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11-755/18-797 1



What is a signal
• A mechanism for conveying 

information
– Semaphores, gestures, traffic lights..

• In Electrical Engineering: currents, 
voltages

• Digital signals: Ordered collections 
of numbers that convey information 
– from a source to a destination
– about a real world phenomenon
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Signal Examples: Audio

• A sequence of numbers
– [n1 n2 n3 n4 …]
– The order in which the numbers occur is important

• Ordered
• In this case, a time series

– Represent a perceivable sound
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Example: Images

• A rectangular arrangement (matrix) of numbers 
– Or sets of numbers (for color images)

• Each pixel represents a visual representation of one of 
these numbers
– 0 is minimum(black), 1 is maximum(white)
– Position / order is important
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Example: Biosignals

• Biosignals
– MRI:  “k-space”  3D Fourier transform

• Invert to get image

– EEG: Many channels of brain electrical activity
– ECG: Cardiac activity
– OCT, Ultrasound, Echo cardiogram:  Echo-based imaging
– Others..

5

MRI

EEG ECG

Optical Coherence Tomography
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Financial Data

• Stocks, options, other derivatives

• Analyze trends and make predictions

• Special Issues on Signal Processing Methods in Finance 
and Electronic Trading from various journals
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Many others

• Network data..
• Weather..
• Any stochastic time series
• Etc.
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What is Signal Processing
• Acquisition, Analysis, Interpretation, and Manipulation of 

signals.
– Acquisition:  

• Sampling, sensing
– Analysis:

• Decomposition: Separating signals into basic “building” blocks
– Manipulation:

• Denoising
• Coding
• Synthesis

– Interpretation:
• Detection: Radars, Sonars
• Pattern matching: Biometrics, Iris recognition, finger print recognition
• Prediction: Financial prediction, speech coding, etc.

– Etc.

• Boundaries between these categories of operations are fuzzy
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The Tasks in a typical Signal 
Processing Paradigm

• Capture: Recovery, enhancement
• Channel:  Coding-decoding, compression-

decompression, storage
• Regression: Prediction, classification
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What is Machine Learning
• The science that deals with the development of 

algorithms that can learn from data
– Learning the structure of data

• Feature extraction

– Learning patterns in data
• Automatic text categorization; Market basket analysis

– Learning to classify between different kinds of data
• Is that picture a flower or not?

– Learning to predict data
• Weather prediction, movie recommendation

• Statistical analysis and pattern recognition when 
performed by a computer scientist..
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MLSP
• Application of Machine Learning techniques to the 

analysis of signals 

• Can be applied to each component of the chain
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MLSP
• Application of Machine Learning techniques to the 

analysis of signals 

• Can be applied to each component of the chain
• Sensing

– Compressed sensing, dictionary based representations

• Denoising
– ICA, filtering, separation
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MLSP
• Application of Machine Learning techniques to the 

analysis of signals 

• Can be applied to each component of the chain

• Channel:  Compression, coding
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MLSP
• Application of Machine Learning techniques to the 

analysis of signals 

• Can be applied to each component of the chain

• Feature Extraction:  
– Dimensionality reduction

• Linear models, non-linear models
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MLSP
• Application of Machine Learning techniques to the 

analysis of signals 

• Can be applied to each component of the chain

• Classification, Modelling and Interpretation, 
Prediction
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In this course

• The four “aspects” of MLSP:
– Representation:  How best to represent signals for 

effective downstream or upstream processing

– Modeling: How to model the systematic and 
statistical characteristics of the signal

– Classification: How do we assign a class to the 
data?

– Prediction: How do we predict new or unseen 
values or attributes of the data
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What we will cover

• Representations: Algebraic methods for 
extracting information from signals
– Deterministic representations
– Data-driven characterization

• PCA
• ICA
• NMF
• Factor Analysis
• LGMs
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What we will cover

• Representations/Modelling: Learning-based approaches 
for modeling data
– Dictionary representations
– Sparse estimation

• Sparse and over-complete characterization, Compressed sensing

– Regression
– Neural networks

• Modelling: Latent variable characterization
– Clustering, K-means
– Expectation Maximization
– Probabilistic Latent Component Analysis
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What we will cover
• Modeling/Prediction: Time Series Models

– Markov models and Hidden Markov models
– Linear and non-linear dynamical systems

• Kalman filters, particle filtering

• Classification and Prediction:
– Binary classification. Meta-classifiers
– Neural networks

• Wish list: Additional topics
– Privacy in signal processing
– Extreme value theory
– Dependence and significance
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Recommended Background

