

MLSP linear algebra refresher

I learned something old today!

Book

- Fundamentals of Linear Algebra, Gilbert Strang
- Important to be very comfortable with linear algebra
 - Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
 - Appears through various properties of matrices that are used in machine learning
 - Often used in the processing of data of various kinds
 - Will use sound and images as examples
- Today's lecture: Definitions
 - Very small subset of all that's used
 - Important subset, intended to help you recollect

Incentive to use linear algebra

• Simplified notation!

$$\mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{y} \quad \longleftrightarrow \quad \sum_j y_j \sum_i x_i a_{ij}$$

• Easier intuition

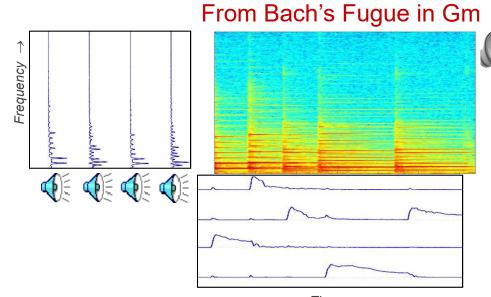
- Really convenient geometric interpretations

• Easy code translation!

for i=1:n
for j=1:m
$$c(i)=c(i)+y(j)*x(i)*a(i,j)$$

end
end

And other things you can do



Rotation + Projection + Scaling + Perspective

• Manipulate Data

- Extract information from data
- Represent data..
- Etc.

 $\begin{array}{c} \text{Time} \rightarrow \\ \text{Decomposition (NMF)} \end{array}$

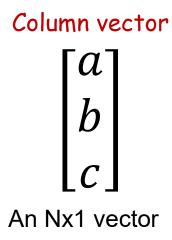
Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Determinant
 - Inverse
 - Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Determinant
 - Inverse
 - Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

What is a vector

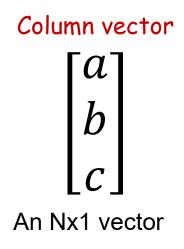


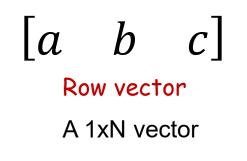
 $\begin{bmatrix} a & b & c \end{bmatrix}$ Row vector

Row vector A 1xN vector

• A rectangular or horizontal arrangement of numbers

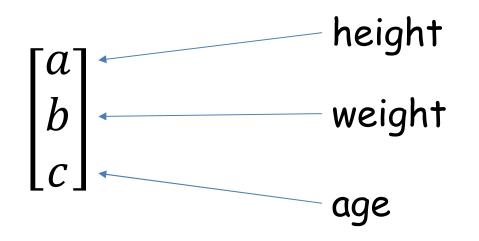
What is a vector



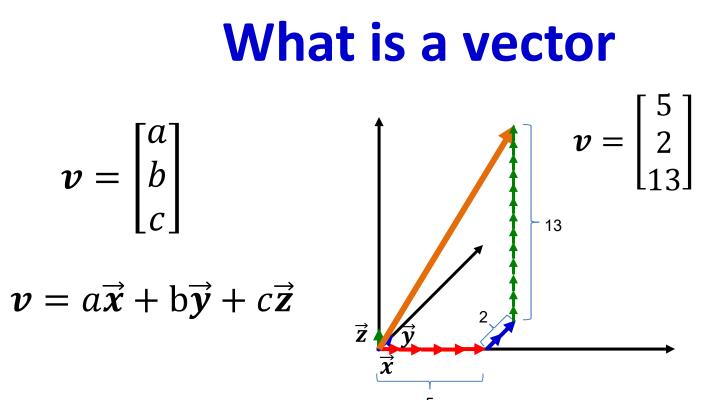


- A rectangular or horizontal arrangement of numbers
- Which, without additional context, is actually a useless and meaningless mathematical object

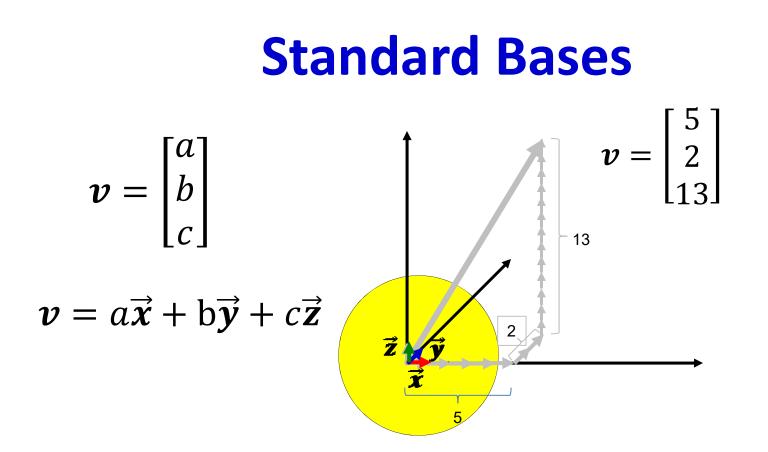
A meaningful vector



- A rectangular or horizontal arrangement of numbers
- Where each number refers to a different quantity

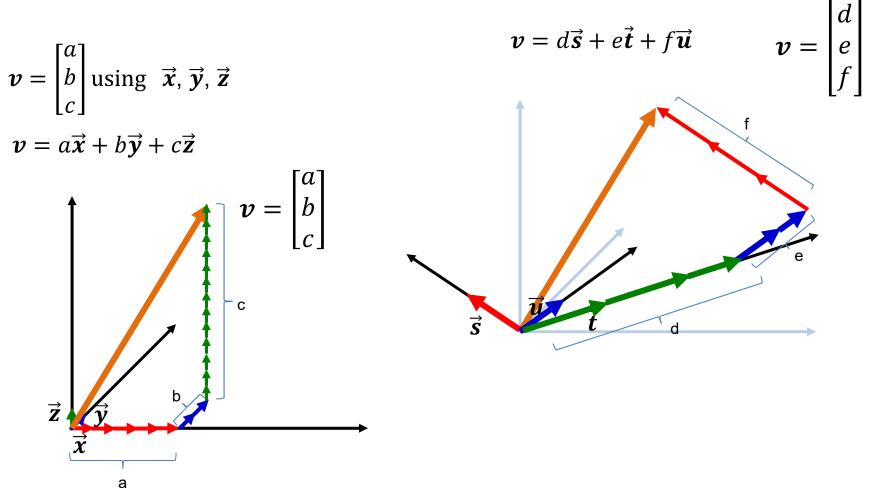


- Each component of the vecto⁵ actually represents the number of steps along a set of basis directions
 - The vector cannot be interpreted without reference to the bases!!!!!
 - The bases are often *implicit* we all just agree upon them and don't have to mention them

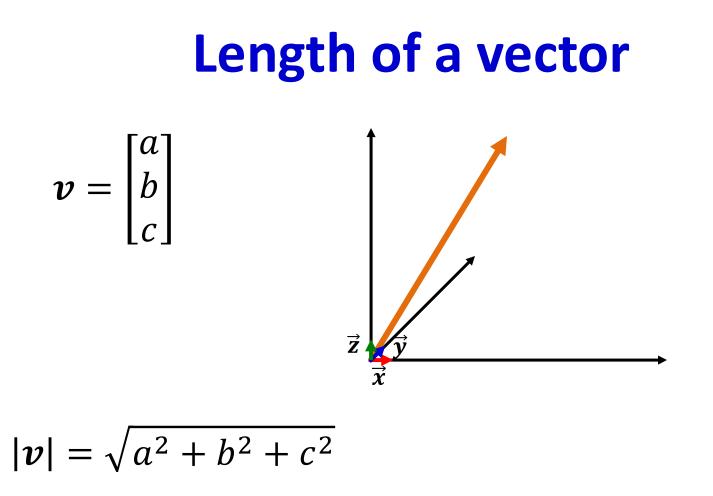


- "Standard" bases are "Orthonormal"
 - Each of the bases is at 90° to every other basis
 - Moving in the direction of one basis results in *no* motion along the directions of other bases
 - All bases are unit length

A vector by another basis..

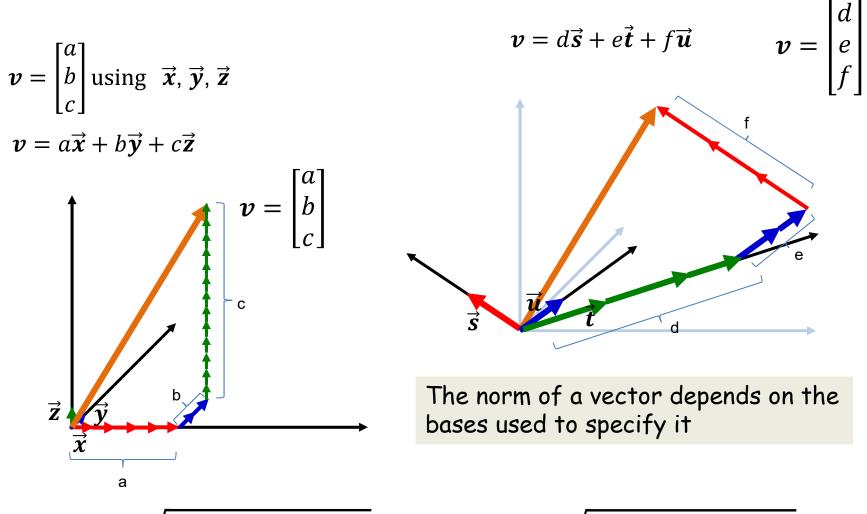


 For non-standard bases we will generally *have* to specify the bases to be understood



• The Euclidean distance from origin to the location of the vector

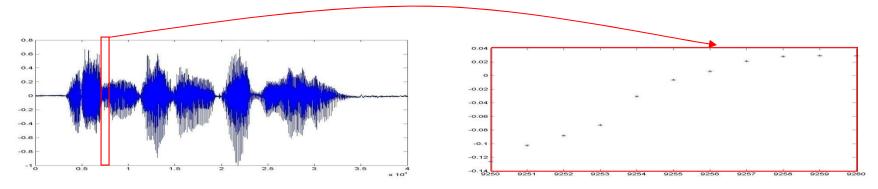
Length of a vector..



 $|v| = \sqrt{a^2 + b^2 + c^2}$ OR $|v| = \sqrt{d^2 + e^2 + f^2}$

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. A segment of an audio signal

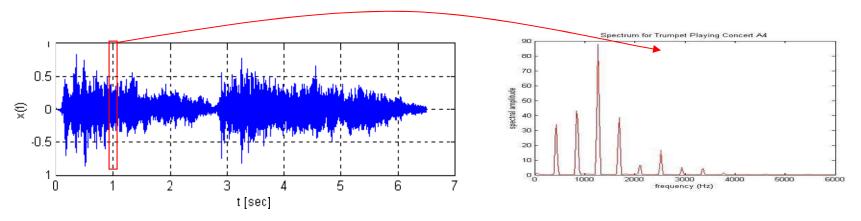


Represented as a vector of sample values

 $\begin{bmatrix} S_1 & S_2 & S_3 & S_4 & \dots & S_N \end{bmatrix}$

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. The *spectrum* segment of an audio signal



• Represented as a vector of sample values

 $\begin{bmatrix} S_1 & S_2 & S_3 & S_4 & \dots & S_M \end{bmatrix}$

 Each component of the vector represents a frequency component of the spectrum

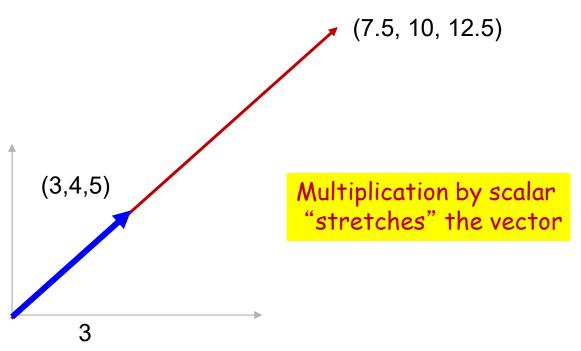
Representing an image as a vector

- 3 pacmen
- A 321 x 399 grid of pixel values
 - Row and Column = position
- A 1 x 128079 vector
 - "Unraveling" the image
 - $\begin{bmatrix} 1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1 \end{bmatrix}$
 - Note: This can be recast as the grid that forms the image

Vector operations

- Addition
- Multiplication
- Inner product
- Outer product

Vector Operations: Multiplication by scalar



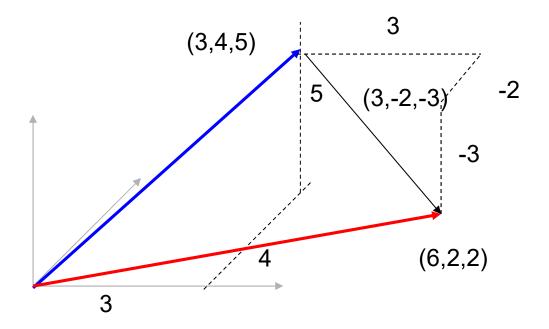
• Vector multiplication by scalar: each component multiplied by scalar

 $-2.5 \times [3,4,5] = [7.5, 10, 12.5]$

• Note: as a result, vector norm is also multiplied by the scalar

 $- ||2.5 \times [3,4,5]|| = 2.5 \times ||[3,4,5]||$

Vector Operations: Addition



Vector addition: individual components add

$$-[3,4,5] + [3,-2,-3] = [6,2,2]$$

Vector operation: Inner product

- Multiplication of a row vector by a column vector to result in a scalar
 - Note order of operation
 - The *inner* product between two row vectors \boldsymbol{u} and \boldsymbol{v} is the product of \boldsymbol{u}^T and \boldsymbol{v}
 - Also called the "dot" product

$$\boldsymbol{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \boldsymbol{v} = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$
$$\boldsymbol{u} \cdot \boldsymbol{v} = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = a \cdot d + b \cdot e + c \cdot f$$

Vector operation: Inner product

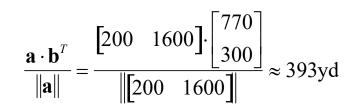
- The inner product of a vector with itself is its squared norm
 - This will be the squared length

$$\boldsymbol{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

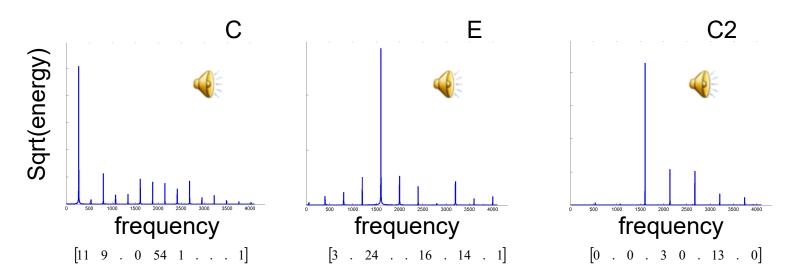
$$u.u = u^T u = a^2 + b^2 + c^2 = ||u||^2$$

Vector dot product

- Example:
 - Coordinates are yards, not ave/st
 - $\mathbf{a} = [200 \ 1600], \\ \mathbf{b} = [770 \ 300]$
- The dot product of the two vectors relates to the length of a *projection*
 - How much of the first vector have we covered by following the second one?
 - Must normalize by the length of the "target" vector

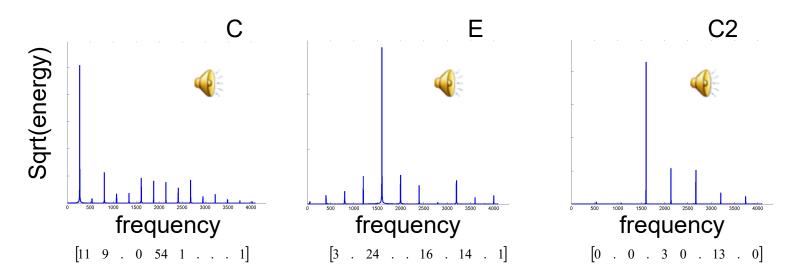


Vector dot product



- Vectors are spectra
 - Energy at a discrete set of frequencies
 - Actually 1 x 4096
 - X axis is the *index* of the number in the vector
 - Represents frequency
 - Y axis is the value of the number in the vector
 - Represents magnitude

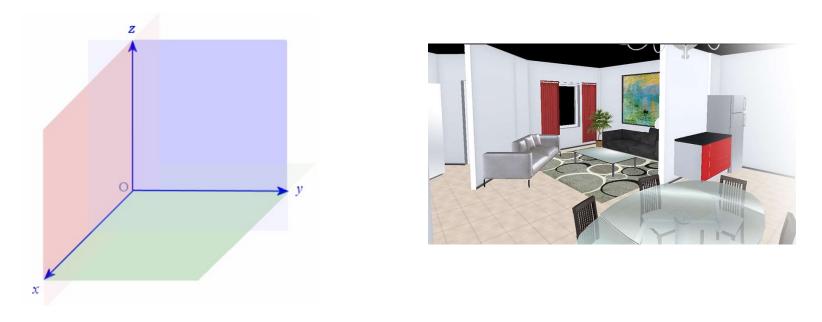
Vector dot product



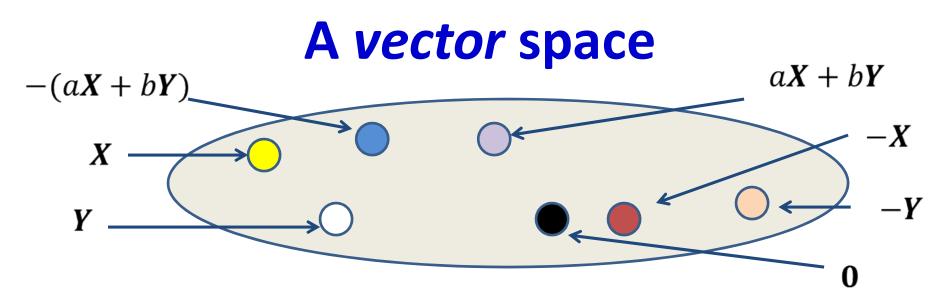
- How much of C is also in E
 - How much can you fake a C by playing an E
 - C.E / |C| |E| = 0.1
 - Not very much
- How much of C is in C2?
 - C.C2 / |C| / |C2| = 0.5
 - Not bad, you can fake it

The notion of a "Vector Space"

An introduction to spaces



- Conventional notion of "space": a geometric construct of a certain number of "dimensions"
 - E.g. the 3-D space that this room and every object in it lives in 11-755/18-797



- A *vector space* is an infinitely large set of vectors with the following properties
 - The set includes the zero vector (of all zeros)
 - The set is "closed" under addition
 - If X and Y are in the set, aX + bY is also in the set for any two scalars a and b
 - For every X in the set, the set also includes the additive inverse Y = -X, such that X + Y = 0

Additional Properties

- Additional requirements:
 - Scalar multiplicative identity element exists: 1X = X
 - Addition is associative: X + Y = Y + X
 - Addition is commutative: (X+Y)+Z = X+(Y+Z)
 - Scalar multiplication is commutative:
 a(bX) = (ab) X
 - Scalar multiplication is distributive: (a+b)X = aX + bXa(X+Y) = aX + aY

Example of vector space

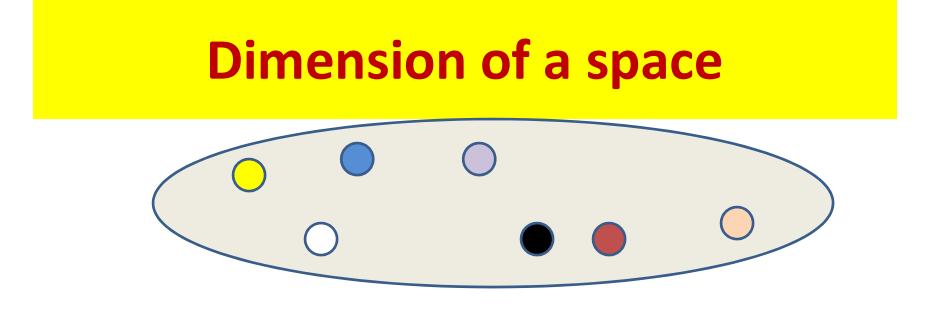
$$\mathbf{S} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ for all } x, y, z \in \mathcal{R} \right\}$$

- Set of *all* three-component column vectors
 - Note we used the term three-*component,* rather than threedimensional
- The set includes the zero vector
- For every X in the set $\alpha \in \mathcal{R}$, every αX is in the set
- For every **X**, **Y** in the set, α **X** + β **Y** is in the set
- -X is in the set
- Etc.

