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Book

 Fundamentals of Linear Algebra, Gilbert Strang

* Important to be very comfortable with linear algebra

— Appears repeatedly in the form of Eigen analysis, SVD, Factor
analysis

— Appears through various properties of matrices that are used in
machine learning

— Often used in the processing of data of various kinds
— Will use sound and images as examples

* Today’ s lecture: Definitions
— Very small subset of all that’ s used
— Important subset, intended to help you recollect



Incentive to use linear algebra

* Simplified notation!
va'A&')f DN ZELYJZZ:XGaﬁ

e Easier intuition

— Really convenient geometric interpretations

* Easy code translation!

for i=1:n
for j=1:m
c(i)=c(1)+y(3)*x(1)*a(i,])
end
end

C=x*A*y
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And other th

74401759

Rotation + Projection +
Scaling + Perspective

 Manipulate Data

MLSEP

ngs you can do

From Bach’s Fugue in Gm

Frequency —

= =

 Extract information from data

* Represent data..
* Etc.

Time —

Decomposition (NMF)
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Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Determinant

— |Inverse
— Rank

Solving simultaneous equations
Projections

Eigen decomposition

SVD
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Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Determinant
— Inverse

— Rank

Solving simultaneous equations
Projections

Eigen decomposition

SVD



What is a vector

Column vector

a
H la b ]
C Row vector

A 1xN vector
An Nx1 vector

* Arectangular or horizontal arrangement of numbers



What is a vector

Column vector

a
H la b ]
C Row vector

A 1xN vector
An Nx1 vector

* Arectangular or horizontal arrangement of numbers

* Which, without additional context, is actually a useless
and meaningless mathematical object



A meaningful vector

* Arectangular or horizontal arrangement of
numbers

 Where each number refers to a different quantity



What is a vector

X ) 5
v=|b 13

C - 13

v=ax+by+cz

— 2 -
Z //
lx J

Y

 Each component of the vector actually represents the
number of steps along a set of basis directions

— The vector cannot be interpreted without reference to the

— The bases are often implicit — we all just agree upon them and

don’t have to mention them
12



Standard Bases

5

a] | v=|2

v=|b 13
| C | 13

v=ax+by+cz

e “Standard” bases are “Orthonormal”

— Each of the bases is at 90° to every other basis

* Moving in the direction of one basis results in no motion along the
directions of other bases

— All bases are unit length



A vector by another basis..

v=ds+et+ fu v=le

a
V= [b] using X, 7y, Z
c

v=ax+ by + cZ

— b -
Z /
X

\ J
Y

a

* For non-standard bases we will generally have to specify the bases
to be understood »




Length of a vector

N

=l

|V =\/az+b2+c2

* The Euclidean distance from origin to the
location of the vector

15



Length of a vector..

v=ds+et+fu v=|e

a
V= [b] using X, 7y, Z
c

-

~C

v=ax+ by + cZ

S b// . The norm of a vector depends on the
z > bases used to specify it

vl =va2+b%+c% OR |v| =d?+e? + f?

16



Representing signals as vectors

* Signals are frequently represented as vectors
for manipulation

 E.g. Asegment of an audio signal

* Represented as a vector of sample values
|S1 S5 S3 Su ... Sy

17



Representing signals as vectors

* Signals are frequently represented as vectors for
manipulation

e E.g. The spectrum segment of an audio signal

pectral amplitud
8
;,' -

a 1000 2000 3000 4000 S000
rrrrrrrrrrrrr
1[5ec]

* Represented as a vector of sample values
1§51 S, S3 S4 ... Syl

— Each component of the vector represents a frequency
component of the spectrum

18
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Representing an image as a vector

* 3 pacmen
A 321 x 399 grid of pixel values

— Row and Column = position

“ * A1x128079 vector
— “Unraveling” the image

" h1.11.00 0 . . 1]

— Note: This can be recast as the grid that
forms the image



Vector operations

Addition

Multiplication
Inner product
Outer product
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Vector Operations: Multiplication
by scalar

(7.5, 10, 12.5)

Multiplication by scalar
“stretches” the vector

3
e Vector multiplication by scalar: each component multiplied by scalar
— 2.5x[3,4,5]=[7.5, 10, 12.5]
* Note: as a result, vector norm is also multiplied by the scalar
— |12.5x[3,4,5]|| =2.5x|]| [3, 4, 5]| |

21
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Vector Operations: Addition

3

e Vector addition: individual components add

—[3,4,5] +

:3;_21_3] = [6/212]

22



Vector operation: Inner product

* Multiplication of a row vector by a column vector to
result in a scalar

— Note order of operation

— The inner product between two row vectors u and v is the
product of u’ and v

— Also called the “dot” product
a d]

u= lb] V=
C _f_

uv=uv=1[a b cl]lel=ad+be+c.f

®




Vector operation: Inner product

 The inner product of a vector with itself is its

squared norm
— This will be the squared length
.

u=|b

C.

uu= u'u= a*+b%+c?=||ull?