• DSP
– Fourier transforms, linear systems, basic statistical signal 

processing

• Linear Algebra
– Definitions, vectors, matrices, operations, properties

• Probability
– Basics: what is an random variable, probability distributions, 

functions of a random variable

• Machine learning
– Learning, modelling and classification techniques
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Guest Lectures
• Roger Dannenberg

– Professor, CSD

– Music Tech

• Mike Sipe
– Predictive Algorithms 

at ZOLL Medical 
Corporation



Schedule of Other Lectures
• Tentative Schedule on Website
• http://mlsp.cs.cmu.edu/courses/fall2019

– To be updated, currently buggy
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Grading
• Mini quizzes : 25%

– Ten multiple-choice questions on the topics of the week
– Weekly
– Will be open on Friday, closed on Saturday night

• Homework assignments : 50%
– Mini projects
– Will be assigned during course
– Expect four
– You will not catch up if you slack on any homework

• Those who didn’t slack will also do the next homework

• Final project: 25%
– Will be assigned early in course
– Dec 6 (approx): Poster presentation for all projects, with demos (if possible) 

• Partially graded by visitors to the poster
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Instructor and TA
• Instructor: Prof. Bhiksha Raj

– Room 6705 Hillman Building
– bhiksha@cs.cmu.edu
– 412 268 9826

• TAs: 
– Mahmoud Al Ismail (mahmoudi@andrew)
– ??
– Kigali: Samuel Ishimwe (sishimwe@Africa.cmu.edu)
– SV: ??

• Office Hours:
– Instructor: Thursday, 1-2.30; I also have an open-door policy
– TAs: TBD
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Additional Administrivia

• Website:
– http://mlsp.cs.cmu.edu/courses/fall2019/
– Lecture material will be posted on the day of each 

class on the website
– Reading material and pointers to additional 

information will be on the website

• We will use Piazza
– Expect an invite to join 11-755/18-797

• Mailing list: Information will be posted

11-755/18-797 25



Continuing..

• Story so far:
– What is a signal
– Some types of signals
– What is SP
– What is ML

• And where does it apply in the SP chain

• Continuing – some additional concepts..
– More on signals
– More on what we do with signals

• Representation, Regression, classification, prediction

– And how
• Supervision
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More on Signals

• Principles of signal capture and what the 
numbers mean

• Explained through examples
– Sound, images

• Signals where the purpose of signal capture is to recreate 
stimulus

• Signals we emphasize a bit in course
• But also because easily interpretable principles that extend 

to all signals

– Also MRI
• Illustrates capture in transform domain
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E.g. Audio Signals

• A typical digital audio signal
– It’s a sequence of numbers

– Must represent a quantity that enables near-
perfect recreation of sound stimulus
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The sound stimulus

• Any sound is a pressure wave: alternating highs and lows of air pressure 
moving through the air

• When we speak, we produce these pressure waves
– Essentially by producing puff after puff of air
– Any sound producing mechanism actually produces pressure waves

• These pressure waves move the eardrum
– Highs push it in, lows suck it out
– We sense these motions of our eardrum as “sound”
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SOUND PERCEPTION
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SOUND PERCEPTION
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Storing pressure waves on a computer
• The pressure wave moves a diaphragm

– On the microphone

• The motion of the diaphragm is converted to continuous 
variations of an electrical signal
– Many ways to do this

• A “sampler” samples the continuous signal at regular intervals 
of time and stores the numbers
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Are these numbers sound?

• How do we even know that the numbers we store on the 
computer have anything to do with the recorded sound really?
– Recreate the sense of sound

• The numbers are used to control the levels of an electrical 
signal

• The electrical signal moves a diaphragm back and forth to 
produce a pressure wave
– That we sense as sound
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Are these numbers sound?

• How do we even know that the numbers we store on the 
computer have anything to do with the recorded sound really?
– Recreate the sense of sound

• The numbers are used to control the levels of an electrical 
signal

• The electrical signal moves a diaphragm back and forth to 
produce a pressure wave
– That we sense as sound
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How many samples a second
• Convenient to think of sound in terms of 

sinusoids with frequency

• Sounds may be modelled as the sum of 
many sinusoids of different frequencies
– Frequency is a physically motivated unit
– Each hair cell in our inner ear is tuned to 

specific frequency

• Any sound has many frequency 
components
– We can hear frequencies up to 16000Hz

• Frequency components above 16000Hz can 
be heard by children and some young adults

• Nearly nobody can hear over 20000Hz. 
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Signal representation - Sampling
• Sampling frequency (or sampling 

rate) refers to the number of samples 
taken a second

• Sampling rate is measured in Hz
– We need a sample rate twice as high as 

the highest frequency we want to 
represent (Nyquist freq)