Example: a function space

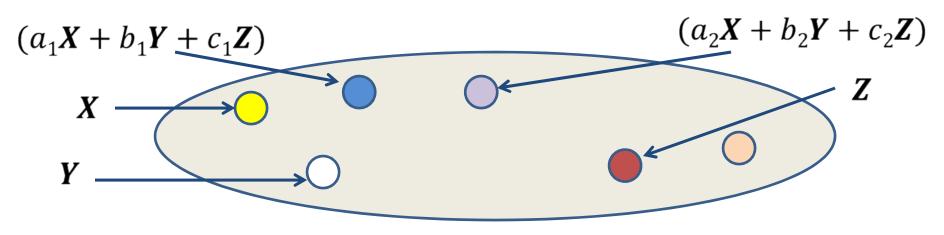
$$\mathbf{S} = \begin{cases} a\cos(\mathbf{x}) + b\sin(3\mathbf{x}) \text{ for all } a, b, \in \mathcal{R} \\ \mathbf{x} \in [-\pi, \pi] \end{cases}$$

- Entries are *functions* from $[-\pi, \pi]$ to [-1,1] $f: [-\pi, \pi] \rightarrow [-1,1]$
- Define (f+g)(x) = f(x) + g(x) for any f and g in the set
- Verify that this is a space!



- Every element in the space can be composed of linear combinations of some other elements in the space
 - For any X in S we can write $X = aY_1 + bY_2 + cY_3$.. for some other Y_1 , Y_2 , Y_3 .. in S
 - Trivial to prove..

Dimension of a space



- What is the smallest subset of elements that can compose the entire set?
 - There may be multiple such sets
- The elements in this set are called "bases"
 - The set is a "basis" set
- The number of elements in the set is the "dimensionality" of the space

Dimensions: Example

$$\mathbf{S} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ for all } x, y, z \in \mathcal{R} \right\}$$

What is the dimensionality of this vector space

Dimensions: Example

$$\mathbf{Z} = \left\{ a \begin{bmatrix} 1\\2\\3 \end{bmatrix} + b \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \text{ for all } a, b \in \mathcal{R} \right\}$$

- What is the dimensionality of this vector space?
 - First confirm this is a proper vector space
- Note: all elements in Z are also in S (slide 36)
 Z is a *subspace* of S

Dimensions: Example

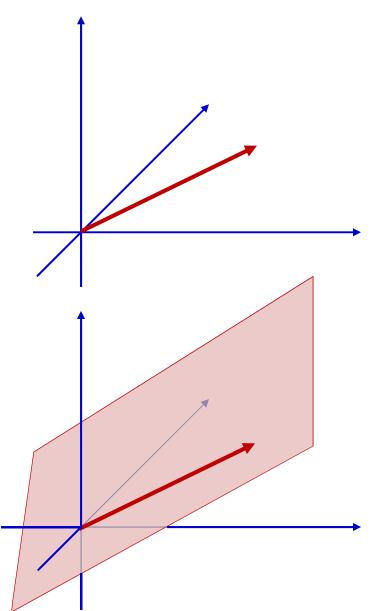
$$\mathbf{S} = \begin{cases} a\cos(\mathbf{x}) + b\sin(3\mathbf{x}) \text{ for all } a, b, \in \mathcal{R} \\ \mathbf{x} \in [-\pi, \pi] \end{cases}$$

• What is the dimensionality of this space?

• Return to reality..

Returning to dimensions..

- Two interpretations of "dimension"
- The *spatial* dimension of a vector:
 - The number of components in the vector
 - An N-component vector "lives" in an Ndimensional space
 - Essentially a "stand-alone" definition of a vector against "standard" bases
- The *embedding* dimension of the vector
 - The minimum number of bases required to specify the vector
 - The dimensionality of the *subspace* the vector actually lives in
 - Only makes sense in the context where the vector is one element of a restricted set, e.g. a subspace or hyperplane
- Much of machine learning and signal processing is aimed at finding the latter from collections of vectors



Matrices..

What is a *matrix*

A 2x3 matrix

A 3x2 matrix

	- 1	2.2	6]			a	b	c
$\mathbf{A} =$	3.1	1	5	В	=	d	e	$\begin{bmatrix} c \\ f \\ i \end{bmatrix}$
ľ	_					g	h	i

 Rectangular (or square) arrangement of numbers

Dimensions of a matrix

• The matrix size is specified by the number of rows and columns

$$\mathbf{c} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \ \mathbf{r} = \begin{bmatrix} a & b & c \end{bmatrix}$$

- c = 3x1 matrix: 3 rows and 1 column (vectors are matrices too)
- r = 1x3 matrix: 1 row and 3 columns

$$\mathbf{S} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \ \mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

- S = 2 x 2 matrix
- R = 2 x 3 matrix
- Pacman = 321 x 399 matrix

Dimensionality and Transposition

- A transposed matrix gets all its row (or column) vectors transposed in order
 - An NxM matrix becomes an MxN matrix

$$\mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \ \mathbf{x}^{T} = \begin{bmatrix} a & b & c \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} a & b & c \end{bmatrix}, \ \mathbf{y}^{T} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad \mathbf{X}^{T} = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix}, \quad \mathbf{M}^{T} = \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix}$$

What is a *matrix*

A 3x2 matrix

	1	2.2	6]		<i>B</i> =	\overline{a}	b	c
$\mathbf{A} =$	3.1	2.2 1	5		<i>B</i> =	d	e	f
						_g	h	i

A 2x3 matrix

• A matrix by itself is uninformative, except through its relationship to vectors

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as transforms

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

• Multiplying a vector by a matrix *transforms* the vector

$$- \mathbf{A}\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + a_{12}b_3 + a_{14}b_4 \\ a_{21}b_1 + a_{22}b_2 + a_{32}b_3 + a_{44}b_4 \\ a_{31}b_1 + a_{32}b_2 + a_{32}b_3 + a_{44}b_4 \end{bmatrix}$$

- A matrix is a *transform* that *transforms* a vector
 - Above example: *left multiplication*. Matrix transforms a column vector
 - Dimensions must match!!
 - No. of columns of matrix = size of vector
 - Result inherits the number of rows from the matrix

m

Matrices as transforms

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

• Multiplying a vector by a matrix *transforms* the vector

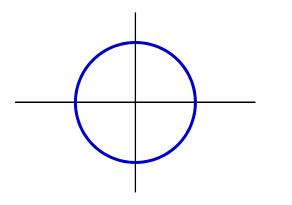
$$- \boldsymbol{b}\boldsymbol{A} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{21}b_2 + a_{31}b_3 \\ a_{12}b_1 + a_{22}b_2 + a_{32}b_3 \\ a_{13}b_1 + a_{23}b_2 + a_{33}b_3 \\ a_{14}b_1 + a_{24}b_2 + a_{34}b_3 \end{bmatrix}^{T}$$

- A matrix is a *transform* that *transforms* a vector
 - Example: *right multiplication*. Matrix transforms a row vector
 - Dimensions must match!!
 - No. of rows of matrix = size of vector
 - Result inherits the number of columns from the matrix

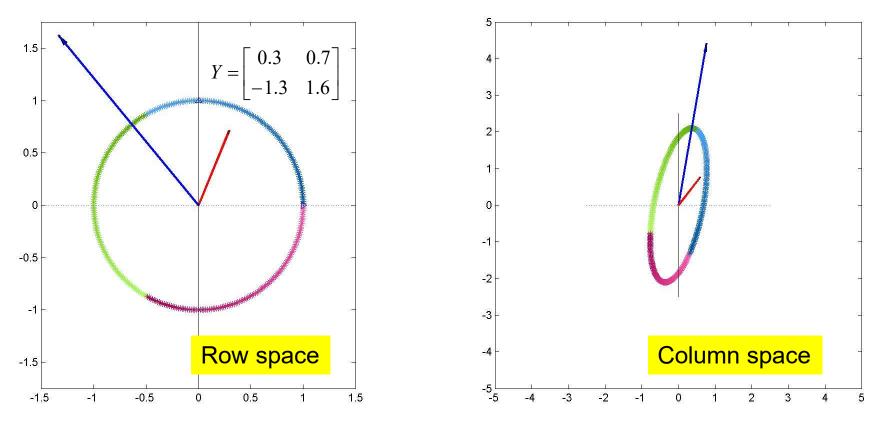
Matrices transform a space

A matrix is a *transform* that modifies vectors and vector spaces

- So how does it transform the *entire space*?
- E.g. how will it transform the following figure?

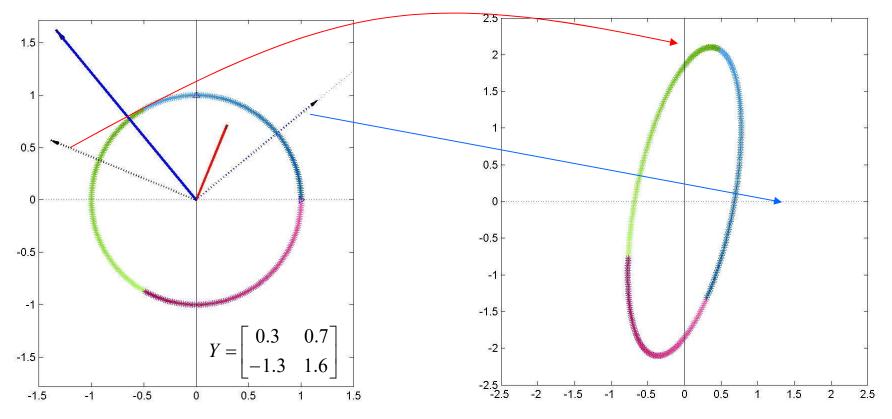


Multiplication of vector space by matrix



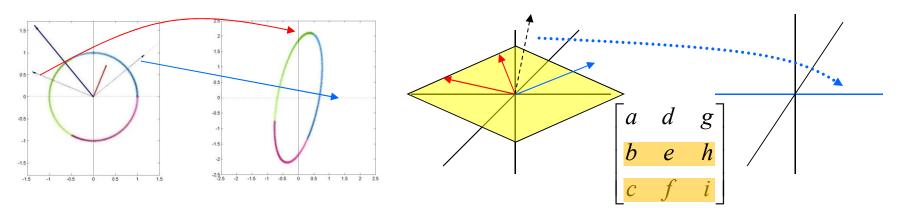
- The matrix rotates and scales the space
 - Including its own row vectors

Multiplication of vector space by matrix



- The *normals* to the row vectors in the matrix become the new axes
 - X axis = normal to the second row vector
 - Scaled by the inverse of the length of the *first* row vector

Matrix Multiplication



- The k-th axis corresponds to the normal to the hyperplane represented by the 1..k-1,k+1..N-th row vectors in the matrix
 - Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
- The distance along the new axis equals the length of the projection on the k-th row vector
 - Expressed in inverse-lengths of the vector

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as data containers

• A matrix can be vertical stacking of row vectors

$$\mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

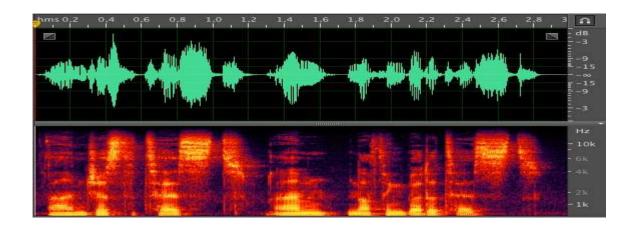
- The space of all vectors that can be composed from the rows of the matrix is the *row space* of the matrix
- Or a horizontal arrangement of column vectors

$$\mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

The space of all vectors that can be composed from the columns of the matrix is the *column space* of the matrix

Representing a signal as a matrix

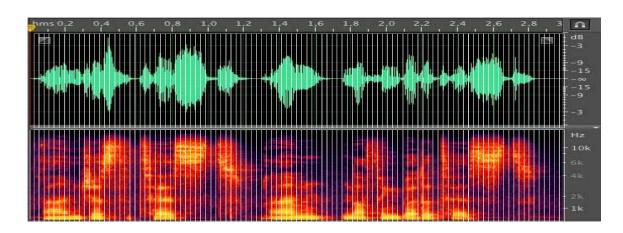
• Time series data like audio signals are often represented as spectrographic matrices



• Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

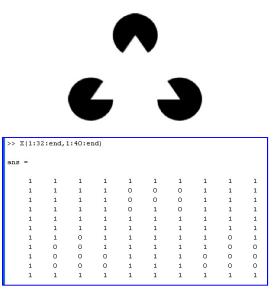
• Time series data like audio signals are often represented as spectrographic matrices



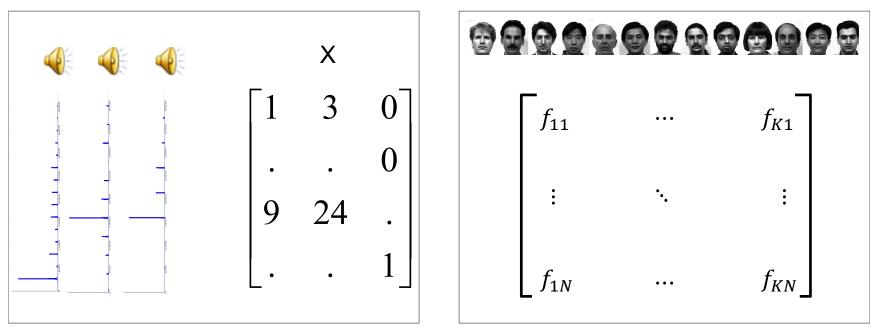
 Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

• Images are often just represented as matrices



Storing collections of data



 Individual data instances can be packed into columns (or rows) of a matrix

A "data container" matrix

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as space constructors

• Right multiplying a matrix by a column vector mixes the columns of the matrix according to the numbers in the vector

_ 1 _

$$- \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{32} & a_{32} & a_{33} & a_{34} \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$\boldsymbol{A}\boldsymbol{b} = b_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + b_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} + b_3 \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} + b_4 \begin{bmatrix} a_{14} \\ a_{24} \\ a_{34} \end{bmatrix}$$

- "Mixes" the columns
 - "Transforms" row space to column space
- "Generates" the space of vectors that can be formed by mixing its own columns

Multiplying a vector by a matrix

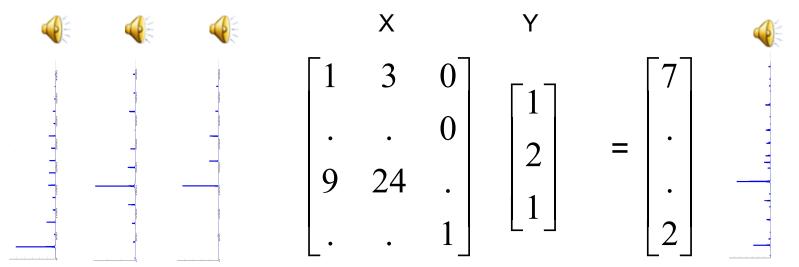
• Left multiplying a matrix by a row vector mixes the rows of the matrix according to the numbers in the vector

$$-A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{32} & a_{32} & a_{33} & a_{34} \end{bmatrix} \qquad b = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$$

 $bA = b_1 \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix} + b_2 \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix} \\ + b_3 \begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$

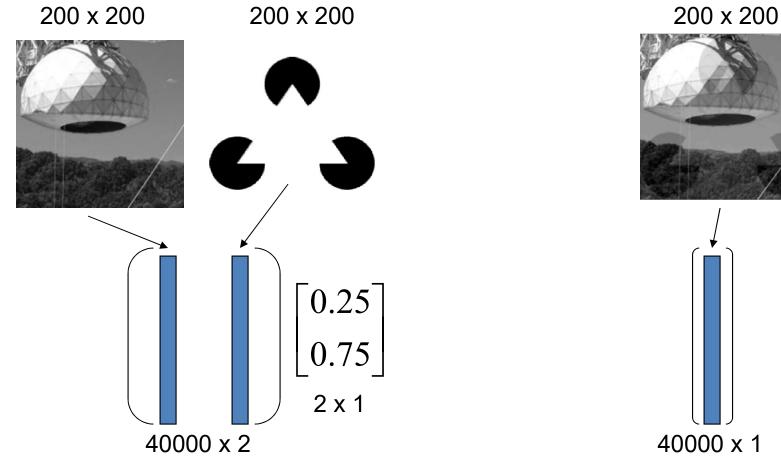
- "Mixes" the rows
 - "Transforms" column space to row space
- "Generates" the space of vectors that can be formed by mixing its own rows

Matrix multiplication: Mixing vectors



- A physical example
 - The three column vectors of the matrix X are the spectra of three notes
 - The multiplying column vector Y is just a mixing vector
 - The result is a sound that is the mixture of the three notes

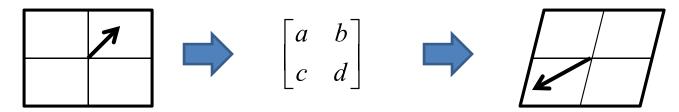
Matrix multiplication: Mixing vectors



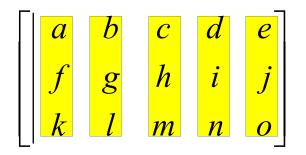
- Mixing two images
 - The images are arranged as columns
 - position value not included
 - The result of the multiplication is rearranged as an image

Interpretations of a matrix

• As a *transform* that modifies vectors and vector spaces



• As a *container* for data (vectors)



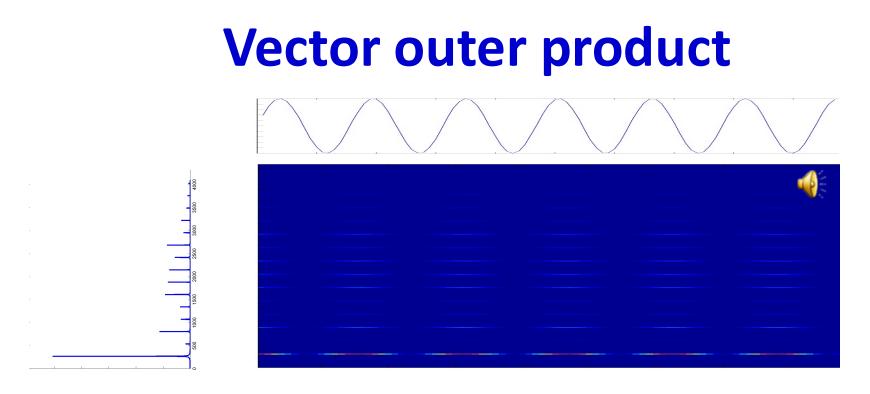
• As a *generator* of vector spaces..