Vector dot product

Example:

— Coordinates are yards, not ave/st

— a=[200 1600],
b =[770 300]

The dot product of the two vectors
relates to the length of a projection

— How much of the first vector have we
covered by following the second one?

— Must normalize by the length of the

“target” vector

a-b’

[200 1600] o

300

fal

I[200 1600]|

~r 393yd
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Vector dot product

C E C2
>
9 ]
) N N «
C
2
=
O
¥ |
50‘0 \WOIO 11500I IZODOI !5001 3‘000| 35‘00 . 4000 U. 1590 l|00\j\ 15‘J}L 2000 |250\] 3000‘ 350(! 40100 0 50‘0 1000 1500 2000 2500 3000| 3500 l 4000
frequency frequency frequency
i1t 9 .05 1 .. .1] B .24 . .16 .14 . 1] 0.0 .30 .13 . 0]

* \ectors are spectra
— Energy at a discrete set of frequencies
— Actually 1 x 4096
— X axis is the index of the number in the vector
* Represents frequency
— Y axis is the value of the number in the vector

* Represents magnitude
11-755/18-797 26
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Vector dot product

C E C2
>
> 7
5 < < «
C
2
=
O
¥ |
50‘0 \WOIO 11500I IZODOI !5001 3‘000| 35‘00 . 4000 U. 1590 l|00\j\ 15‘J}L 2000 |250\] 3000‘ 350(! 40100 0 50‘0 1000 1500 2000 2500 3000| 3500 l 4000
frequency frequency frequency
i1t 9 .05 1 .. .1] B .24 . .16 .14 . 1] 0.0 .30 .13 . 0]

e HowmuchofCisalsoinE
— How much can you fake a C by playing an E
— C.E/|C||E| =01
— Not very much
e How much of Cisin C27?
— c.c2/|cl/|c2| =05

— Not bad, you can fake it
27



The notion of a “Vector Space”

28



An introduction to spaces

Y

o o (11 7 o
* Conventional notion of "space : a geometric
construct of a certain number of
“dimensions”

— E.g. the 3-D space that this room and every object
in it lives in

11-755/18-797 29



0

* A vector space is an infinitely large set of vectors with
the following properties

— The set includes the zero vector (of all zeros)
— The set is “closed” under addition

* If Xand Y are in the set, aX + bY is also in the set for any two
scalarsaandb

— For every X in the set, the set also includes the additive
inverse Y =-X, suchthat X +Y =0

11-755/18-797 30



Additional Properties

* Additional requirements:

— Scalar multiplicative identity element exists:
1 X=X
— Addition is associative: X+ Y=Y + X
— Addition is commutative: (X+Y)+Z = X+(Y+Z)
— Scalar multiplication is commutative:
a(bX) = (ab) X
— Scalar multiplication is distributive:
(atb)X =aX + bX
a(X+Y)=aX+aY



Example of vector space

- .
S=1|y| forallx,y,z € R;
| 7 J

Set of all three-component column vectors

— Note we used the term three-component, rather than three-
dimensional

The set includes the zero vector

For every X inthe set @ € R, every aX is in the set
For every X, Y in the set, aX + Y is in the set

-X is in the set

Etc.



Example: a function space

S — {acos(x) +bsin(3x) for all a,b, € R},}
- X € |—m, ]

* Entries are functions from [—m, ] to [—1,1]
fi:[-m ] — [—1,1]

* Define (f+2)(x) = f(x) + g(x) for any fand g in
the set

* Verify that this is a space!

11-755/18-797
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Dimension of a space

5 @ O
O e o O

* Every element in the space can be composed
of linear combinations of some other
elements in the space

— Forany Xin S we can write X=aY, +bY, + cY;..
for some other Y, Y,, Y;..in S

* Trivial to prove..