• For our ears this means a sample rate 
of at least 40kHz
– Because we hear up to 20kHz
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Aliasing
• Low sample rates result in aliasing

– High frequencies are misrepresented
– Frequency f1 will become (sample rate – f1 )
– In video also when you see wheels go backwards
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Aliasing examples
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Aliasing examples
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Avoiding Aliasing

• Solution: Filter the signal before sampling it
– Cut off all frequencies above sampling.frequency/2
– E.g., to sample at 44.1Khz, filter the signal to eliminate all frequencies 

above 22050 Hz

• Will only lose information, but not distort existing information
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Problem 2: Resolution

• Sound is the outcome of a continuous range of variations
– The pressure wave can take any value (within limits)

• A computer has finite resolution
– Numbers can only be stored to finite resolution
– E.g. a 16-bit number can store only 65536 values, while a 4-bit 

number can store only 16 unique values

• Low-resolution storage results in loss of information
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Storing the signal on a computer
• The original signal

• 8 bit quantization

• 3 bit quantization

• 2 bit quantization

• 1 bit quantization
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Tom Sullivan Says his Name

• 16 bit sampling

• 5 bit sampling

• 4 bit sampling

• 3 bit sampling

• 1 bit sampling
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A Schubert Piece
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Lessons (for any signal)
• Transduce signal in meaningful manner

– For sound and images, must be able to recreate original stimulus from 
signal

• Sample fast enough to capture highest frequency variations
• Store with sufficient resolution
• For audio

– Common sample rates
• For speech 8kHz to 16kHz
• For music 32kHz to 44.1kHz
• Pro-equipment 96kHz

– Common bit resolution
• 12-bit equivalent for speech
• 16 bits for high-fidelity speech
• 24 bits for music
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Images
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Images
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The Eye
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The Retina
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Rods and Cones
• Separate Systems
• Rods

– Fast
– Sensitive
– Grey scale
– predominate in the 

periphery
• Cones

– Slow
– Not so sensitive
– Fovea / Macula
– COLOR!
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The Eye

• The density of cones is highest at the fovea
– The region immediately surrounding the fovea is the macula

• The most important part of your eye: damage == blindness
• Peripheral vision is almost entirely black and white
• Eagles are bifoveate
• Dogs and cats have no fovea, instead they have an elongated slit 51



Three Types of Cones (trichromatic 
vision)
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Trichromatic Vision
• So-called “blue” light sensors respond to an 

entire range of frequencies
– Including in the so-called “green” and “red” 

regions

• The difference in response of “green” and 
“red” sensors is small
– Varies from person to person

• Each person really sees the world in a different color

– If the two curves get too close, we have color 
blindness

• Ideally traffic lights should be red and blue
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White Light
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Response to White Light
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Response to White Light
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Response to Sparse Light
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Response to Sparse Light
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Response to Sparse Light
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Tetrachromats..
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By L. Shyamal - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=6308626

Estrildid finches
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are tetrachromatic
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Digital Capture of Images

• Lens projects image on sensor
– Typically CCD or CMOS

• Sensor comprises sensing elements of 3 colors
– Different strategies for arrangement of color sensors

• Limited number of sensing elements
– 200-600 ppi
– The camera generally includes an anti-aliasing filter to eliminate 

aliasing in the image
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Representing Images

• Utilize trichromatic nature of human vision
– Trigger the three cone types to produce a sensation approximating desired 

color
• A tetrachromatic animal would be very confused by our computer images

• The three “chosen” colors are red (650nm), green (510nm) and blue 
(475nm)

• Can still only represent a small fraction of the 10 million colors that 
humans can sense 11-755/18-797 62



Computer Images: Grey Scale
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Picture Element (PIXEL)
Position & gray value (scalar)

R = G = B. Only a single number need
be stored per pixel

Signal: Each stored number represents
a single pixel
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Picture Element (PIXEL)
Position & color value (red, green, blue)

Color Images
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RGB Representation
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The CMYK color space

• Represent colors in 
terms of cyan, 
magenta, and yellow
– The “K” stands for 

“Key”, not “black”
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CMYK is a subtractive representation

• RGB is based on composition, i.e. it is an additive representation
– Adding equal parts of red, green and blue creates white

• What happens when you mix red, green and blue paint?
– Clue – paint colouring is subtractive..

