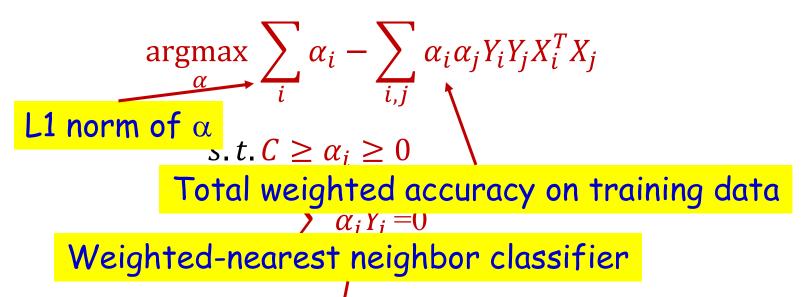
The SVM as KNN classification

$$\begin{aligned} \arg \max_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j} \\ s. t. C \geq \alpha_{i} \geq 0 \\ \sum_{i} \alpha_{i} Y_{i} = 0 \end{aligned}$$
Weighted-nearest neighbor classifier

- This is for the linear case. Note that the optimization is in terms of $X_i^T X_j$
- Also $W = -\sum_i \alpha_i Y_i X_i$
- So the classifier on any test instance has the form:

$$sign\left(-\sum_{i}\alpha_{i}Y_{i}X_{test}^{T}X_{i}-b\right)$$

The SVM as KNN classification



- This is for the linear case. Note that the optimization is in terms of $X_i^T X_j$
- Also $W = -\sum_i \alpha_i Y_i X_i$
- So the classifier on any test instance has the form:

$$sign\left(-\sum_{i}\alpha_{i}Y_{i}X_{test}^{T}X_{i}-b\right)$$

The Kernel Trick

$$\operatorname{argmax}_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j}$$
$$s. t. C \ge \alpha_{i} \ge 0$$
$$\sum_{i} \alpha_{i} Y_{i} = 0$$

- This is for the linear case. Note that the optimization is in terms of $X_i^T X_j$
- Also $W = -\sum_i \alpha_i Y_i X_i$
- So the classifier on any test instance has the form:

$$sign\left(-\sum_{i}\alpha_{i}Y_{i}X_{test}^{T}X_{i}-b\right)$$

The Kernel Trick

$$\operatorname{argmax}_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} K(X_{i}, X_{j})$$
$$s. t. C \ge \alpha_{i} \ge 0$$
$$\sum_{i} \alpha_{i} Y_{i} = 0$$

• For classification:

$$sign\left(-\sum_{i} \alpha_{i} Y_{i} K(X_{i}, X_{test}) - b\right)$$

The Kernel Trick

$$\operatorname{argmax}_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} Y_{i} Y_{j} K(X_{i}, X_{j})$$

$$s. t. C \ge \alpha_{i} \ge 0$$

$$\sum_{i} \alpha_{i} Y_{i} = 0$$

This is a quadratic
programming
problem

• For classification:

$$sign\left(-\sum_{i} \alpha_{i} Y_{i} K(X_{i}, X_{test}) - b\right)$$

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
 - Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Gaussian (Radial-Basis Function (RBF)) kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$
 - Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

• In general, functions that satisfy *Mercer's condition* can be kernel functions.

Nonlinear SVM: Optimization

• Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
such that
$$0 \le \alpha_{i} \le C$$
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

• The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in \mathrm{SV}} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

• The optimization technique is the same.

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for *C*
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Some Issues