11-755/18-797 34



Dimension of a space
(a,X + b,Y + c,Z) (a, X + byY + ¢,Z)

X>>O<‘ g
YQ O/E

 What is the smallest subset of elements that can compose
the entire set?

— There may be multiple such sets

* The elements in this set are called “bases”
— The set is a “basis” set

* The number of elements in the set is the “dimensionality”

of the space
11-755/18-797 35



Dimensions: Example

-
S—{y forallx,y,z € R}
L 7

 What is the dimensionality of this vector
space

11-755/18-797

36



Dimensions: Example

1 4 )
Z.=13a|2|+b|5|,foralla,b € R:>
3. 6 )

 What is the dimensionality of this vector
space?
— First confirm this is a proper vector space

* Note: all elementsin Z are also in S (slide 36)

— Z.is a subspace of S



Dimensions: Example

S — {acos(x) +bsin(3x) for all a,b,€ R},
- X € [—m, 7]

 What is the dimensionality of this space?

11-755/18-797

}

38



e Return to reality..



Returning to dimensions..

 Two interpretations of “dimension”

 The spatial dimension of a vector:
— The number of components in the vector

— An N-component vector “lives” in an N-
dimensional space

— Essentially a “stand-alone” definition of a vector
against “standard” bases

e The embedding dimension of the vector

— The minimum number of bases required to
specify the vector

— The dimensionality of the subspace the vector
actually lives in

— Only makes sense in the context where the
vector is one element of a restricted set, e.g. a
subspace or hyperplane

* Much of machine learning and signal

4

3

processing is aimed at finding the latter
from collections of vectors

v

v

40



Matrices..

41



What is a matrix

A 2x3 matrix A 3x2 matrix

\ 1 22 6
131 1 5 B=

e Rectangular (or square) arrangement of
numbers

R U
S 0 S

-
f
i_
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Dimensions of a matrix

The matrix size is specified by the number of rows and
columns

c=|b|r=[a b c]

— ¢ = 3x1 matrix: 3 rows and 1 column (vectors are matrices too)

a b a b c »
S:L d}R:L’ e f} C D

— S =2 x 2 matrix

— r=1x3 matrix: 1 row and 3 columns

— R =2 x3 matrix
— Pacman =321 x 399 matrix
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Dimensionality and Transposition

e A transposed matrix gets all its row (or column) vectors
transposed in order

— An NxM matrix becomes an MxN matrix

a a
x:b,xTz[abc] yz[abc]ysz
_C_ _C_
{abc} , a d
X = , X =|b e
d e f
c

11-755/18-797 44



What is a matrix

A 2x3 matrix A 3x2 matrix

\ 1 22 6
131 1 5 B=

* A matrix by itself is uninformative, except
through its relationship to vectors

> N O

R X 8

-
f
i_




Interpreting matrices

e Matrices as transforms
e Matrices as data containers

* Matrices as compositional building blocks for
vector spaces



Interpreting matrices

 Matrices as transforms

e Matrices as data containers

* Matrices as compositional building blocks for
vector spaces
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Matrices as transforms

i1 A1 Q13 QAq4
A=10a21 Q3 A3 dy4
31 A3 A33 A3y

 Multiplying a vector by a matrix transforms the vector

_b —_
1
11 Gz Gz Gua]f, ay1b; + ay,b; + ag,b3 + ajab,
2
— Ab = aZl aZZ a23 a24 b = a21b1 + azzbz + a32b3 + a4_4b4
aszq asy as3 A34 b3 a31b1 ~+ a32b2 + a32b3 + a44b4
| Dy

A matrix is a transform that transforms a vector

— Above example: left multiplication. Matrix transforms a column vector
— Dimensions must match!!

* No. of columns of matrix = size of vector

e Result inherits the number of rows from the matrix
48
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Matrices as transforms

i1 A1 Q13 QAq4
A=10a21 Q3 A3 dy4
31 A3 A33 A3y

 Multiplying a vector by a matrix transforms the vector

‘a11by + az1by + azqbs3]
aq2b1 + azyby + asybs
ay3by + az3by + assbs
[a14b1 + az4by + az4bs )

i1 QA1 Q13 Qg4
— bA=1[by b, b3]|G21 Q2 Q3 Q4| =
A3z1 A3z Q33 dA34

A matrix is a transform that transforms a vector
— Example: right multiplication. Matrix transforms a row vector
— Dimensions must match!!