Matrix ops..

Vector multiplication: Outer product

- Product of a column vector by a row vector
- Also called vector *direct* product
- Results in a *matrix*
- Transform or collection of vectors?

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} d & e & f \end{bmatrix} = \begin{bmatrix} a \cdot d & a \cdot e & a \cdot f \\ b \cdot d & b \cdot e & b \cdot f \\ c \cdot d & c \cdot e & c \cdot f \end{bmatrix}$$



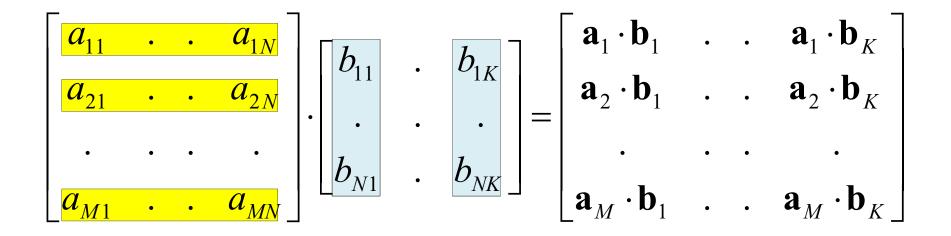
- The column vector is the spectrum
- The row vector is an amplitude modulation
- The outer product is a spectrogram
 - Shows how the energy in each frequency varies with time
 - The pattern in each column is a scaled version of the spectrum
 - Each row is a scaled version of the modulation

Matrix multiplication

$$\begin{bmatrix} a_{11} & \dots & a_{1N} \\ a_{21} & \dots & a_{2N} \\ \dots & \dots & \dots \\ a_{M1} & \dots & a_{MN} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \dots & b_{1K} \\ \dots & \dots & \dots \\ b_{N1} & \dots & b_{NK} \end{bmatrix} = \begin{bmatrix} \sum_{j} a_{1j} b_{j1} & \dots & \sum_{j} a_{1j} b_{jK} \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ \sum_{j} a_{Mj} b_{j1} & \dots & \sum_{j} a_{Mj} b_{jK} \end{bmatrix}$$

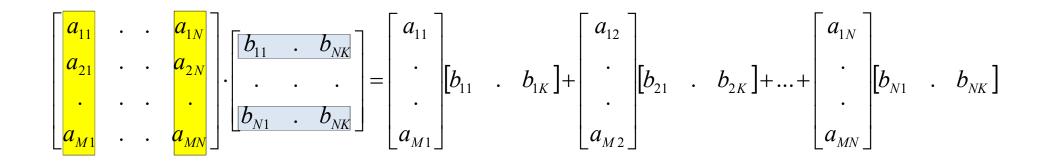
Standard formula for matrix multiplication

Matrix multiplication



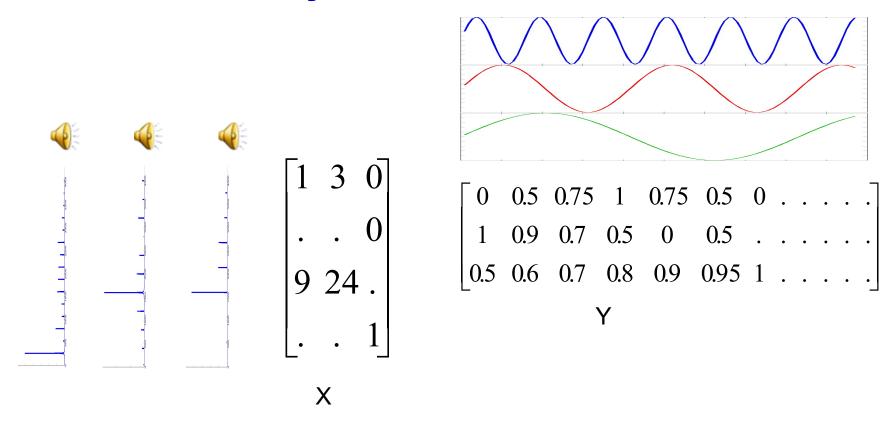
- Matrix A : A column of row vectors
- Matrix **B** : A row of column vectors
- *AB* : A matrix of inner products
 - Mimics the vector outer product rule

Matrix multiplication: another view



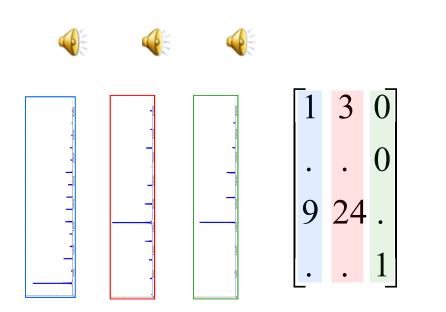
- The outer product of the first column of A and the first row of B + outer product of the second column of A and the second row of B +
- Sum of outer products

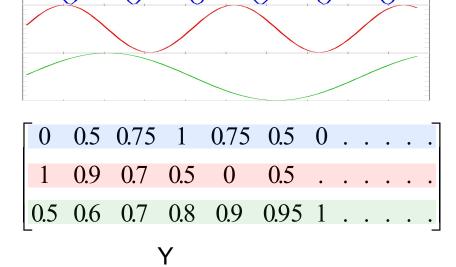
Why is that useful?



• Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra



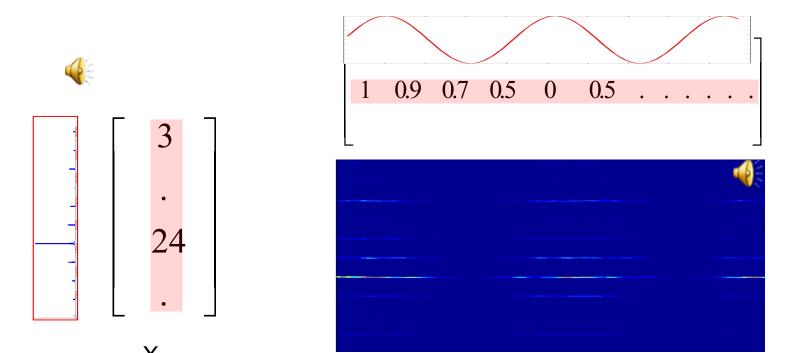


Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra 0.75 0.5 0 . . . 0.5 0.75 0 1 Y 9

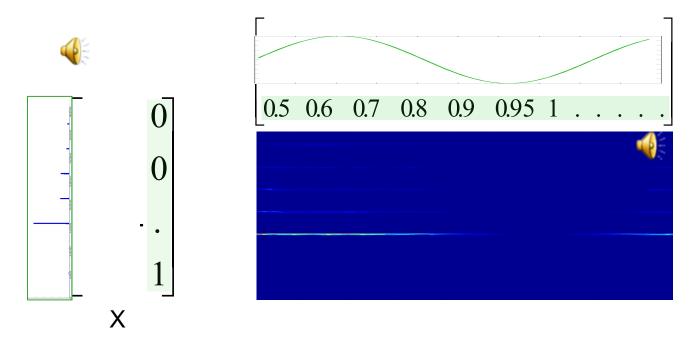
 Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra



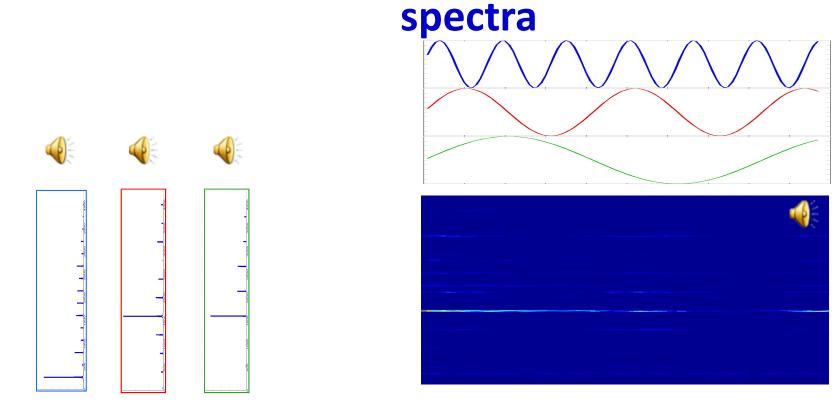
 Sounds: ^x Three notes modulated independently

Matrix multiplication: Mixing modulated spectra

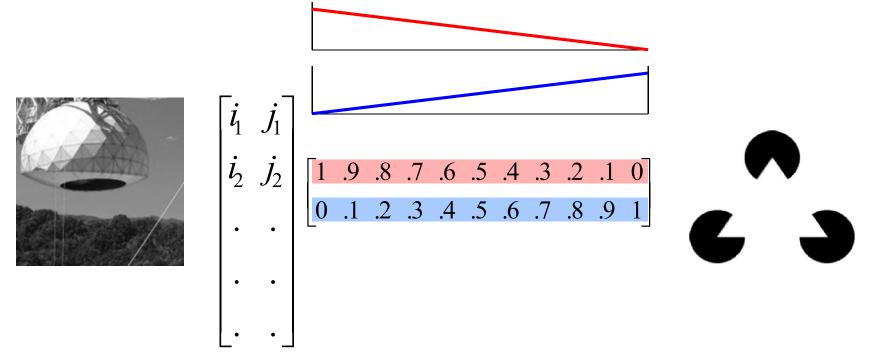


• Sounds: Three notes modulated independently

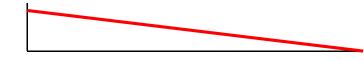
Matrix multiplication: Mixing modulated

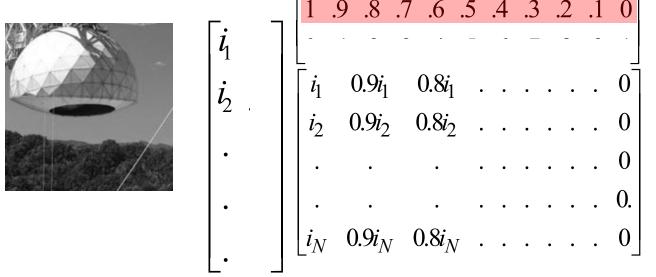


• Sounds: Three notes modulated independently

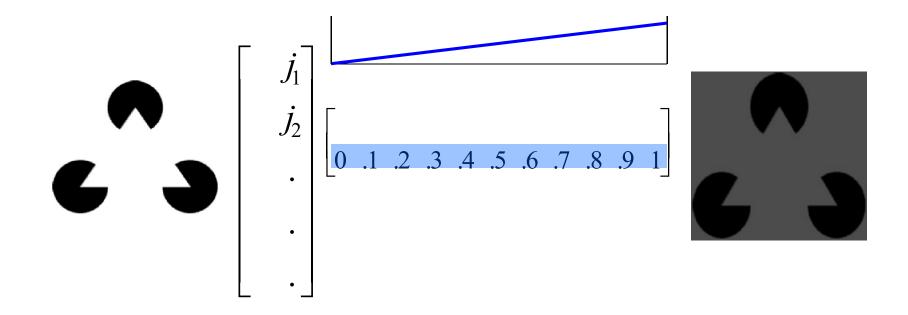


- Image1 fades out linearly
- Image 2 fades in linearly

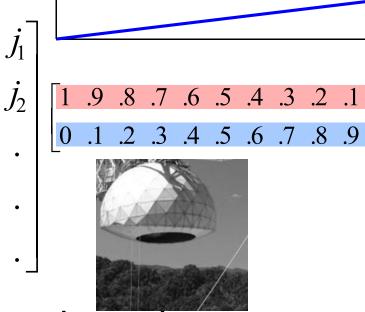




- Each column is one image
 - The columns represent a sequence of images of decreasing intensity
- Image1 fades out linearly



• Image 2 fades in linearly



() () ()

Image1 fades out linearly

i

 \dot{l}_2

• Image 2 fades in linearly

Matrix Operations: Properties

 $\bullet \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$

– Actual interpretation: for any vector \boldsymbol{x}

- (A + B)x = (B + A)x (column vector x of the right size)
- x(A + B) = x(B + A) (row vector x of the appropriate size)
- A + (B + C) = (A + B) + C

Multiplication properties

- Properties of vector/matrix products
 - Associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

- Distributive

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

– NOT commutative!!!

 $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

• *left multiplications ≠ right multiplications*

- Transposition

$$\left(\mathbf{A}\cdot\mathbf{B}\right)^{T}=\mathbf{B}^{T}\cdot\mathbf{A}^{T}$$

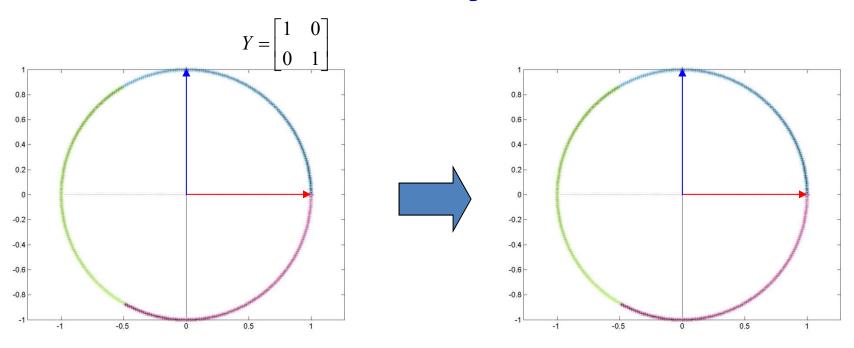
The Space of Matrices

- The set of all matrices of a given size (e.g. all 3x4 matrices) is a space!
 - Addition is closed
 - Scalar multiplication is closed
 - Zero matrix exists
 - Matrices have additive inverses
 - Associativity and commutativity rules apply!

Overview

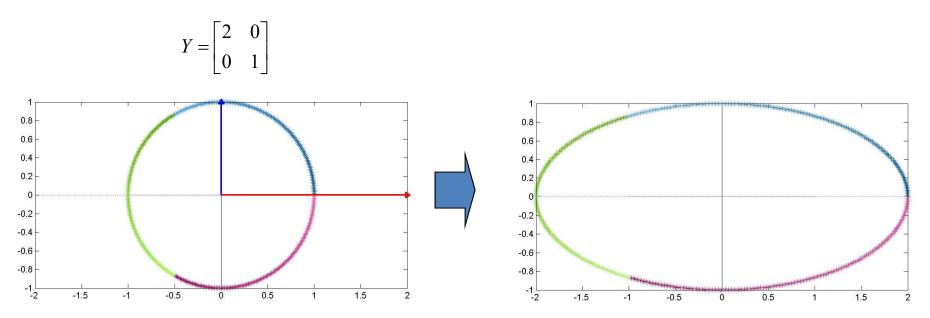
- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Determinant
 - Inverse
 - Rank
- Projections
- Eigen decomposition
- SVD

The Identity Matrix



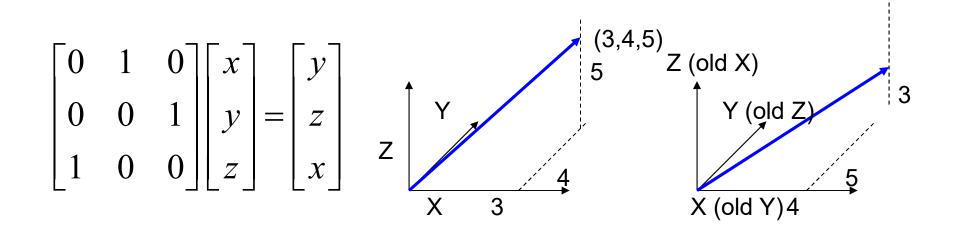
- An identity matrix is a square matrix where
 - All diagonal elements are 1.0
 - All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

Diagonal Matrix



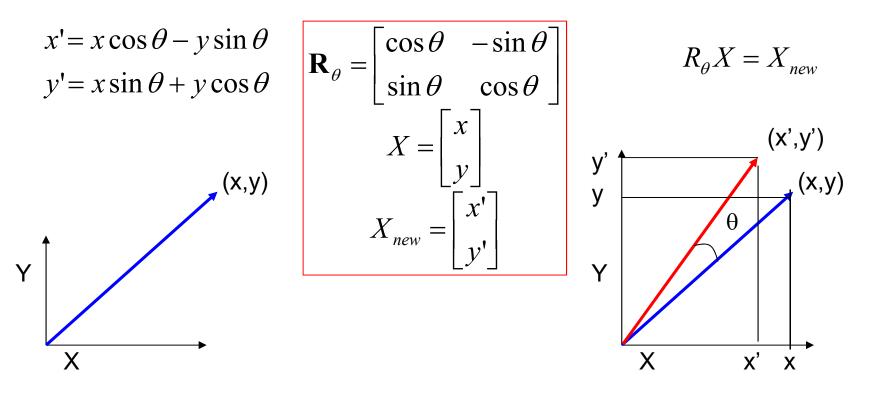
- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
 - May flip axes

Permutation Matrix



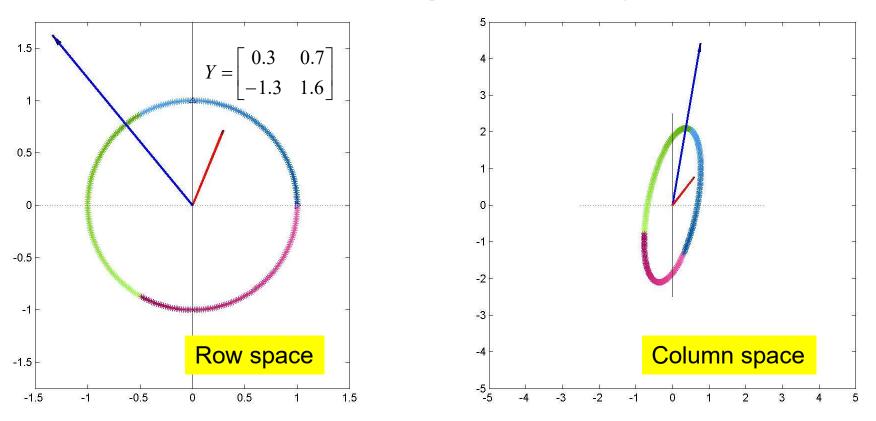
- A permutation matrix simply rearranges the axes
 - The row entries are axis vectors in a different order
 - The result is a combination of rotations and reflections
- The permutation matrix effectively *permutes* the arrangement of the elements in a vector