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

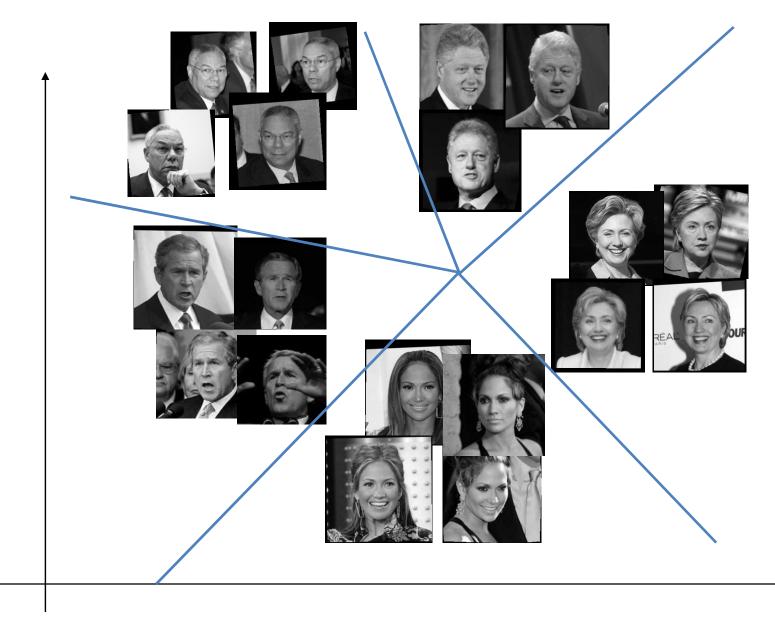
Summary: Support Vector Machine

• 1. Large Margin Classifier

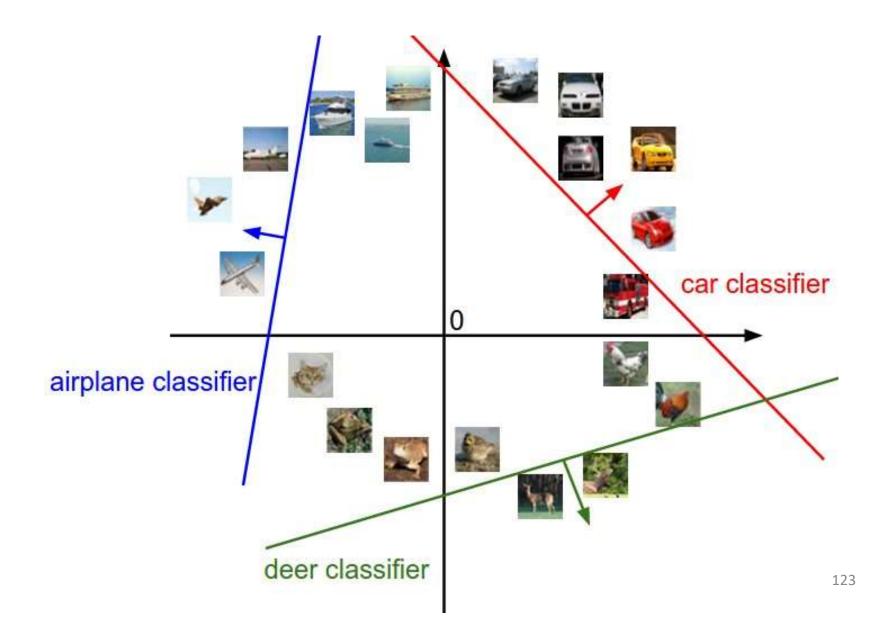
- Better generalization ability & less over-fitting

- 2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

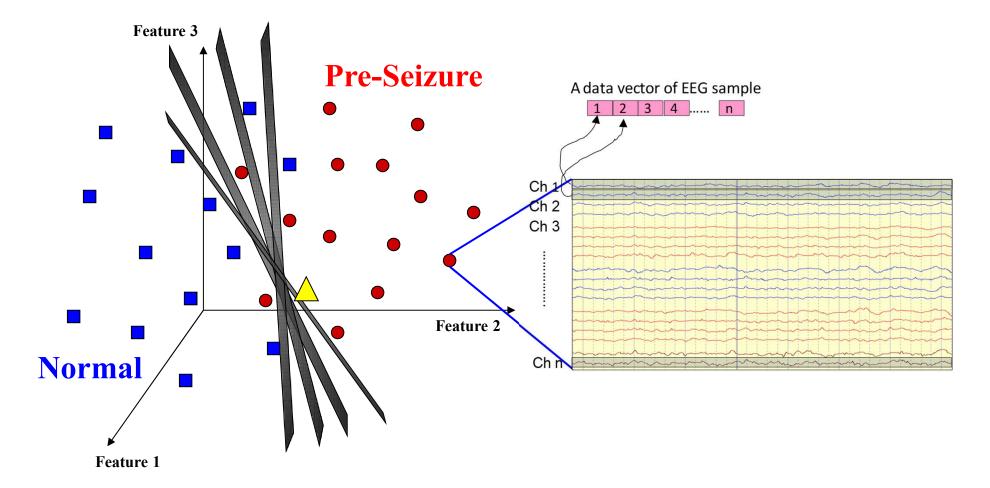
Multi-class generalization Pairwise



Multi-class generalization One-vs-all



Support Vector Machine for seizure detection



Example: Digit Recognition

- Yann LeCunn MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: d = 784
 - 60,000 training samples
 - 10,000 test samples
- Nearest neighbour is competitive

Test Error Rate (%)	
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1

Linear Classifiers: Conclusion

- Simple linear classifiers can be surprisingly effective
 - Particularly when trained to maximize a margin
 - Whereupon the "simple" arithmetic magically becomes complicated
- Kernel trick enables classification of even nonlinear problems
- Most commonly used classifier, still