* No. of rows of matrix = size of vector

e Result inherits the number of columns from the matrix .



Matrices transform a space

* A matrixis a transform that modifies vectors and vector
spaces

B -

* So how does it transform the entire space?
 E.g. how will it transform the following figure?

dh
N

50



Multiplication of vector space by matrix

5 T T
15 i
4 Lo
1t } - 3
2 fi
05
1 L
0 ok
-1+
-0.5
D
s al
e Row space | 4 Column space
| 1 | | | | 1 1 1 1 L L 1 |
-1.5 -1 -0.5 6] 05 1 15 _5-5 -4 -3 -2 -1 0 1 2 3 4 5

 The matrix rotates and scales the space

— Including its own row vectors

51
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Multiplication of vector space by matrix

/ ﬂ%
4 R \ =
.
B
.
K

1.5

05+

0.5+

¥ 0.3 0.7 5
A5F = . )
-13 1.6
L | | 1 _25 | | | | | | [ |
15 1 05 0 05 1 15 25 2 45 4 05 0 05 1 15 2 25

e The normals to the row vectors in the matrix become the
new axes

— X axis = normal to the second row vector

* Scaled by the inverse of the length of the first row vector
52
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Matrix Multiplication

* The k-th axis corresponds to the normal to the hyperplane represented
by the 1..k-1,k+1..N-th row vectors in the matrix

— Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
* The distance along the new axis equals the length of the projection on

the k-th row vector
— Expressed in inverse-lengths of the vector

53



Interpreting matrices

 Matrices as transforms

e Matrices as data containers

* Matrices as compositional building blocks for
vector spaces
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Matrices as data containers

* A matrix can be vertical stacking of row vectors

lla b
R= Ld e fJ
— The space of all vectors that can be composed from the

rows of the matrix is the row space of the matrix

* Or a horizontal arrangement of column vectors
_lla b ¢
R_[d e f}

— The space of all vectors that can be composed from the
columns of the matrix is the column space of the matrix




Representing a sighal as a matrix

* Time series data like audio signals are often
represented as spectrographic matrices

* Each column is the spectrum of a short
segment of the audio signal

56



Representing a sighal as a matrix

* Time series data like audio signals are often
represented as spectrographic matrices

|||I|I|II\Ii|IsIII|||I|IliNlnmll\Ilil\l“ IIIiHiIIIIII “IIIWI\IIIIIIWlillll\llIIIIIlIIIIiIIIII“

i |
10k
|“‘| “hi*"- - ! b
||| A=t e feshted | ) S

* Each column is the spectrum of a short
segment of the audio signal

57



Representing a signal as a matrix

* Images are often just represented as matrices

1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
DDDDDDDDDD
DDDDDDDDDD
1111111111




Storing collections of data

& 4 < X 29090020020080%
I 0 i fer |
_ .0
1 9 24
_; - ) 1— _f1N fKN_

* Individual data instances can be packed into
columns (or rows) of a matrix

— A “data container” matrix

59



Interpreting matrices

e Matrices as transforms
e Matrices as data containers

* Matrices as compositional building blocks for
vector spaces
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Matrices as space constructors

e Right multiplying a matrix by a column vector mixes the columns of the
matrix according to the numbers in the vector

_bl_
a1 4dqp 413 Qq4 b
_ b2
— A =|A21 422 dz3 Q4 b = b
A3y A3z 0dA33 AdA34 3
Dy
aiq ai2 ais A4
Ab = by |Q21| + by |Q22| + b3 |A23 | + by | Q24
as3q aso a3 A34

* “Mixes” the columns
— “Transforms” row space to column space

 “Generates” the space of vectors that can be formed by mixing its own
columns
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Multiplying a vector by a matrix

e Left multiplying a matrix by a row vector mixes the rows of the
matrix according to the numbers in the vector

— A =|A21 Ay Q3 04y = [by b, bs]

117 Q12 Q13 Qg4
b
A3z A3z QA33 0A34

bA = b{[11 Q12 Q13 Q4] 4 b,[A21 Q22 A3 Qo4
+b3|A31 A3z A33  A34]
e “Mixes” the rows

— “Transforms” column space to row space

 “Generates” the space of vectors that can be formed by mixing
its own rows
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Matrix multiplication: Mixing vectors