Rotation Matrix



- A rotation matrix *rotates* the vector by some angle θ
- Alternately viewed, it rotates the axes
 - The new axes are at an angle $\boldsymbol{\theta}$ to the old one

More generally

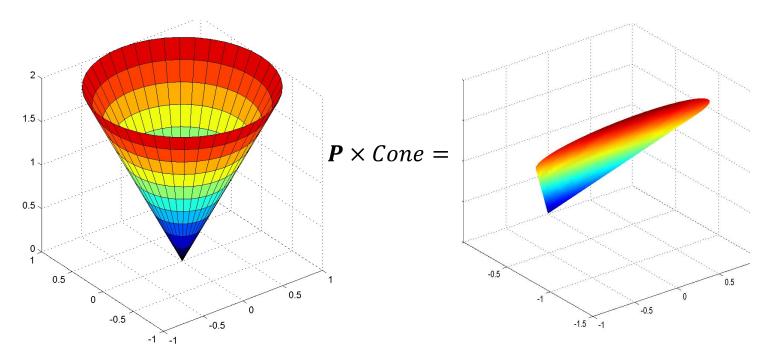


• Matrix operations are combinations of rotations, permutations and stretching

Overview

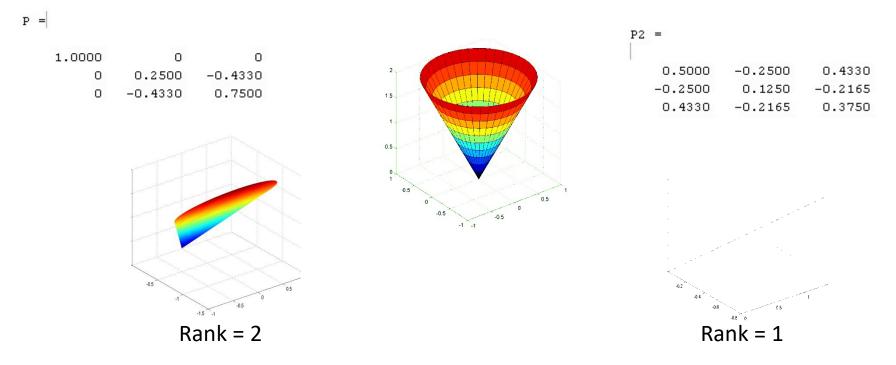
- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Rank
 - Determinant
 - Inverse
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Matrix Rank and Rank-Deficient Matrices



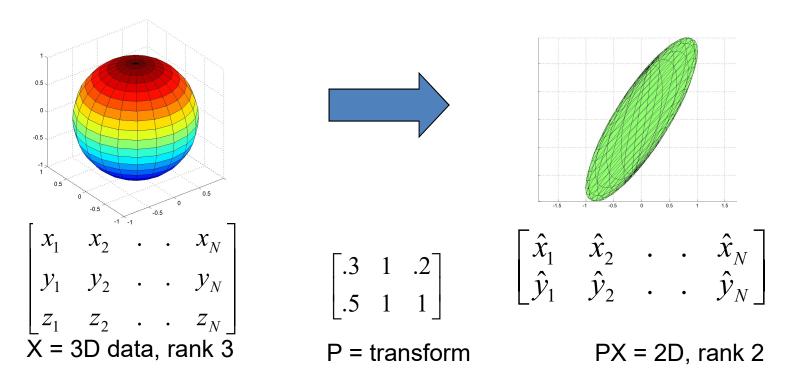
- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices



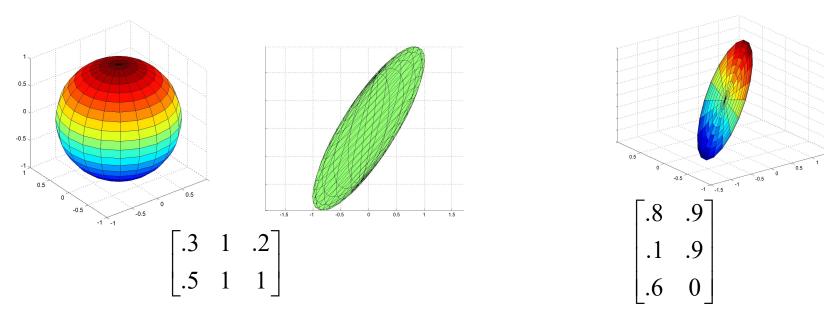
- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Non-square Matrices



- Non-square matrices add or subtract axes
 - More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data
 - Fewer rows than columns \rightarrow reduce axes
 - May reduce dimensionality of the data

The Rank of a Matrix

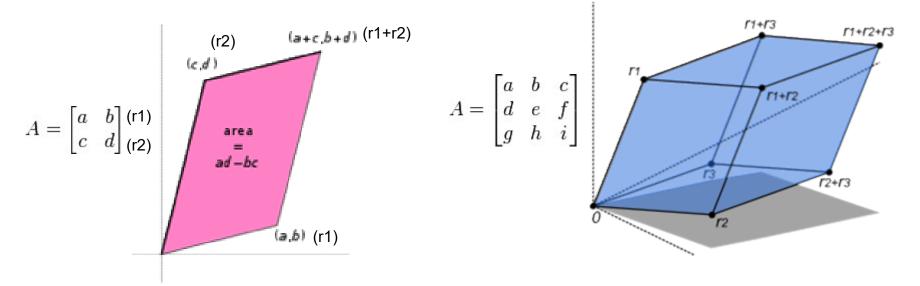


- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never *increase* dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

Rank – an alternate definition

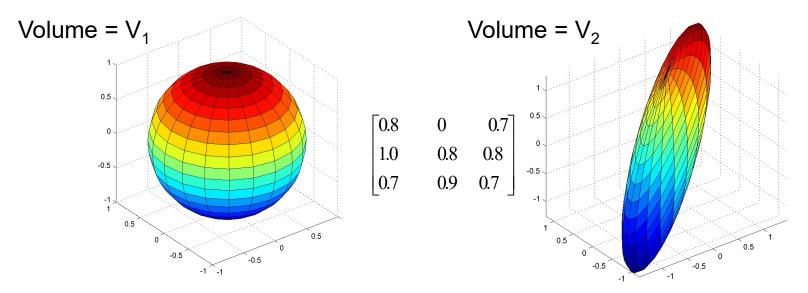
- In terms of bases..
- Will get back to this shortly..

Matrix Determinant



- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
 - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective



- The (magnitude of the) determinant is the ratio of N-volumes
 - If V_1 is the volume of an N-dimensional sphere "O" in N-dimensional space
 - O is the complete set of points or vertices that specify the object
 - If V_2 is the volume of the N-dimensional ellipsoid specified by A*O, where A is a matrix that transforms the space

$$- |A| = V_2 / V_1$$

Matrix Determinants

- Matrix determinants are only defined for square matrices
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
 - Since they compress full-volumed N-dimensional objects into zerovolume N-dimensional objects
 - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
 - Since they compress full-volumed N-dimensional objects into zero-volume objects

Determinant properties

Associative for square matrices

$$|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|$$

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

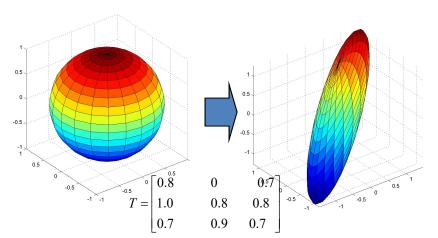
$$\left| (\mathbf{B} + \mathbf{C}) \right| \neq \left| \mathbf{B} \right| + \left| \mathbf{C} \right|$$

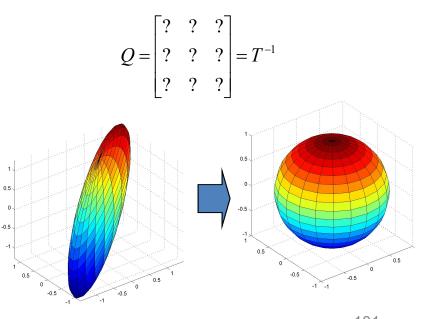
- Commutative
 - The order in which you scale the volume of an object is irrelevant

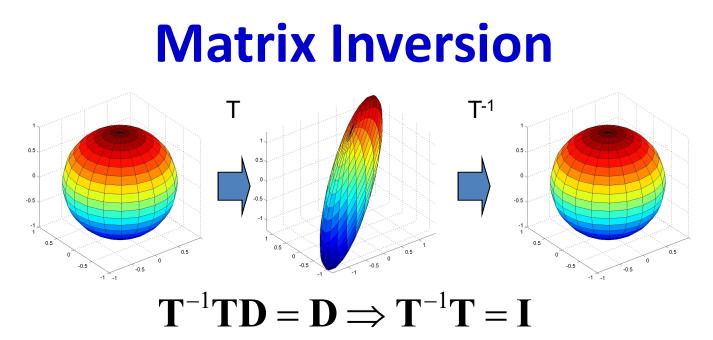
$$|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

Matrix Inversion

- A matrix transforms an N-dimensional object to a different N-dimensional object
- What transforms the new object back to the original?
 - The inverse transformation
- The inverse transformation is called the matrix inverse

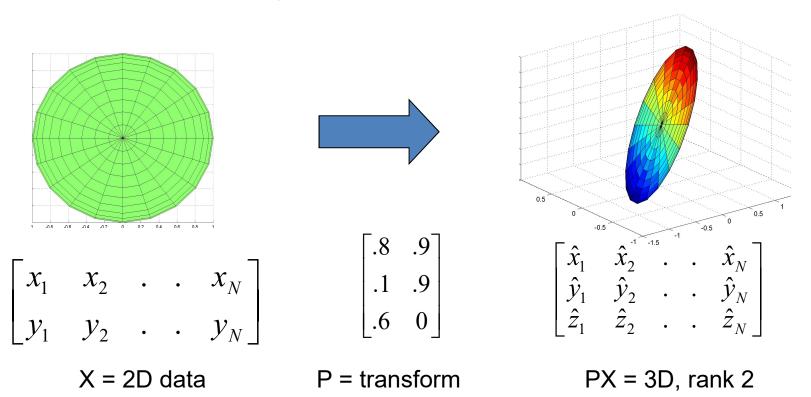




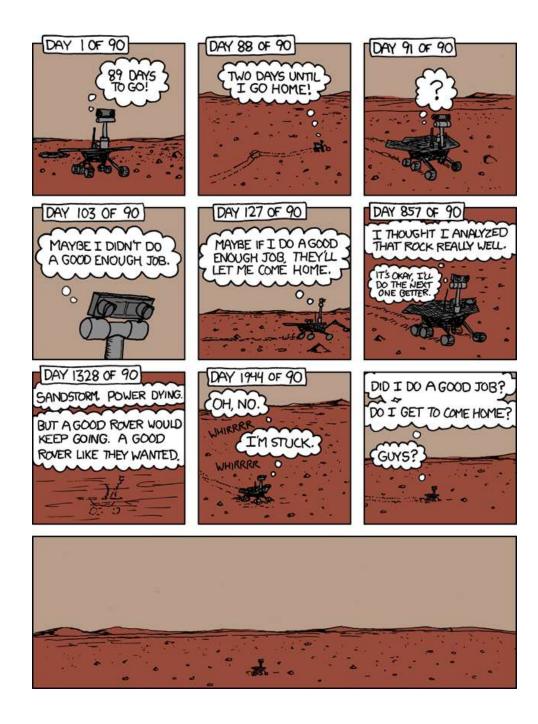


- The product of a matrix and its inverse is the identity matrix
 - Transforming an object, and then inverse transforming it gives us back the original object $TT^{-1}D = D \Rightarrow TT^{-1} = I$

Non-square Matrices

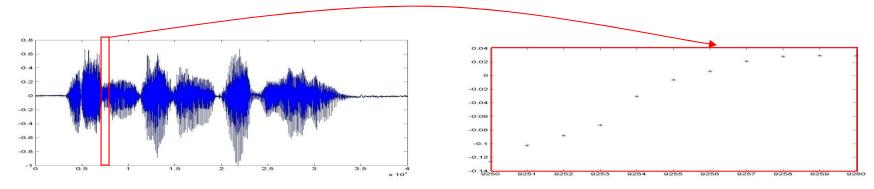


- Non-square matrices add or subtract axes
 - More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data



Recap: Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. A segment of an audio signal

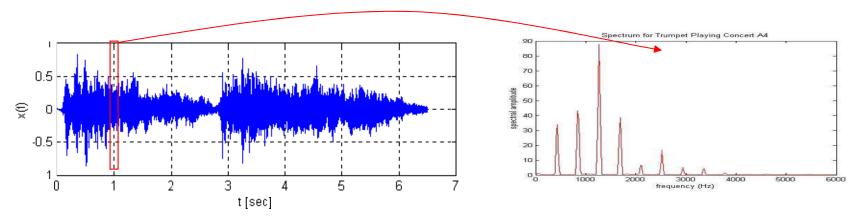


Represented as a vector of sample values

 $\begin{bmatrix} S_1 & S_2 & S_3 & S_4 & \dots & S_N \end{bmatrix}$

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. The *spectrum* segment of an audio signal



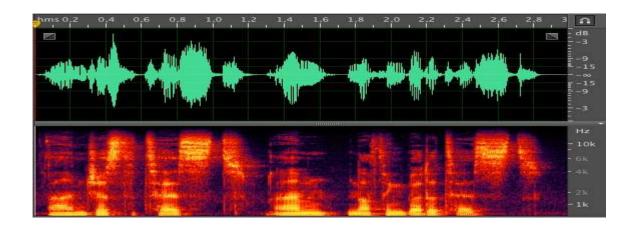
• Represented as a vector of sample values

 $\begin{bmatrix} S_1 & S_2 & S_3 & S_4 & \dots & S_M \end{bmatrix}$

 Each component of the vector represents a frequency component of the spectrum

Representing a signal as a matrix

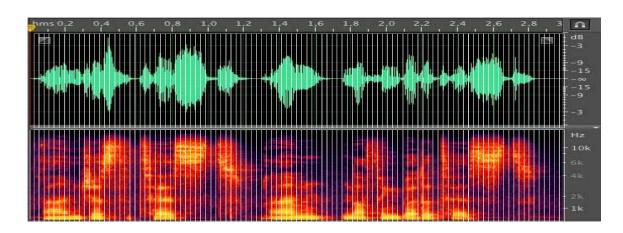
• Time series data like audio signals are often represented as spectrographic matrices



 Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

• Time series data like audio signals are often represented as spectrographic matrices



 Each column is the spectrum of a short segment of the audio signal

Representing an image as a vector

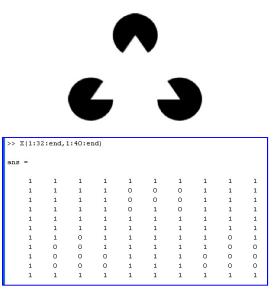
- 3 pacmen
- A 321 x 399 grid of pixel values
 - Row and Column = position
- A 1 x 128079 vector
 - "Unraveling" the matrix
 - $\begin{bmatrix} 1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1 \end{bmatrix}$
 - Note: This can be recast as the grid that forms the image

— M f

6 J

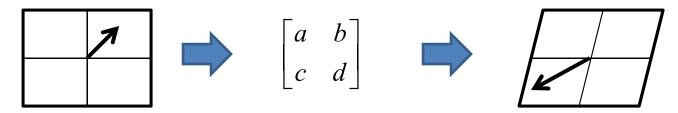
Representing a signal as a matrix

• Images are often just represented as matrices

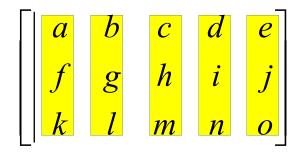


Interpretations of a matrix

• As a *transform* that modifies vectors and vector spaces

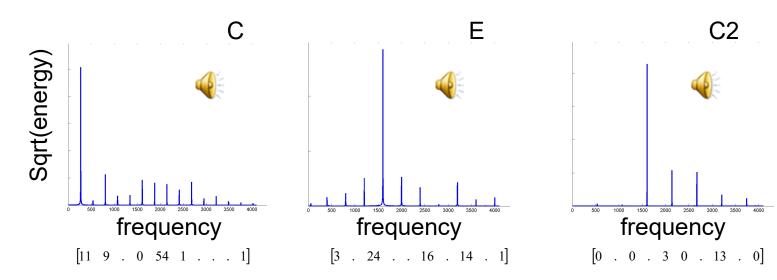


• As a *container* for data (vectors)



• As a generator of vector spaces..

Revise.. Vector dot product

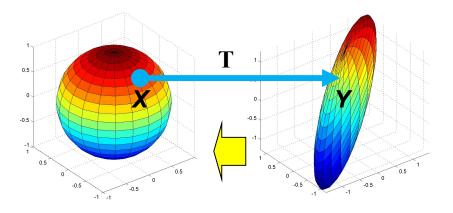


- How much of C is also in E
 - How much can you fake a C by playing an E
 - C.E / |C| |E| = 0.1
 - Not very much
- How much of C is in C2?
 - C.C2 / |C| / |C2| = 0.5
 - Not bad, you can fake it

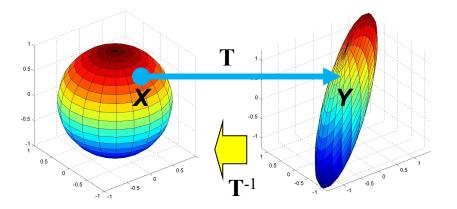
Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Determinant
 - Inverse
 - Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

The Inverse Transform and Simultaneous Equations

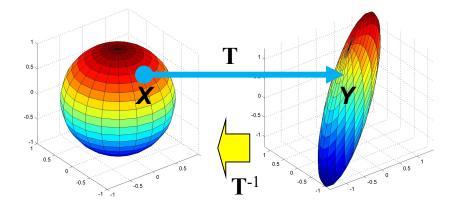


Given the Transform T and transformed vector
 Y, how do we determine *X*?



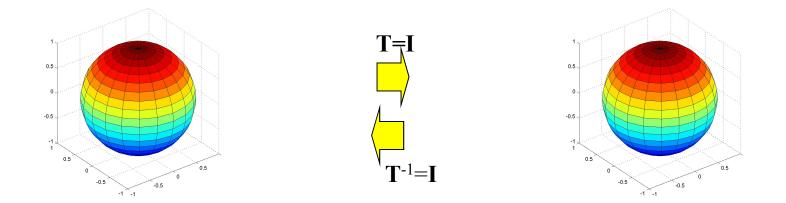
- The inverse of matrix multiplication
 - Not element-wise division!!
 - E.g.