• CMYK is based on masking, i.e. it is subtractive
– The base is white
– Masking it with equal parts of C, M and Y creates Black
– Masking it with C and Y creates Green

• Yellow masks blue
– Masking it with M and Y creates Red

• Magenta masks green
– Masking it with M and C creates Blue

• Cyan masks green
– Designed specifically for printing

• As opposed to rendering
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An Interesting Aside

• Paints create subtractive coloring
– Each paint masks out some colours
– Mixing paint subtracts combinations of colors
– Paintings represent subtractive colour masks

• In the 1880s Georges-Pierre Seurat pioneered an additive-
colour technique for painting based on “pointilism”
– How do you think he did it?
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Quantization and Saturation 
• Captured images are typically quantized to 8 bits
• 8-bits is not very much < 1000:1
• Humans can easily accept 100,000:1
• And most cameras will give you only 6-bits anyway…

– Truth in advertising!
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Processing Colour Images

• Typically work only on the Grey Scale image
– Decode image from whatever representation to 

RGB
– GS = R + G + B

• For specific algorithms that deal with colour, 
individual colours may be maintained
– Or any linear combination that makes sense may 

be maintained.
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Signals..

• Speech and Images are examples of signals where 
the digitized signal is a facsimile of the stimulus 
to be represented
– Many other signals of this kind, including bio-signals, 

network traffic, etc.

• Next up : a signal where the digitized signal is not
a direct facsimile of the data to be represented
– Signal captured in a transform domain
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Magnetic Resonance Imaging

• Attempts to image interior structure of soft 
tissue

• Does so by imposing a magnetic field and 
measuring resonance of protons (Hydrogen 
atoms)
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Cross-section of a body

• Image changes left to right, top to bottom at 
different rates at different locations
– Different tissue densities…
– … which show up as a range of “spatial frequencies”
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MRI

• Takes slice-wise measurements in the Fourier domain
• A single “gradient field” derives response from a single “spatial frequency” 

component
– Which can be measured

• Sequence of gradient fields derive resonant response of different spatial 
frequencies of tissue slice

– Effectively a 2D Fourier transform

• Must invert transform to create image
• “Join” slices for full 3-D reconstruction
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What we do with signals

• Have seen examples of signals and caveats of 
signal capture

• Next:  Machine Learning challenges in dealing 
with the data
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Representation

• Signals can be decomposed into combinations of building blocks
– Different signals of any category composed as different combinations of the same building 

blocks
– Knowing the composing combination informs us about the properties of the signal

• But requires knowing the building blocks 
• Using the wrong building blocks will give us imprecise or 

meaningless conclusions

• ML challenge: Find building blocks from analysis of signals
– Mathematically:  S = f(B,W),  find B and W from S
– S = signal, B = building blocks, W = combination parameters, f = combination function
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Modelling

• Signals are produced by processes
– Which are generally partially or fully unknown

• Knowledge of the process is often crucial for additional processing
– Control, prediction, analysis

• ML challenge:  Characterizing the process underlying the signal
– Characterization through statistical properties of the signal
– Characterization through an abstract parametric model
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Classification

• Signals may arise from different classes of 
stimuli/processes

• Often needed to identify underlying process/stimulus
• ML challenge:  Identify underlying “class” of the signal
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Prediction

• Signals can be analyzed to make predictions about the 
future of the signal or the underlying process

• ML challenge: How to make the “best” predictions
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Supervision

• Learning representations and modeling are 
often preliminary steps to classification and 
prediction

• Can be performed without reference to the 
actual classification/prediction task
– Unsupervised learning

• Can be explicitly optimized 
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Supervision

• Task: Detect if it’s a face
• Unsupervised representation:  characterize edges, gradation

– Does not specifically help with problem

• Supervised representation:  characterize nose-like features, eyebrow-like 
features, mouth-like features…
– Better suited to detect faces
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Primary tools of the trade..

• Linear algebra
– Some calculus

• Optimization

• Probability…
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Optimization

• Machine learning problems often require finding parameters/values that 
“optimize” an objective

• Typical objectives
– Error of constructing a signal
– Accuracy of predicting future
– Error in classifying signal

• Problem:  Given only variation of objective w.r.t. parameters of algorithm, find the 
optimal set of parameters
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Optimization: Formulation
• In the majority of machine learning task, a set 

of samples is provided 
• Supervised learning

• Unsupervised learning (k-mean clustering)
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z1, z2,..., zn

z = (x, y)

h is predictor functionh : X Y

min imize f (h;(x, y)) = loss function (h(x), y)

z = x ÎÂd

h = (m1,....,mk )ÎÂd´k, which correspondsto cluster centers

min imize f ((m1,....,mk );x) = min
j

m j - x
2



Next Class..

• Review of linear algebra..
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