N ¢ ¢ X Y &

: -, 1 3 0] _ _ 7|

] 1 -

1 8| .. 0 _ :

=1 217 a
- i L . 2]

* A physical example
— The three column vectors of the matrix X are the spectra of
three notes
— The multiplying column vector Y is just a mixing vector
— The result is a sound that is the mixture of the three notes

63
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Matrix multiplication: Mixing vectors

200 x 200 200 x 200
S

i

4

4 N
0.25
0.75
\_ Y 2x1

40000 x 2
Mixing two images
— The images are arranged as columns
e position value not included

200 x 200
-

40000 x 1

— The result of the multiplication is rearranged as an image

64



Interpretations of a matrix

e As a transform that modifies vectors and vector spaces

Vad

= |

a b
c d

* As a container for data (vectors)

a b
f g
k[

| =

C

d

l

n

* As a generator of vector spaces..

[ ]
/

[«

65



Matrix ops..

66



Vector multiplication: Outer
product

Product of a column vector by a row vector

Also called vector direct product

Results in a matrix

Transform or collection of vectors?

bl-ld e f]=

a-d ae a-f
b-d b-e b-f

c-d ce c-f

MLSPE.



Vector outer product

AVAVAVAVAVAVS

1111[][11]1:.
00 1000 1500 2000 2500 3000 3500

 The column vector is the spectrum

 The row vector is an amplitude modulation

 The outer product is a spectrogram
— Shows how the energy in each frequency varies with time
— The pattern in each column is a scaled version of the spectrum
— Each row is a scaled version of the modulation
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Matrix multiplication

ay - . Gy " b Zj ab; .. Zj a,;b
- Oig
dy dy N B . . .
_le . bNK_ Z a b Z a b
_aMl . . aMN— i ] M] ]1 . . ] M] ]K_

m Standard formula for matrix multiplication

69



Matrix multiplication

a )y 2
1
Ay d)n
_le
| i AN

bl K

bNK

m Matrix 4 : A column of row vectors

m Matrix B : A row of column vectors

s AB : A matrix of inner products

= Mimics the vector outer product rule
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Matrix multiplication: another view

a _ — a [ a i i a i
alN b, » 1 12 IN
2N . . .
N I [bll . blK]+ [bZI . sz]"' et [le . bNK]
by, by ]
Ay | | Ay | Ao | Ay

= The outer product of the first column of A and the first row of

B + outer product of the second column of A and the second
row of B + ....

= Sum of outer products

71



30 "0 05075 1 075 05 0
o]0 1 09 07 05 0 05
N B 974 05 06 07 08 09 095 I
Y
g 1
—i | _
X

e Sounds: Three notes modulated
independently

72
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Matrix multiplication: Mixing modulated
spectra

_d

]

1 3

i

.0
1 |924.

(0 05075 1 075 05 0
1 09 07 05 0 05

1

105 06 07 08 09 095 1
Y

X
e Sounds: Three notes modulated

independently

73
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Matrix multiplication: Mixing modulated
spectra

AVAVAVAVAVAVA

(0 05075 1 075 05 0. .. ..

X
e Sounds: Three notes modulated

independently



Matrix multiplication: Mixing modulated

spectra

NN

1 09 07 05 O OS5 . .. ...

X
e Sounds: Three notes modulated

independently

MLSP
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Matrix multiplication: Mixing modulated
spectra

N

0 LOS 06 07 08 09 0951 .. ...

e Sounds: Three notes modulated
independently
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Matrix multiplication: Mixing modulated
spectra

\VAVAVAVAVA
NN

) < N /\/

_r

e Sounds: Three notes modulated
independently

77
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Matrix multiplication: Image

transition

i | —

L L1 9876543210 ”
0123456.73829]1 ‘

9

* Imagel fades out linearly
* Image 2 fades in linearly

78
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Matrix multiplication: Image

transition
(19876543210
i (i 09, 08 . ..... 0]
| i 09, 08, . ..... 0
...... 0
L 0.
lN 09ZN OSZN ...... 0_