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{bmatrix}$$

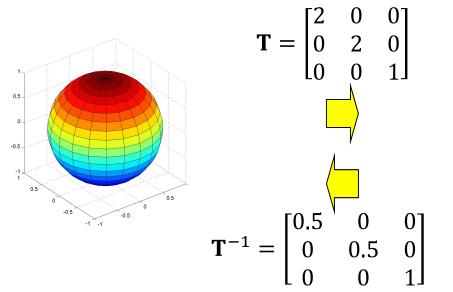


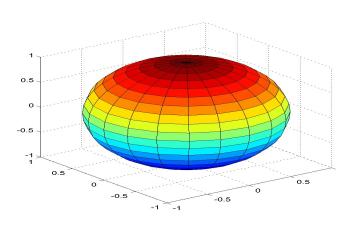
- Provides a way to "undo" a linear transform
- Undoing a transform must happen as soon as it is performed
- Effect on matrix inversion: Note order of multiplication

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$$

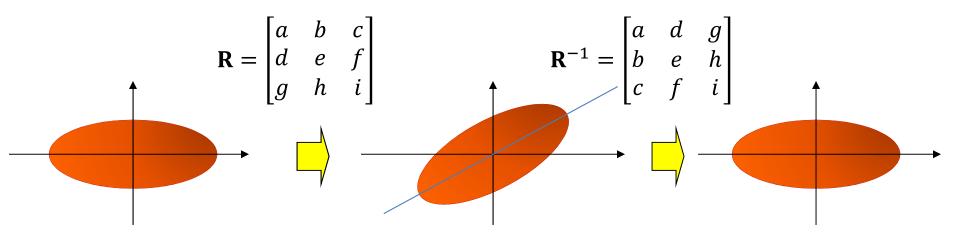


• Inverse of the unit matrix is itself





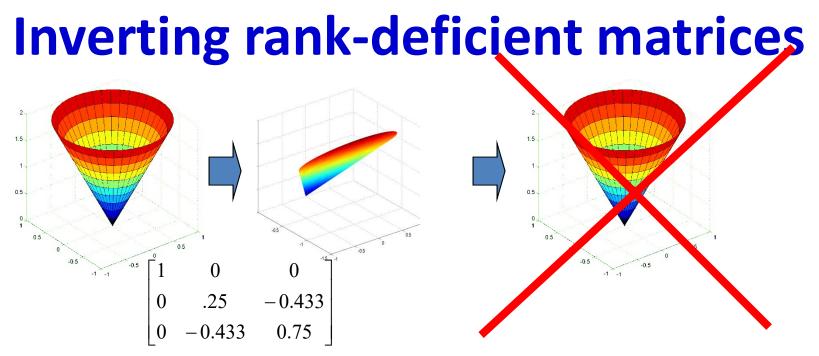
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal



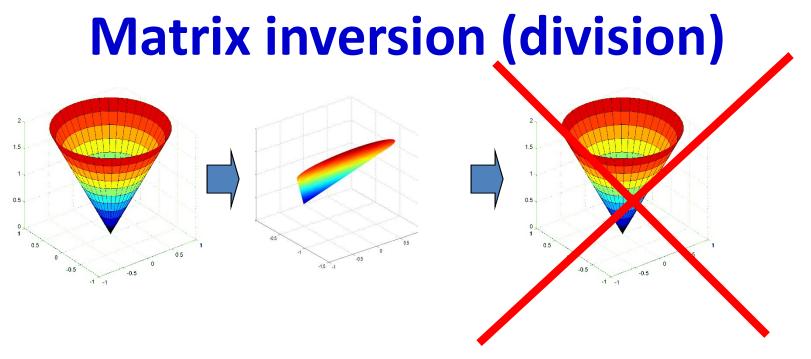
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
 - In 2D a forward rotation θ by is cancelled by a backward rotation of $-\theta$

$$\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}, \ \mathbf{R}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$$

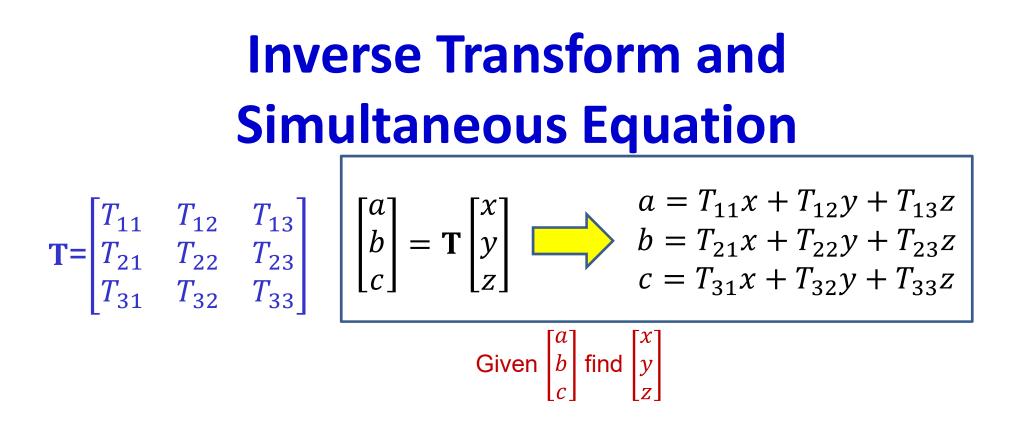
- More generally, in any number of dimensions: $\mathbf{R}^{-1} = \mathbf{R}^{T}$



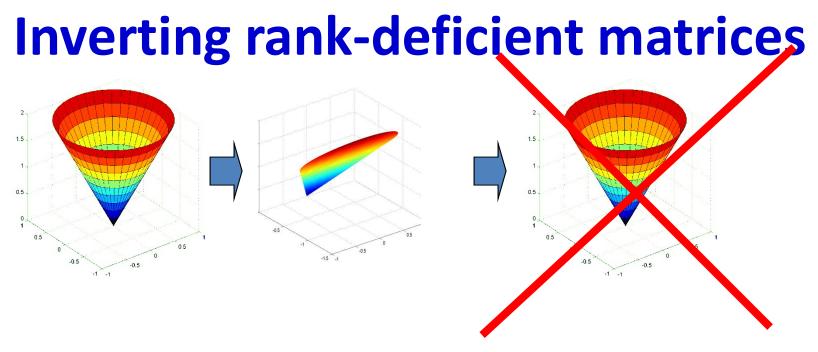
- Rank deficient matrices "flatten" objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse



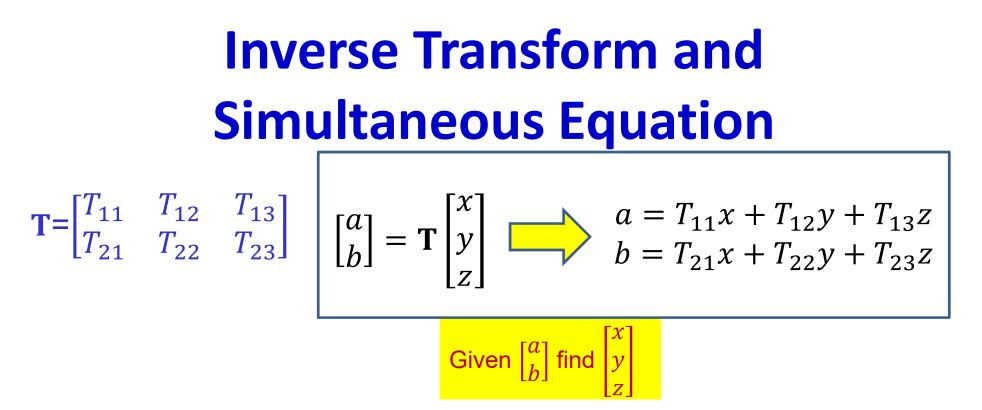
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist!



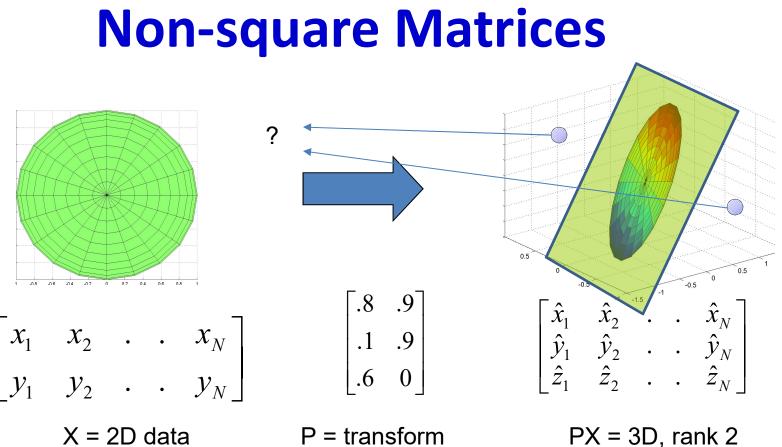
Inverting the transform is identical to solving simultaneous equations



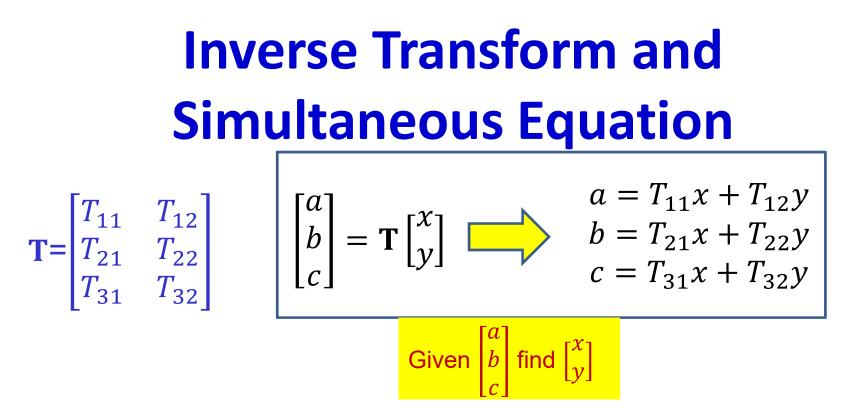
- Rank deficient matrices have no inverse
 - In this example, there is no *unique* inverse



- Inverting the transform is identical to solving simultaneous equations
- Rank-deficient transforms result in too-few independent equations
 - Cannot be inverted to obtain a *unique* solution



 When the transform *increases* the number of components most points in the new space will not have a corresponding preimage



- Inverting the transform is identical to solving simultaneous equations
- Rank-deficient transforms result in too few independent equations
 - Cannot be inverted to obtain a unique solution
- Or too *many* equations
 - Cannot be inverted to obtain an exact solution

The Pseudo Inverse (PINV)

$$V \approx T \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow V_{approx} \approx T \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = Pinv(T)V$$

• When you can't *really* invert T, you perform the *pseudo* inverse

Generalization to matrices

- Unique exact solution exists
- **T** must be square

$$\mathbf{X} = \mathbf{T}\mathbf{Y} \Rightarrow \mathbf{Y} = \mathbf{T}^{-1}\mathbf{X}$$

Left multiplication

$$X = YT \Rightarrow Y = XT^{-1}$$

Right multiplication

- No unique exact solution exists
 - At least one (if not both) of the forward and backward equations may be inexact
- T may or may not be square

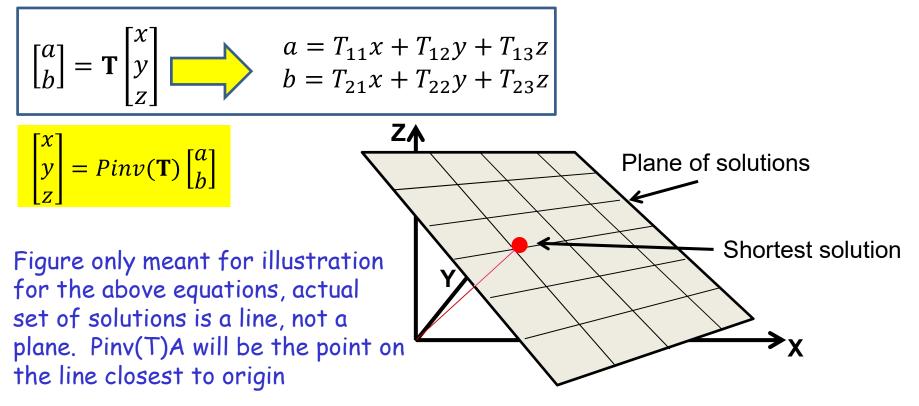
$$\mathbf{X} = \mathbf{T}\mathbf{Y} \Rightarrow \mathbf{Y} = \operatorname{Pinv}(\mathbf{T})\mathbf{X}$$

Left multiplication

$$X = YT \Rightarrow Y = XPinv(T)$$

Right multiplication

Underdetermined Pseudo Inverse



- **Case 1:** Too many solutions
- Pinv(T)A picks the *shortest* solution

The Pseudo Inverse for the underdetermined case

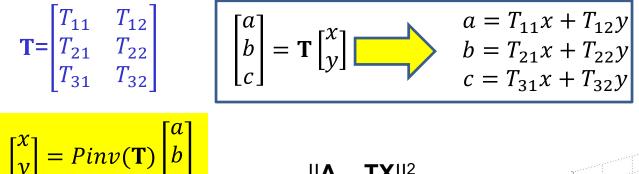
$$\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} a = T_{11}x + T_{12}y + T_{13}z \\ b = T_{21}x + T_{22}y + T_{23}z \end{bmatrix}$$

$$V \approx T \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = Pinv(T)V$$

$$Pinv(\mathbf{T}) = \mathbf{T}^T (\mathbf{T}\mathbf{T}^T)^{-1}$$

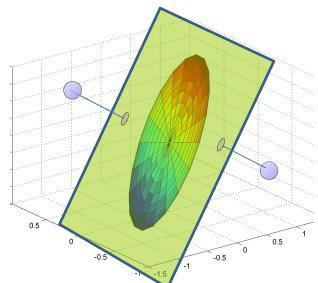
$$\boldsymbol{T}\begin{bmatrix}\boldsymbol{x}\\\boldsymbol{y}\\\boldsymbol{z}\end{bmatrix} = \boldsymbol{T}Pin\boldsymbol{v}(\boldsymbol{T})\boldsymbol{V} = \boldsymbol{T}\boldsymbol{T}^T(\boldsymbol{T}\boldsymbol{T}^T)^{-1}\boldsymbol{V} = \boldsymbol{V}$$

The Pseudo Inverse



 $||A - TX||^2$

Figure only meant for illustration for the above equations, Pinv(T) will actually have 6 components. The error is a quadratic in 6 dimensions



Case 2: No exact solution

 Pinv(T)A picks the solution that results in the lowest error

The Pseudo Inverse for the overdetermined case

$$E = \|TX - A\|^2 = (TX - A)^T (TX - A)$$
$$E = X^T T^T T X - 2X^T T^T A + A^T A$$

Differentiating and equating to 0 we get:

$$X = (T^T T)^{-1} T^T A = Pinv(T) A$$

$$Pinv(\mathbf{T}) = (\mathbf{T}^T \mathbf{T})^{-1} \mathbf{T}^T$$

Shortcut: overdetermined case

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} a \\ b \\ b \\ c \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\boldsymbol{V} \approx \boldsymbol{T} \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{y} \end{bmatrix} \quad \boldsymbol{\longrightarrow} \quad \boldsymbol{T}^T \boldsymbol{V} \approx \boldsymbol{T}^T \boldsymbol{T} \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{y} \end{bmatrix} \quad \boldsymbol{\longrightarrow} \quad \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{y} \end{bmatrix} = (\boldsymbol{T}^T \boldsymbol{T})^{-1} \boldsymbol{T}^T \boldsymbol{V}$$

$$Pinv(\mathbf{T}) = (\mathbf{T}^T \mathbf{T})^{-1} \mathbf{T}^T$$

Note that in this case:

$$T\begin{bmatrix} x \\ y \end{bmatrix} = TPinv(T)V = T(T^TT)^{-1}T^TV \neq V$$
Why?

Overdetermined vs Underdetermined

Underdetermined case: Exact solution exists.
 We find *one* of the exact solutions. Hence..

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = TPinv(T)V = TT^{T}(TT^{T})^{-1}V = V$$

• Overdetermined case: Solution generally does not exist. Solution is only an approximation..

$$\boldsymbol{T}\begin{bmatrix}\boldsymbol{x}\\\boldsymbol{y}\end{bmatrix} = \boldsymbol{T}Pin\boldsymbol{v}(\boldsymbol{T})\boldsymbol{V} = \boldsymbol{T}(\boldsymbol{T}^T\boldsymbol{T})^{-1}\boldsymbol{T}^T\boldsymbol{V} \neq \boldsymbol{V}$$

Properties of the Pseudoinverse

• For the underdetermined case:

TPinv(T) = I

• For the overdetermined case

TPinv(T) = ?

– We return to this question shortly

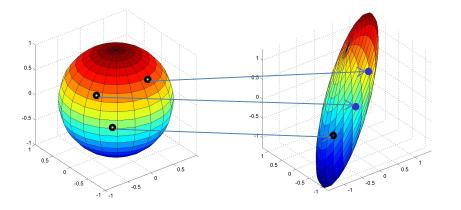
- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to "undo" a linear transformation
- For square matrices: Pay attention to multiplication side!