 Each column is one image

— The columns represent a sequence of images of decreasing
intensity

* Imagel fades out linearly

79
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Matrix multiplication: Image

transition

-l

» ’ {0 1234567809 J
¢ 9

* Image 2 fades in linearly

80
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Matrix multiplication: Image

transition

i | —

L H|[19876543210 “
0123456728291

* Imagel fades out linearly
* Image 2 fades in linearly

81
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Matrix Operations: Properties

cA+B =B+A
— Actual interpretation: for any vector x
* (A+B)x = (B+ A)x (column vector x of the right

size)
* X(A+B) = x(B+ A) (row vector x of the
appropriate size)

A+ (B+C =(A+B)+C



Multiplication properties

* Properties of vector/matrix products
— Associative

A-(B-C)=(A-B)-C
— Distributive
A-B+C)=A-B+A-C
— NOT commutative!!!
A-B=B-A

 left multiplications # right multiplications
— Transposition

(A-B) =B"-AT

MLSP
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The Space of Matrices

* The set of all matrices of a given size (e.g. all
3x4 matrices) is a space!

— Addition is closed

— Scalar multiplication is closed

— Zero matrix exists

— Matrices have additive inverses

— Associativity and commutativity rules apply!



Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Determinant

— Inverse
— Rank

Projections
Eigen decomposition
SVD

MLSEP
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06
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0.2

-0.2-

0.4

0.6

-08

The Identity Matrix

i
o
b
h"
X\%‘
o B
73
i
£ 4
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An identity matrix is a square matrix where

— All diagonal elements are 1.0
— All off-diagonal elements are 0.0

Multiplication by an identity matrix does not change vectors
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MLSE
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Diagonal Matrix

o

* All off-diagonal elements are zero
* Diagonal elements are non-zero

e Scales the axes
— May flip axes

87



Permutation Matrix

MLSEP

* A permutation matrix simply rearranges the axes
— The row entries are axis vectors in a different order

— The result is a combination of rotations and reflections

 The permutation matrix effectively permutes the
arrangement of the elements in a vector

) L ' (3,4,5)
0O 1 O 5 Z(oldX)
0 0 1||ly|=|z Y Y (old )
Z
1 0 Of|lz X 4 5
X 3 ] X(oldY)4



Rotation Matrix

x'=xcosf— ysinf

y'=xsinf@+ ycosf

(X,y)

v

X

0 =

|

cosd

sin @

—sin &

cos @

MLSEP

I
S

R,X

new

(X,y')

v

* A rotation matrix rotates the vector by some angle 0

Alternately viewed, it rotates the axes

— The new axes are at an angle 0 to the old one

89



More generally

il 03 0.7] ] at
Y =
| | [-13 16] .l
|
05
1_
0r ok
-1+
-0.5
2+
-1k Ak
sk Row space | A Column space
| 1 | | | | 1 1 1 1 L L 1
1.5 -1 -0.5 0 0.5 1 1.5 _5-5 -4 -3 -2 -1 0 1 2 3
o

Matrix operations are combinations of
rotations, permutations and stretching

90



MLSP

el aseing o SgaProcesing Groug

Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Rank

— Determinant

— Inverse

Solving simultaneous equations
Projections

Eigen decomposition

SVD
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Matrix Rank and Rank-Deficient Matrices

L

| e

Ny
W \\naunys// S
| \\\\\\nl -

B i

Some matrices will eliminate one or more dimensions during
transformation

— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object

MLSP
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Matrix Rank and Rank-Deficient Matrices

Pz

i.0000 o o
0 0.z2500 —-0.4330 0. 5000 —-0.z2500 0.4330
] —0.4330 0.7500 —-0.z2500 O.1250 —-0.2165
O.4330 -0.2165 a.3750
S s 08 e e
A5 w
Rank =2 Rank =1

 Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices
— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Non-square Matrices

3 1 2
S 1 1
(Z, Z, .. Zy |
X =3D data, rank 3 P = transform PX = 2D, rank 2

* Non-square matrices add or subtract axes

— Fewer rows than columns = reduce axes

* May reduce dimensionality of the data
94
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The Rank of a Matrix

e (8 9]
31 2 1 9
S 1 1 6 0

The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

The matrix can never increase dimensions
— Cannot convert a circle to a sphere or a line to a circle

The rank of a matrix can never be greater than the lower of its two
dimensions

95



Rank — an alternate definition

* |In terms of bases..
* Will get back to this shortly..
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Matrix Determinant