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$$

• If matrix is not square use a matrix pseudoinverse:

$$\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^+, \ \mathbf{B} = \mathbf{A}^+ \cdot \mathbf{C}$$

Finding the Transform



• Given examples

$$- T.X_1 = Y_1$$

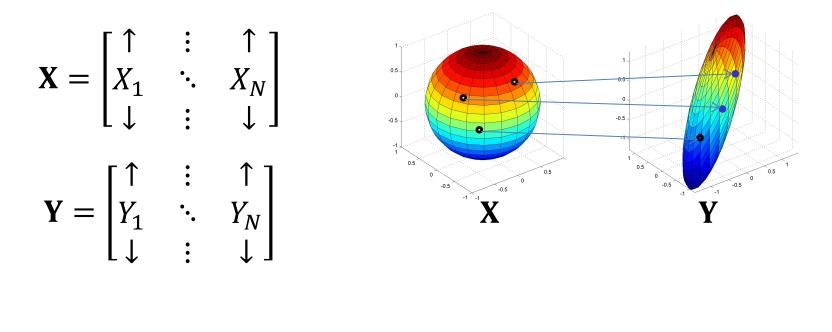
 $- T.X_2 = Y_2$

— .

$$-\mathbf{T.}\mathbf{X}_{\mathrm{N}} = \mathbf{Y}_{\mathrm{N}}$$

• Find \mathbf{T}

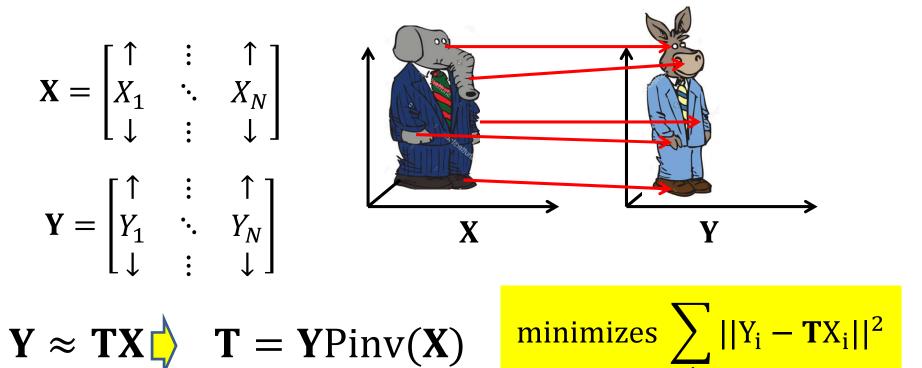
Finding the Transform



 $\mathbf{Y} = \mathbf{T}\mathbf{X}$ $\mathbf{T} = \mathbf{Y}Pinv(\mathbf{X})$

Pinv works here too

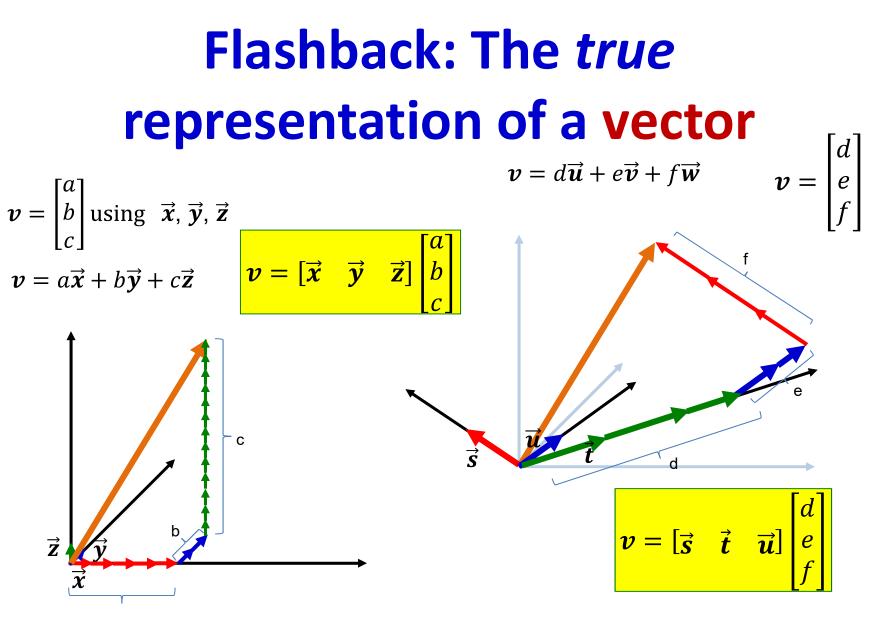
Finding the Transform: Inexact



- Even works for inexact solutions
- We *desire* to find a linear transform **T** that maps **X** to **Y**
 - But such a linear transform doesn't really exist
- *Pinv* will give us the "best guess" for **T** that minimizes the total squared error between **Y** and **TX**

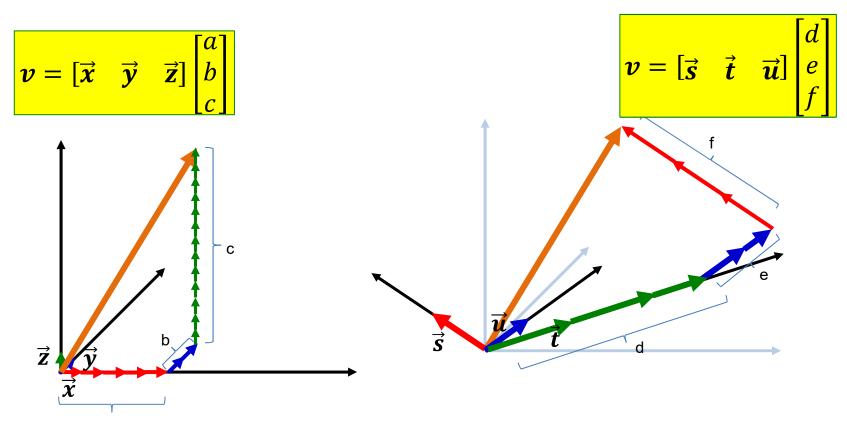
Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Determinant
 - Inverse
 - Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD



What the column (or row) of numbers really means
 The "basis matrix" is implicit

Flashforward: Changing bases



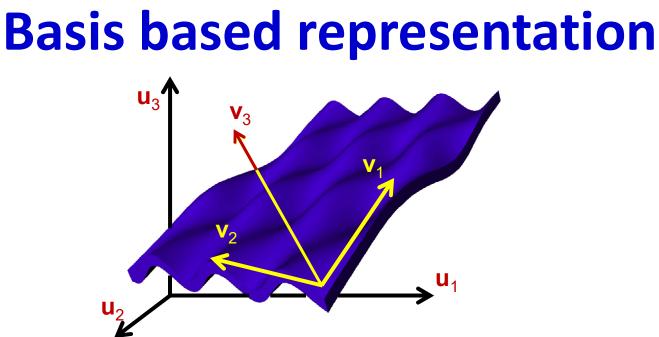
• Given representation [a, b, c] and bases $\vec{x} \quad \vec{y} \quad \vec{z}$, how do we derive the representation $[d \ e \ f]$ in terms of a different set of bases $\vec{s} \quad \vec{t} \quad \vec{u}$?

Matrix as a Basis transform

 $\mathbf{X} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3, \quad \mathbf{X} = x\mathbf{u}_1 + y\mathbf{u}_2 + z\mathbf{u}_3$

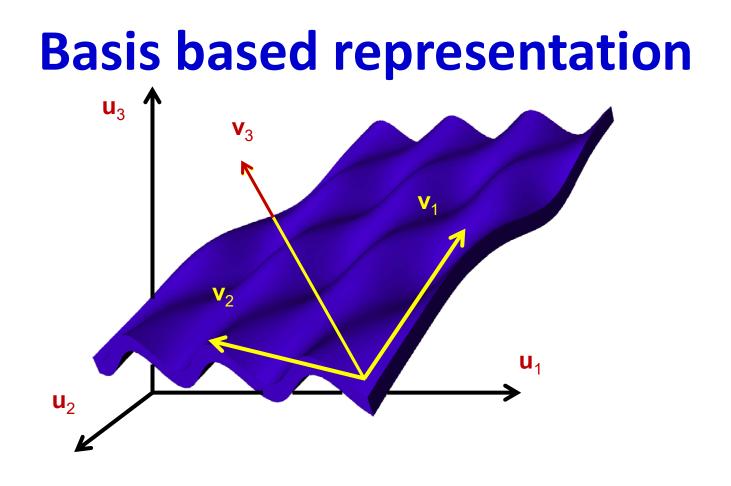
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- A matrix transforms a representation in terms of a standard basis u₁ u₂ u₃ to a representation in terms of a different bases v₁ v₂ v₃
- Finding best bases: Find matrix that transforms standard representation to these bases

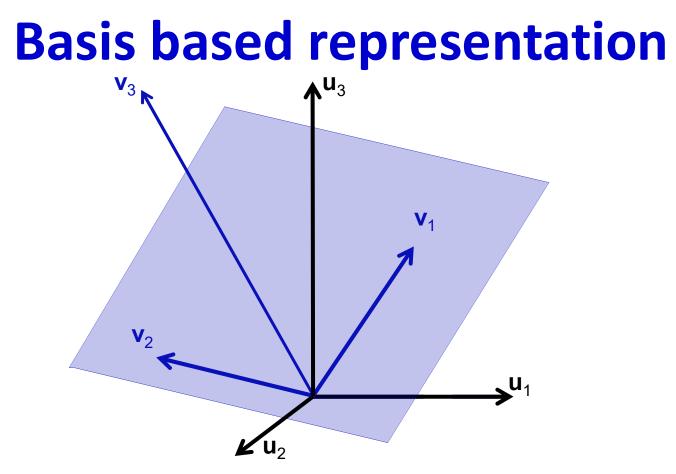


- A "good" basis captures *data* structure
- Here u₁, u₂ and u₃ all take large values for data in the set
- But in the (v₁ v₂ v₃) set, coordinate values along v₃ are always small for data on the blue sheet

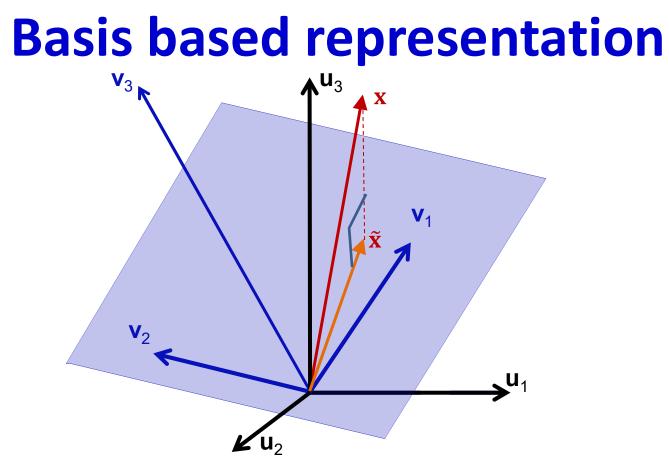
 $- \mathbf{v}_3$ likely represents a "noise subspace" for these data



• The most important challenge in ML: Find the best set of bases for a given data set

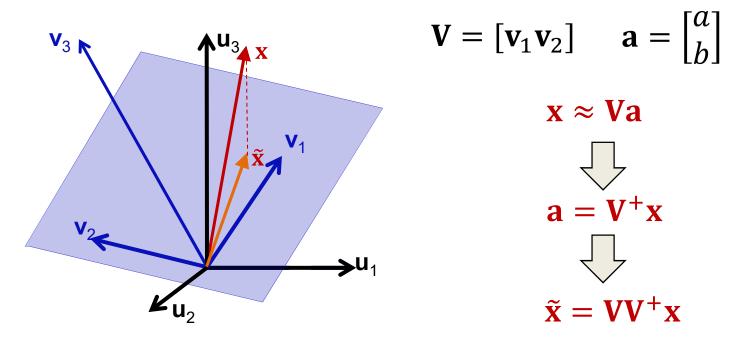


- Modified problem: Given the new bases v₁, v₂, v₃
 - Find best representation of every data point on $v_1 v_2$ plane
 - Put it on the main sheet and disregard the v3 component



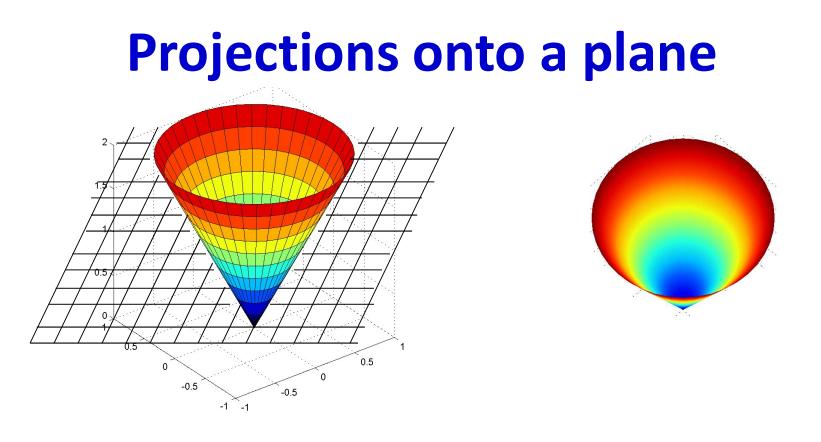
- Modified problem:
 - For any vector \mathbf{x}
 - Find the closest approximation $\tilde{\mathbf{x}} = a\mathbf{v}_1 + b\mathbf{v}_2$
 - Which lies entirely in the v_1 - v_2 plane

Basis based representation

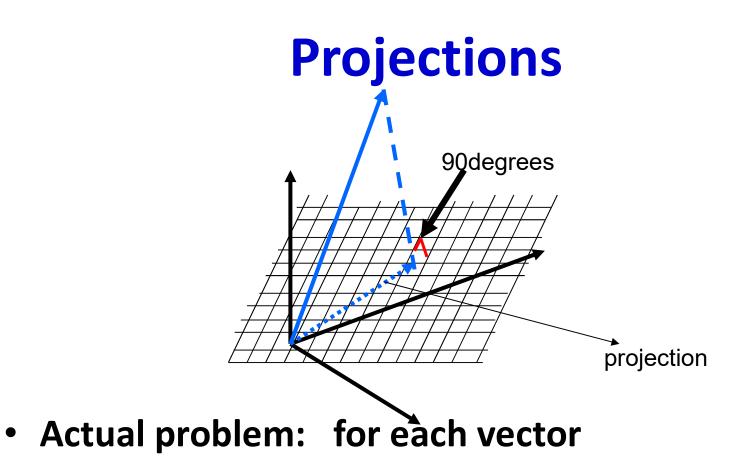


 P = VV⁺ is the "projection" matrix that "projects" any vector x down to its "shadow" x̃ on the v₁-v₂ plane

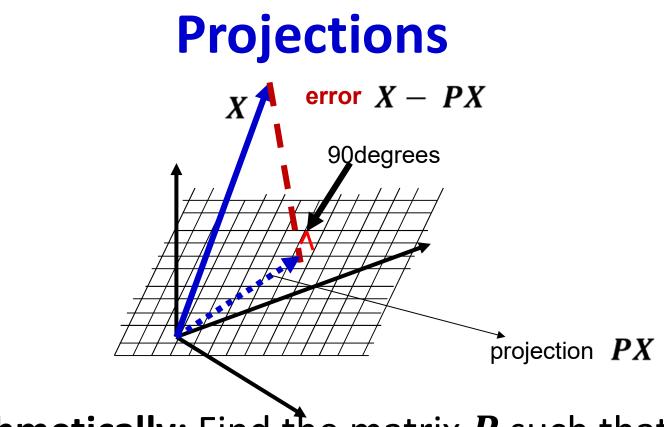
- Expanding: $\mathbf{P} = \mathbf{V} (\mathbf{V}^{\mathrm{T}} \mathbf{V})^{-1} \mathbf{V}^{\mathrm{T}}$



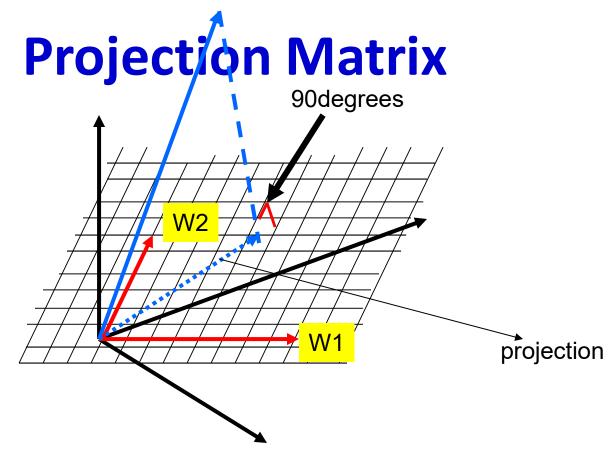
- What would we see if the cone to the left were transparent if we looked at it from above the plane shown by the grid?
 - Normal to the plane
 - Answer: the figure to the right
- How do we get this? Projection



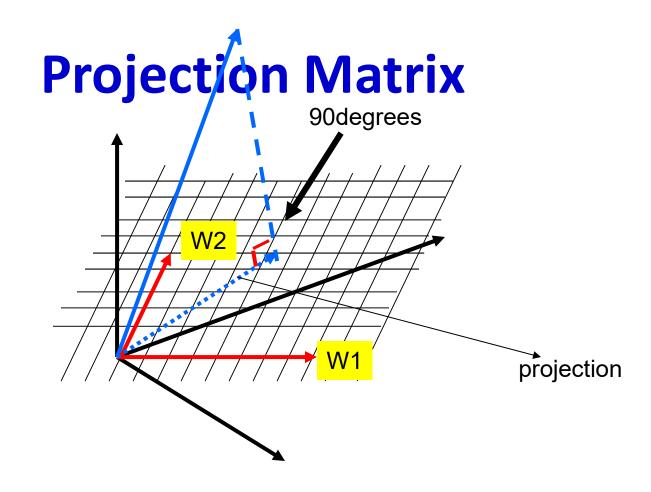
- What is the corresponding vector on the plane that is "closest approximation" to it?
- What is the *transform* that converts the vector to its approximation on the plane?



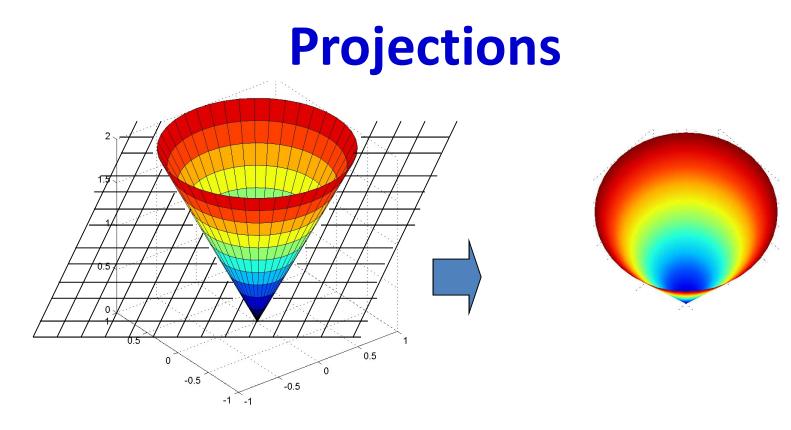
- Arithmetically: Find the matrix **P** such that
 - For every vector X, PX lies on the plane
 - The plane is the column space of **P**
 - $-||X PX||^2$ is the smallest possible



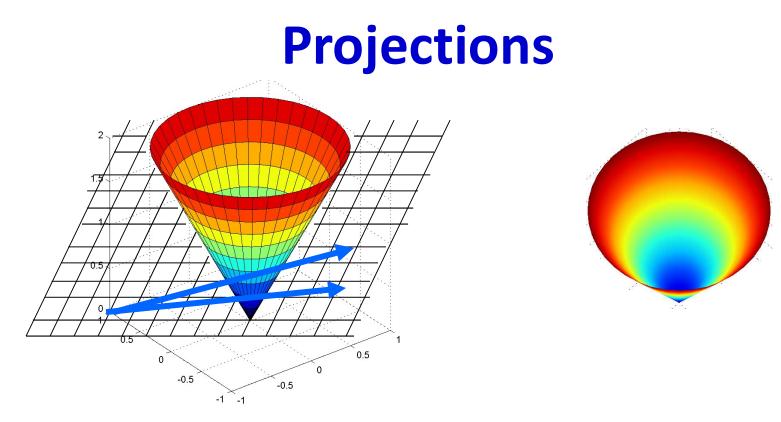
- Consider any set of *independent* vectors (bases) $W_1, W_2, ...$ on the plane
 - Arranged as a matrix $[W_1, W_2, ...]$
 - The plane is the *column space* of the matrix
 - Any vector can be projected onto this plane
 - The matrix *P* that rotates and scales the vector so that it becomes its projection is a projection matrix



- Given a set of vectors W_1, W_2, \dots which form a matrix $W = [W_1, W_2, \dots]$
- The projection matrix to transform a vector X to its projection on the plane is $- P = W(W^T W)^{-1} W^T$



• HOW?