: r1+3
(r2) iasc.bed) (M1+12) ! r1+r2+r3

e dh

/

="k (1)

e The determinant is the “volume” of a matrix

* Actually the volume of a parallelepiped formed from its
row vectors

— Also the volume of the parallelepiped formed from its column
vectors

e Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective

Volume =V, Volume =V,

{ ] [RNRY

0.7 09 07

* The (magnitude of the) determinant is the ratio of N-volumes

— If V, is the volume of an N-dimensional sphere “O” in N-dimensional
space
* Oisthe complete set of points or vertices that specify the object

— If V, is the volume of the N-dimensional ellipsoid specified by A*O,
where A is a matrix that transforms the space

- |A| =V2/V1
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Matrix Determinants

* Matrix determinants are only defined for square matrices

— They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

e Rank deficient matrices have determinant O

— Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

* E.g.a 3-D sphereinto a 2-D ellipse: The ellipse has 0 volume (although it
does have area)

e Conversely, all matrices of determinant 0 are rank deficient

— Since they compress full-volumed N-dimensional objects into
zero-volume objects
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Determinant properties

* Associative for square matrices ‘A B C‘ — ‘A‘ . ‘B‘ . ‘C‘

— Scaling volume sequentially by several matrices is equal to scaling
once by the product of the matrices

 Volume of sum != sum of Volumes ‘(B + C)‘ - ‘B‘ + ‘C‘

* Commutative
— The order in which you scale the volume of an object is irrelevant

A-B[=B-A|=|A|-[B
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Matrix Inversion

A matrix transforms an
N-dimensional object to a
different N-dimensional
object

e What transforms the new
object back to the original?

— The inverse transformation

* The inverse transformation is
called the matrix inverse

101
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Matrix Inversion

S L Y > AW
g B 05 Y
05 N "o 0 % S 05

T'TD=D=T 'T=1
* The product of a matrix and its inverse is the
identity matrix

— Transforming an object, and then inverse
transforming it gives us back the original object

TT ' D=D=TT'=1

102



3 .9 2% .. %,

xl xz . . xN 1 9 j>1 j>2 o . -)’>N
Vi Voo oo o JVy 6 0] 2y Zy - - Zy
X =2D data P = transform PX = 3D, rank 2

Non-square matrices add or subtract axes

— More rows than columns = add axes
' But does not increase the dimensionality of the data
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¢ TWO DAYS UNTIL
L, T GO HOME! <

[DAY 103 OF 90

- MAYRE IF T.0O AGOOD |
L ENOUGH JOB, THEYLL 3
i LET ME COME: HOME. J°

( MAYBE I DIONT DO ).
(. AGoOD ENOUGH T08. )

DAY 1228 OF 90

ROVER LIKE 15-15'{ WANTED),
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Recap: Representing signals as

vectors

* Signals are frequently represented as vectors
for manipulation

 E.g. Asegment of an audio signal

* Represented as a vector of sample values
|S1 S5 S3 Su ... Sy

105



Representing signals as vectors

* Signals are frequently represented as vectors for
manipulation

e E.g. The spectrum segment of an audio signal

pectral amplitud
8
;,' -

a 1000 2000 3000 4000 S000
rrrrrrrrrrrrr
1[5ec]

* Represented as a vector of sample values
1§51 S, S3 S4 ... Syl

— Each component of the vector represents a frequency
component of the spectrum

106



Representing a sighal as a matrix

* Time series data like audio signals are often
represented as spectrographic matrices

* Each column is the spectrum of a short
segment of the audio signal

107



Representing a sighal as a matrix

* Time series data like audio signals are often
represented as spectrographic matrices

|||I|I|II\Ii|IsIII|||I|IliNlnmll\Ilil\l“ IIIiHiIIIIII “IIIWI\IIIIIIWlillll\llIIIIIlIIIIiIIIII“

i |
10k
|“‘| “hi*"- - ! b
||| A=t e feshted | ) S

* Each column is the spectrum of a short
segment of the audio signal
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Representing an image as a vector

* 3 pacmen
A 321 x 399 grid of pixel values

— Row and Column = position

“ * A1x128079 vector
— “Unraveling” the matrix

" h1.11.00 0 . . 1]

— Note: This can be recast as the grid that
forms the image



Representing a signal as a matrix

* Images are often just represented as matrices

1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
DDDDDDDDDD
DDDDDDDDDD
1111111111




Interpretations of a matrix

e As a transform that modifies vectors and vector spaces

Vad

= |

a b
c d

* As a container for data (vectors)

a b
f g
k[

| =

C

d

l

n

* As a generator of vector spaces..