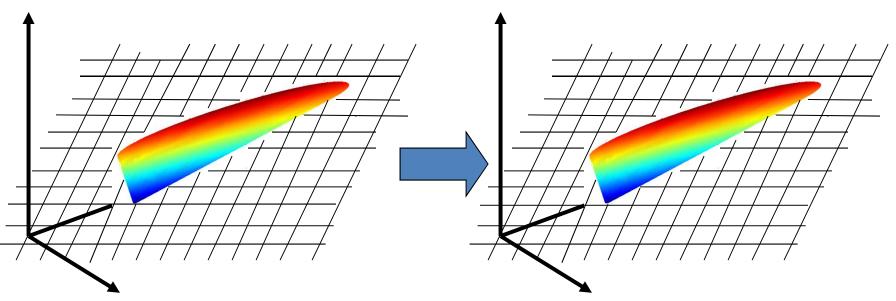


• Draw any two vectors W_1 and W_1 W_2 that lie on the plane

- ANY two so long as they have different angles

- Compose a matrix $\mathbf{W} = [W_1 \ W_2 \dots]$
- Compose the projection matrix $\mathbf{P} = \mathbf{W} (\mathbf{W}^{T}\mathbf{W})^{-1} \mathbf{W}^{T}$
- Multiply every point on the cone by **P** to get its projection

Projection matrix properties



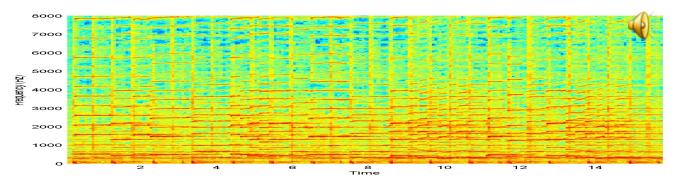
- The projection of any vector that is already on the plane is the vector itself
 - **PX** = **X** if **X** is on the plane
 - If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
 - P(PX) = PX
- Projection matrices are *idempotent*

$$- \mathbf{P}^2 = \mathbf{P}$$

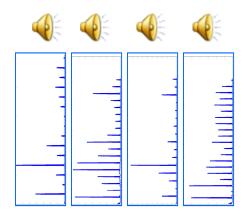
Projections: A more physical meaning

- Let W₁, W₂...W_k be "bases"
- We want to explain our data in terms of these "bases"
 - We often cannot do so
 - But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors W₁, W₂, ... W_k, is the projection of the data on the W₁ ... W_k (hyper) plane
 - In our previous example, the "data" were all the points on a cone, and the bases were vectors on the plane

Projection : an example with sounds

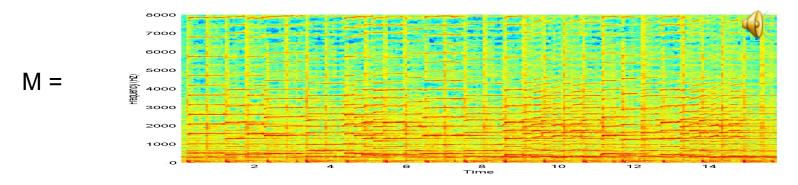


• The spectrogram (matrix) of a piece of music

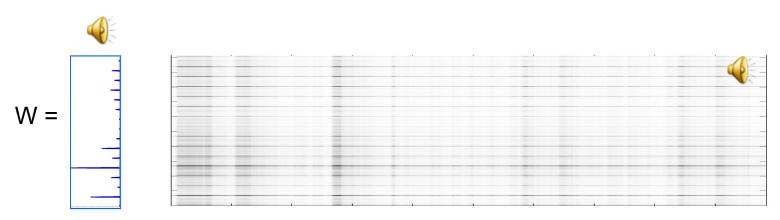


- How much of the above music was composed of the above notes
 - I.e. how much can it be explained by the notes

Projection: one note

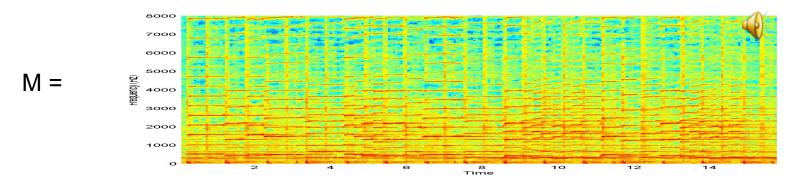


• The spectrogram (matrix) of a piece of music

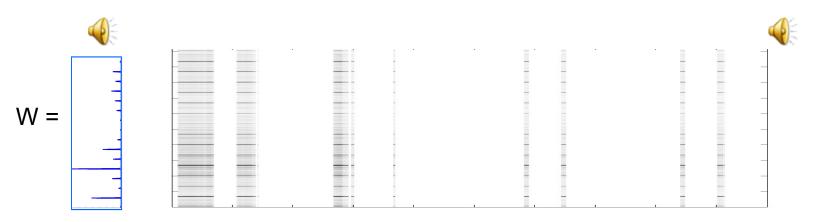


- M =spectrogram; W =note
- $\bullet P = W(W^T W)^{-1} W^T$
- Projected Spectrogram = PM

Projection: one note – cleaned up

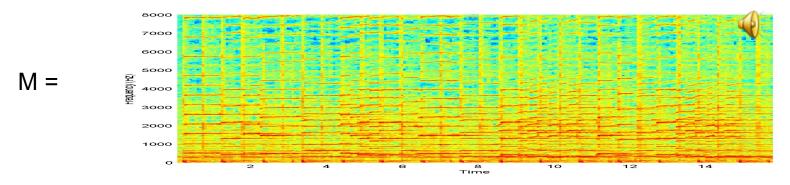


• The spectrogram (matrix) of a piece of music

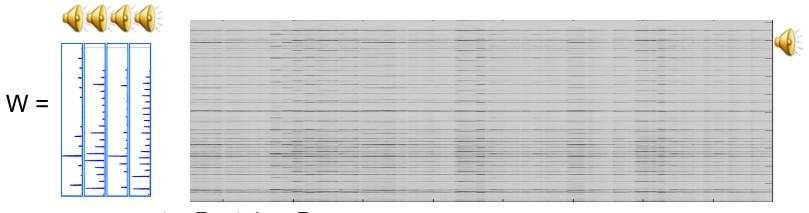


Floored all matrix values below a threshold to zero

Projection: multiple notes

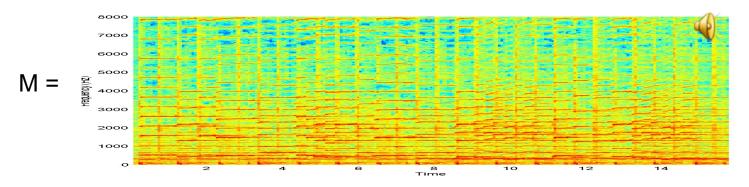


• The spectrogram (matrix) of a piece of music

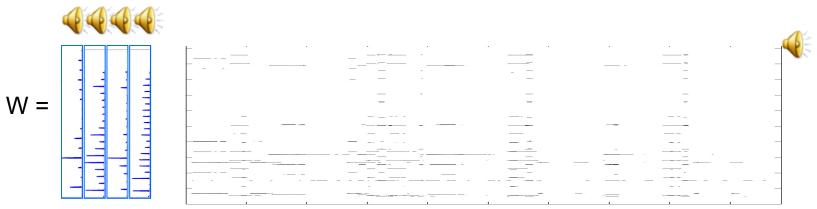


- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = P * M

Projection: multiple notes, cleaned up



• The spectrogram (matrix) of a piece of music



• $\boldsymbol{P} = \boldsymbol{W}(\boldsymbol{W}^T \boldsymbol{W})^{-1} \boldsymbol{W}^T$

Projected Spectrogram = PM

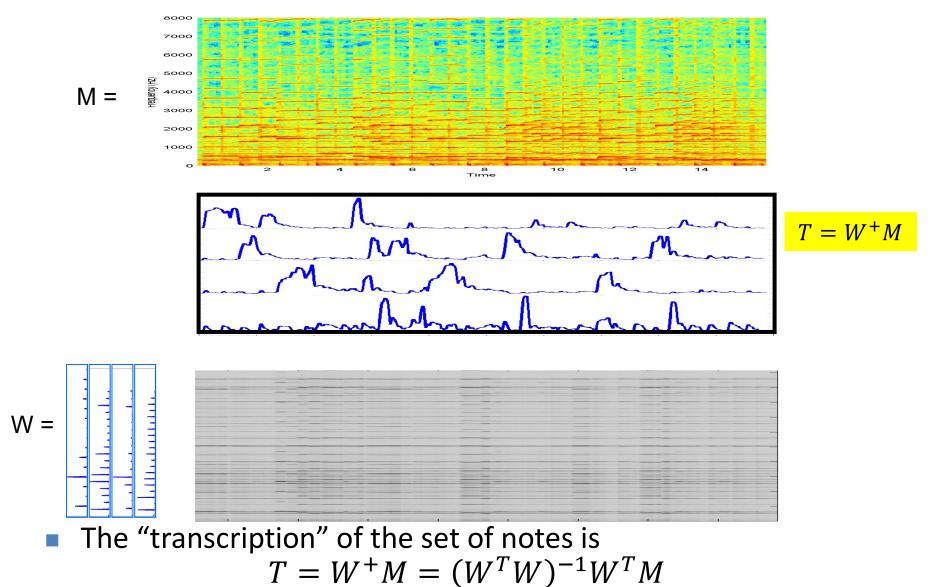
Projection: one note



• The "transcription" of the note is $T = W^+M = (W^TW)^{-1}W^TM$

Projected Spectrogram = WT = PM

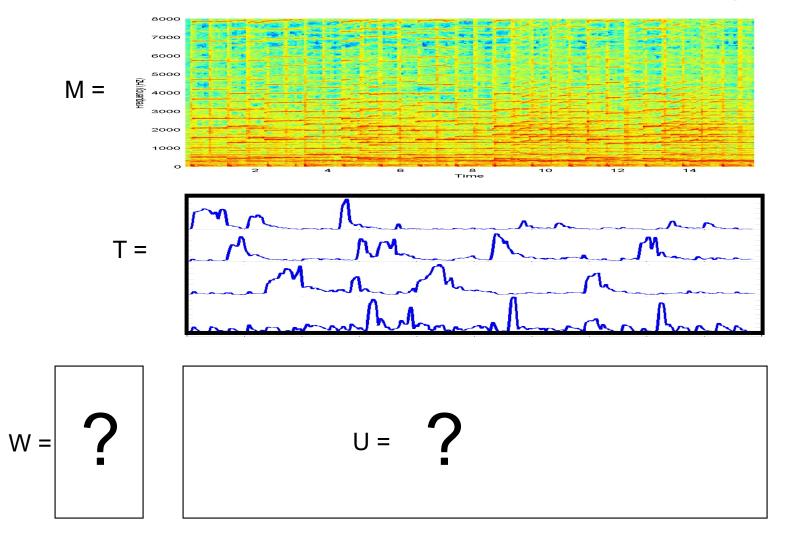
Explanation with multiple notes



Projected Spectrogram = WT = PM

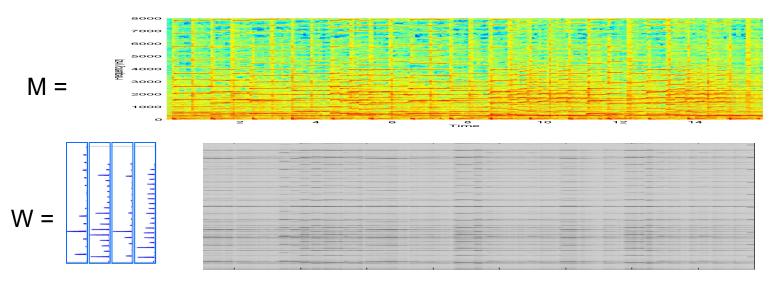
164

How about the other way?



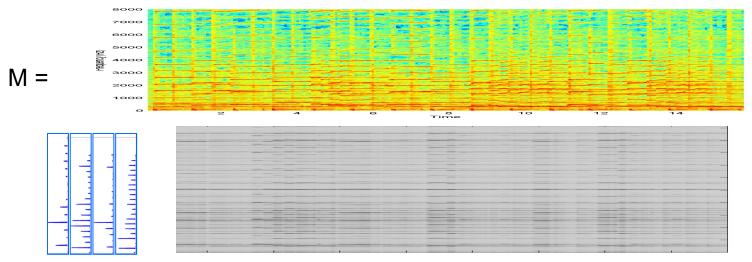
• $WT \approx M$ W = M Pinv(T) U = WT

Projections are often examples of rank-deficient transforms



- $P = W(W^T W)^{-1} W^T$; Projected Spectrogram : $M_{proj} = PM$
- The original spectrogram can never be recovered
 - *P* is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only a maximum of 4 *linearly independent* bases
 - Rank of P is 4

The Rank of Matrix



- Projected Spectrogram = P M
 - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the *smallest* no. of bases required to describe the output
 - E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - The rank of P would be 3!

Pseudo-inverse (PINV)

- *Pinv()* applies to non-square matrices and noninvertible square matrices
- $Pinv(Pinv(\mathbf{A}))) = \mathbf{A}$
- APinv(A) = projection matrix!
 - Projection onto the columns of A
- If A is a K × N matrix and K > N, A projects Ndimensional vectors into a higher-dimensional Kdimensional space
 - $-Pinv(\mathbf{A})$ is a $N \times K$ matrix
 - $Pinv(\mathbf{A})\mathbf{A} = \mathbf{I}$ in this case
- Otherwise APinv(A) = I

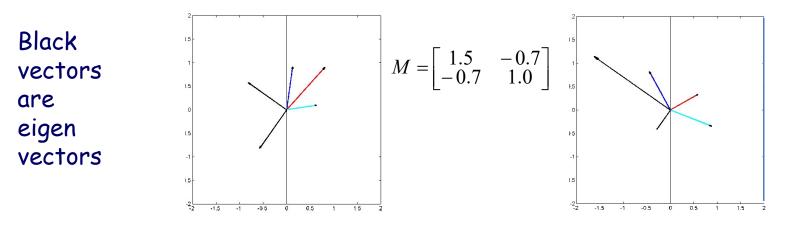
Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
 - Determinant
 - Inverse
 - Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an *eigen*-something
 - Sound example: 🔊 🔊 🚽
- A vector that can undergo a matrix multiplication and keep pointing the same way is an *eigenvector*
 - Its length can change though
- How much its length changes is expressed by its corresponding *eigenvalue*
 - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

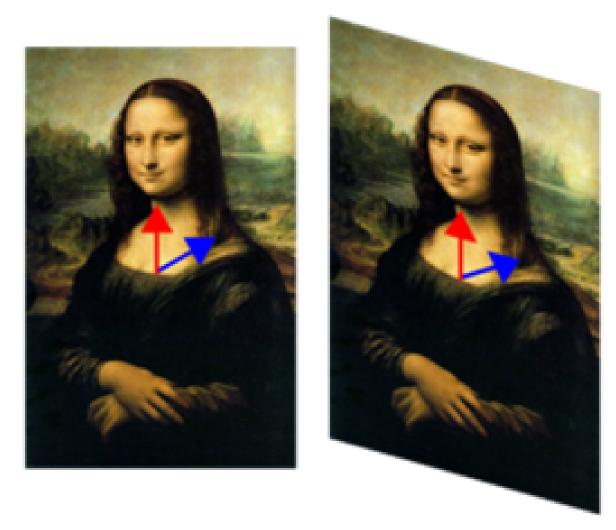


- Vectors that do not change angle upon transformation
 - They may change length

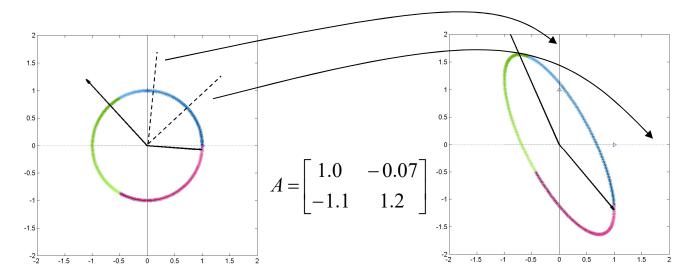
$$MV = \lambda V$$

- V = eigen vector
- $-\lambda$ = eigen value

Eigen vector example

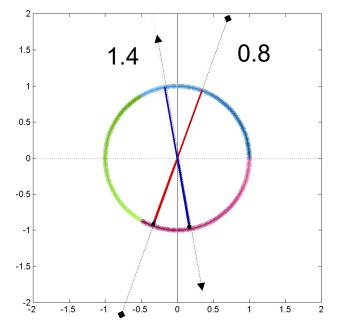


Matrix multiplication revisited



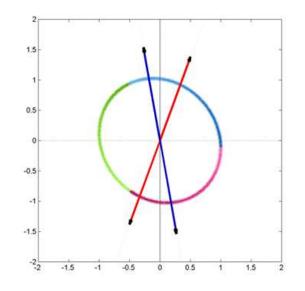
- Matrix transformation "transforms" the space
 Warps the paper so that the normals to the two
 - vectors now lie along the axes

A stretching operation



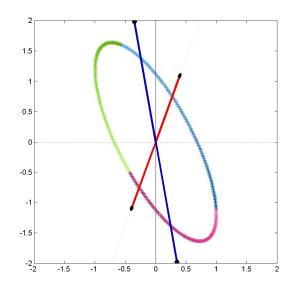
- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation



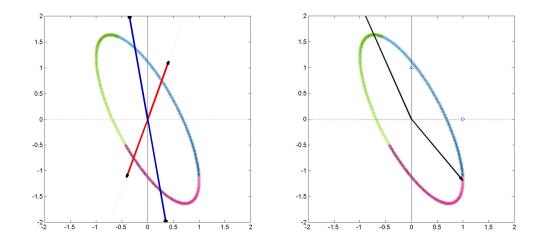
- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation



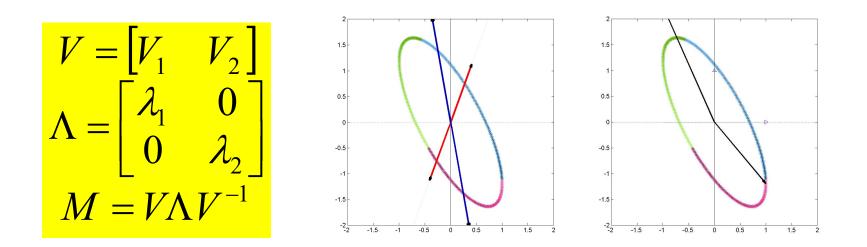
- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector



- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

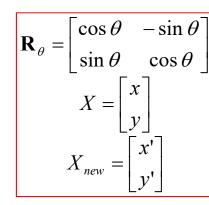
Physical interpretation of eigen vector

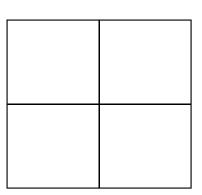


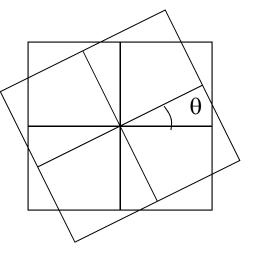
- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix

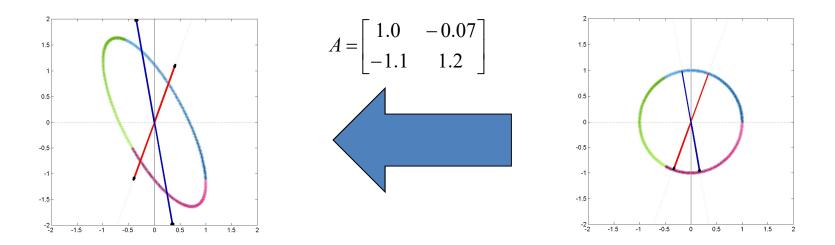




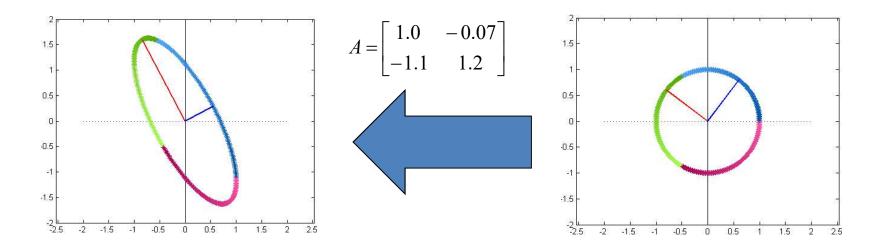


- This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex

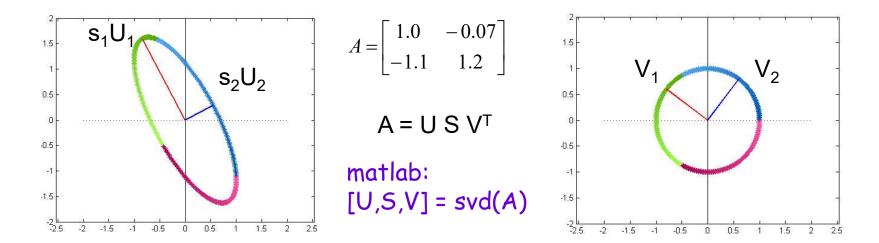
Singular Value Decomposition



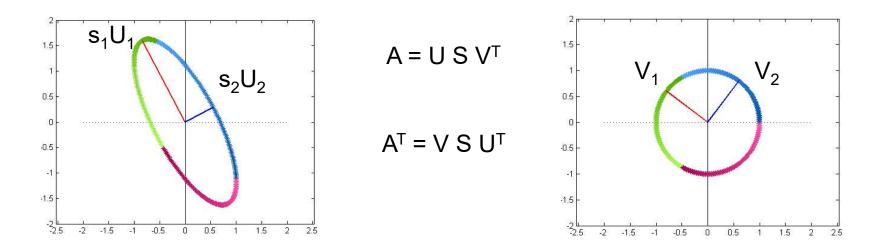
- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
 - Can you identify it?



- The major and minor axes of the transformed ellipse define the ellipse
 - They are at right angles
- These are transformations of right-angled vectors on the original circle!



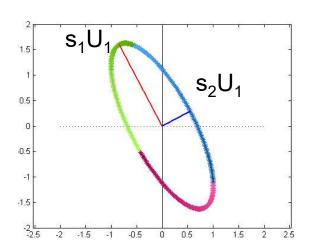
- U and V are orthonormal matrices
 - Columns are orthonormal vectors
- S is a diagonal matrix
- The *right singular vectors* in V are transformed to the *left singular vectors* in U
 - And scaled by the *singular values* that are the diagonal entries of S

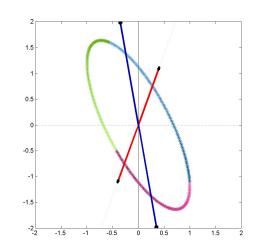


- A matrix *A* converts *right* singular vectors *V* to *left* singular vectors *U*
- A^{T} converts U to V

- The left and right singular vectors are not the same
 - If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
 - Max (|Ax| / |x|) = s_{max}
- The smallest singular value is the smallest amount by which a vector is scaled by A
 - Min (|Ax| / |x|) = s_{min}
 - This can be 0 (for low-rank or non-square matrices)

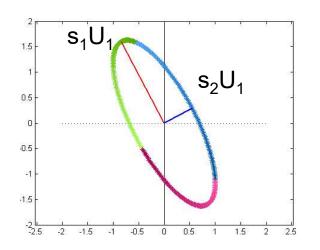
The Singular Values

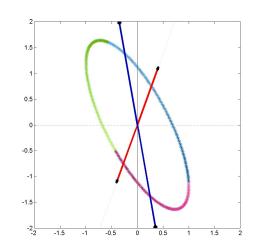




- Square matrices: product of singular values = determinant of the matrix
 - This is also the product of the *eigen* values
 - I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
 - An analogous rule applies to the smallest singular value
 - This property is utilized in various problems

SVD vs. Eigen Analysis



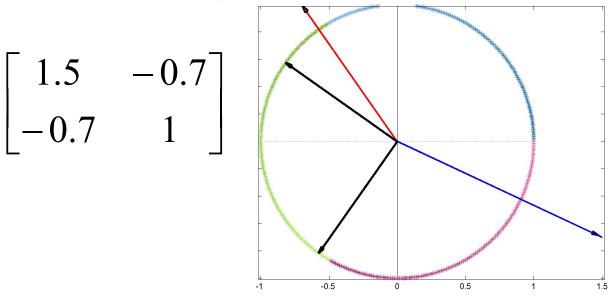


- Eigen analysis of a matrix **A**:
 - Find vectors such that their absolute directions are not changed by the transform
- SVD of a matrix **A**:
 - Find orthogonal set of vectors such that the *angle* between them is not changed by the transform
- For one class of matrices, these two operations are the same

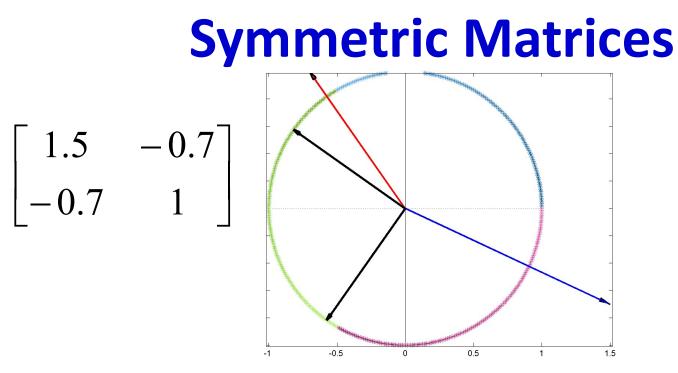
A matrix vs. its transpose $A = \begin{bmatrix} 7 & 0 \\ -0 & 1 \\ 0 & 0 \\ 0$

- Multiplication by matrix A:
 - Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^T:
 - Transforms *left* singular vectors U to right singular vector V
- A A^T : Converts V to U, then brings it back to V
 - Result: Only scaling

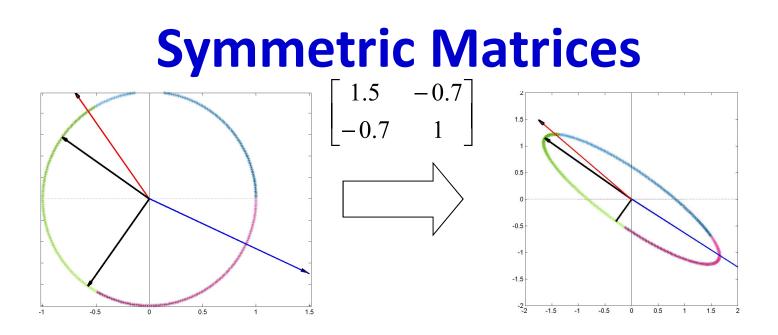
Symmetric Matrices



- Matrices that do not change on transposition
 - Row and column vectors are identical
- The left and right singular vectors are identical
 - U = V
 - A = U S U^T
- They are identical to the *Eigen vectors* of the matrix
- Symmetric matrices do not rotate the space
 - Only scaling and, if Eigen values are negative, reflection



- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - At 90 degrees to one another



 Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid

- The eigen values are the lengths of the axes

Symmetric matrices

• Eigen vectors V_i are orthonormal

$$- V_i^T V_i = 1$$

$$- V_i^T V_j = 0, i != j$$

Listing all eigen vectors in matrix form V
 V^T = V⁻¹

$$- V^T V = I$$

$$- V V^{T} = I$$

- M V_i = λ V_i
- In matrix form : $M V = V \Lambda$ - Λ is a diagonal matrix with all eigen values

•
$$M = V \Lambda V^T$$

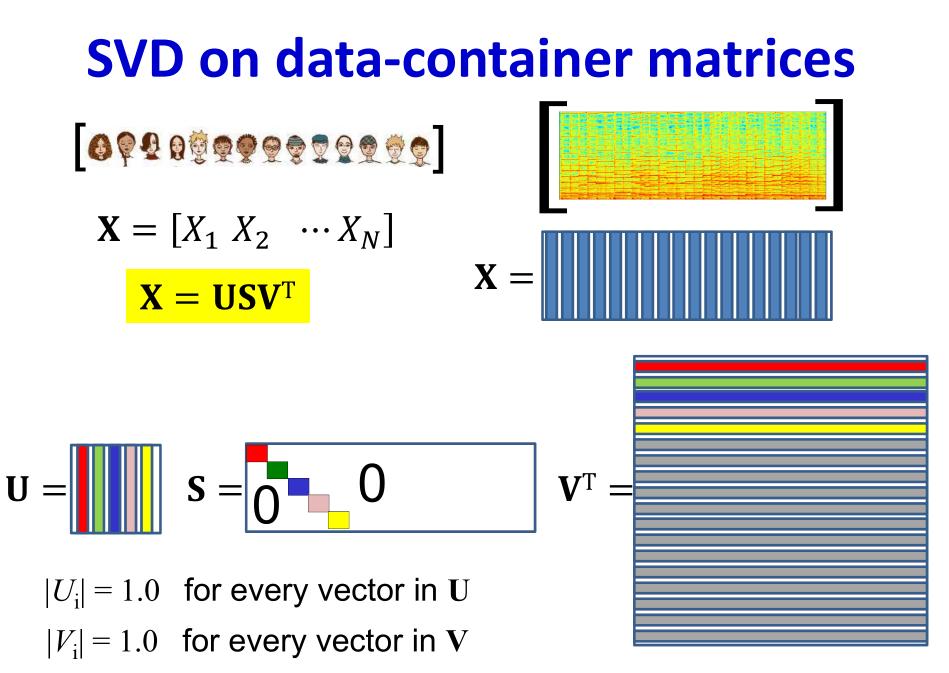
Definiteness..

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
 - Real, positive Eigen values represent stretching of the space along the Eigen vector
 - Real, negative Eigen values represent stretching and reflection (across origin) of Eigen vector
 - Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is **positive definite** if all Eigen values are real and positive, and are greater than 0
 - Transformation can be explained as stretching along orthogonal axes
 - If any Eigen value is **zero**, the matrix is positive *semi-definite*

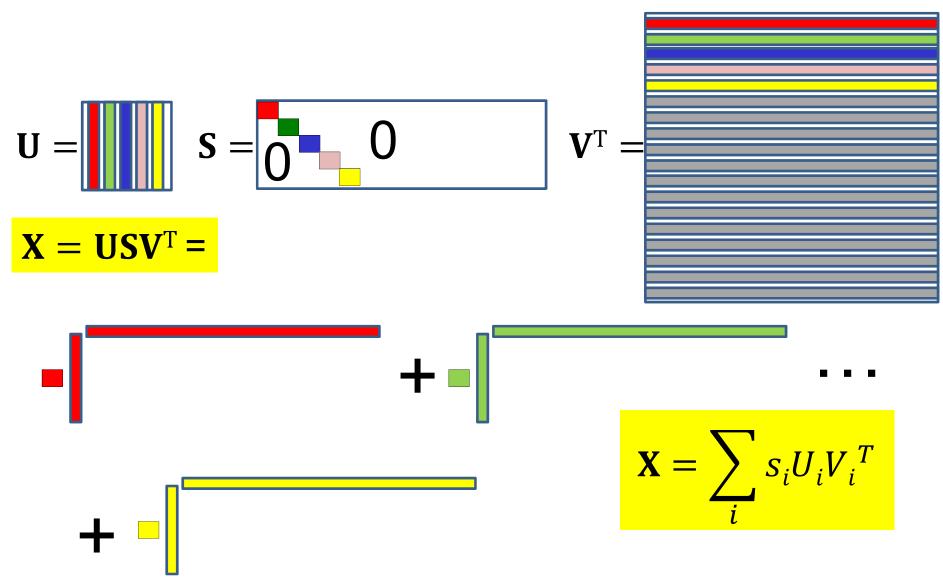
Positive Definiteness..

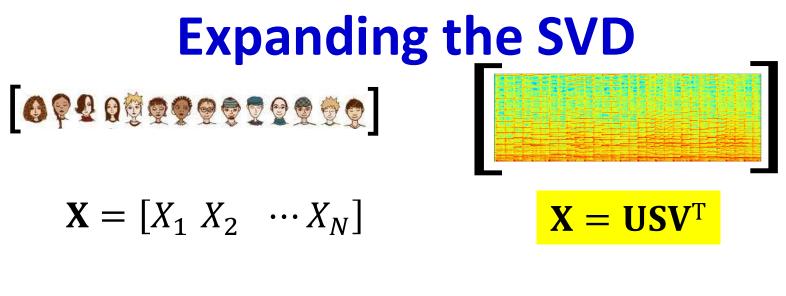
- Property of a positive definite matrix: Defines inner product norms
 - $\ x^T\!Ax \,$ is always positive for any vector x if A is positive definite
- Positive definiteness is a test for validity of *Gram* matrices
 - Such as correlation and covariance matrices
 - We will encounter these and other gram matrices later

- We can also perform SVD on matrices that are *data containers*
- **S** is a $d \ge N$ rectangular matrix
 - N vectors of dimension d
- **U** is an orthogonal matrix of *d* vectors of size *d*
 - All vectors are length 1
- V is an orthogonal matrix of N vectors of size N
- **S** is a *d* x *N* diagonal matrix with non-zero entries only on diagonal



SVD on data-container matrices





$$\mathbf{X} = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + \dots$$

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value

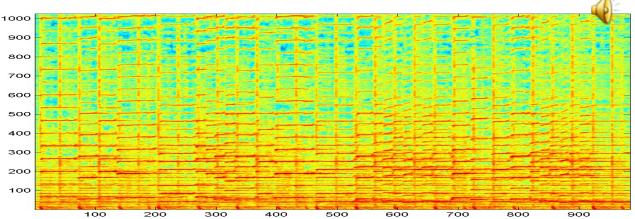
Expanding the SVD $\mathbf{X} = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + \dots$

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value
- Low singular-value components contribute little, if anything
 - Carry little information
 - Are often just "noise" in the data

Expanding the SVD $\mathbf{X} = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + \dots$ $\mathbf{X} \approx s_1 U_1 V_1^T + s_2 U_2 V_2^T$

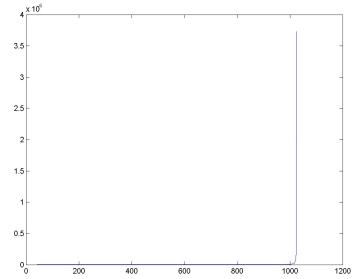
- Low singular-value components contribute little, if anything
 - Carry little information
 - Are often just "noise" in the data
- Data can be recomposed using only the "major" components with minimal change of value
 - Minimum squared error between original data and recomposed data
 - Sometimes eliminating the low-singular-value components will, in fact "clean" the data

An audio example

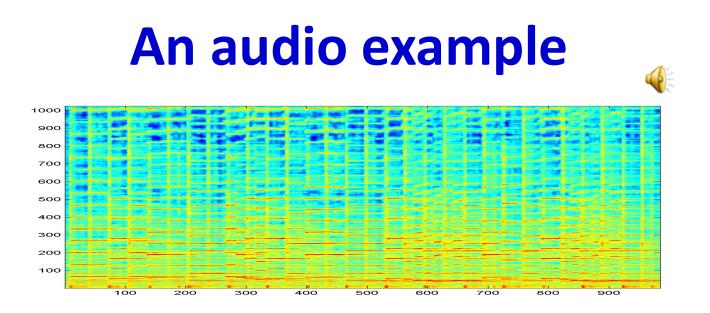


- The spectrogram has 974 vectors of dimension 1025
 - A 1024x974 matrix!
- Decompose: $\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}} = \Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} U_{\mathrm{i}} V_{\mathrm{i}}^{\mathrm{T}}$
- **U** is 1024 x 1024
- **V** is 974 x 974
- There are 974 non-zero singular values S_i

Singular Values

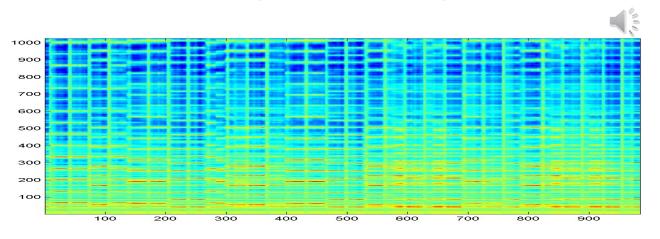


- Singular values for spectrogram **M**
 - Most Singluar values are close to zero
 - The corresponding components are "unimportant"



- The same spectrogram constructed from only the 25 highest singular-value components
 - Looks similar
 - With 100 components, it would be indistinguishable from the original
 - Sounds pretty close
 - Background "cleaned up"

With only 5 components



- The same spectrogram constructed from only the 5 highest-valued components
 - Corresponding to the 5 largest singular values
 - Highly recognizable
 - Suggests that there are actually only 5 significant unique note combinations in the music

• Next up: A brief trip through optimization..