[ ]
/

[«
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Revise.. Vector dot product

C E C2
>
o q q f |
5 < < «
C
2
=
O
¥ |
50‘0 \WOIO 11500I IZODOI !5001 3‘000| 35‘00 . 4000 U. 1590 l|00\j\ 15‘J}L 2000 |250\] 3000‘ 350(! 40100 0 50‘0 1000 1500 2000 2500 3000| 3500 l 4000
frequency frequency frequency
i1t 9 .05 1 .. .1] B .24 . .16 .14 . 1] 0.0 .30 .13 . 0]

e HowmuchofCisalsoinE
— How much can you fake a C by playing an E
— C.E/|C||E| =01
— Not very much
e How much of Cisin C27?
— c.c2/|cl/|c2| =05

— Not bad, you can fake it
112
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Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Determinant

— |Inverse
— Rank

Solving simultaneous equations
Projections

Eigen decomposition

SVD
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The Inverse Transform and
Simultaneous Equations

e Given the Transform T and transformed vector
Y, how do we determine X?

114
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Matrix inversion (division)

* The inverse of matrix multiplication
— Not element-wise division!!

— E.8.

—|-1/4 3/4 -1/4

2 1 117r [3/4 —1/4 —1/4]
l ] —1/4 —1/4 3/4
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Matrix inversion (division)

Provides a way to “undo” a linear transform

Undoing a transform must happen as soon as it is
performed

Effect on matrix inversion: Note order of multiplication

A-B=C, A=C-B’, B=A"-C
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IVIS

ion (d

IX invers

Matr

- 0 o 0 -

- 0 o 0 - -

Inverse of the unit matrix is itself
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Matrix inversion (division)

2 0 0
T=|0 2 0

0 0 1

* |nverse of the unit matrix is itself

* Inverse of a diagonal is diagonal

118
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Matrix inversion (division)

g
h
I

R™! =

&\m&

* |nverse of the unit matrix is itself
* Inverse of a diagonal is diagonal

* Inverse of a rotation is a (counter)rotation (its transpose!)

— In 2D a forward rotation @ by is cancelled by a backward
rotation of —0

R = [cosH —sinH]’R_l cosf@ sin6

sin@  cos0 —sinf cos6
— More generally, in any number of dimensions: R~ = RT 119
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Inverting rank-deficient matrice

Tl 0 0o 7
0 25 0433
0 -0433 0.75

Rank deficient matrices “flatten” objects

— In the process, multiple points in the original object get mapped to the same
point in the transformed object

It is not possible to go “back” from the flattened object to the original
object
— Because of the many-to-one forward mapping

Rank deficient matrices have no inverse
120
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Matrix inversion (division)

Inverse of the unit matrix is itself
Inverse of a diagonal is diagonal
Inverse of a rotation is a (counter)rotation (its transpose!)

Inverse of a rank deficient matrix does not exist!
121



Inverse Transform and
Simultaneous Equation

—T11 le T13_ a X a = T11x + ley + T13Z
T=|T,; T, Ty b|=T|y > b =Tyx +Tyy+ Tz
Tay Tsy Tas c Z c =T31x + T3,y + T332

_ _ a X

Given lb] find |y

c A

* |nverting the transform is identical to solving
simultaneous equations
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Inverting rank-deficient matrice

e Rank deficient matrices have no inverse

— In this example, there is no unigue inverse

123



Inverse Transform and
Simultaneous Equation

a = T11x + ley + T13Z

T=
b = T21x + Tzzy + T23Z

Ty, Ty T13]

T1 Ty Tp3 [g]=T

X
y
Z

X
Given [g] find |y
| Z

* |nverting the transform is identical to solving
simultaneous equations
* Rank-deficient transforms result in too-few

independent equations
— Cannot be inverted to obtain a unigue solution
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Non-square Matrices

[/ //,MI» -

[ M /e

8 .9 ;5. %,
Vi Vo o o VN |6 0] Z, Z, . . Zy
X = 2D data P = transform PX = 3D, rank 2

 When the transform increases the number of
components most points in the new space will not have a
corresponding preimage

125



Inverse Transform and
Simultaneous Equation

T 7. a a=Ty1x+ T,y
11 112 X B
b :T[] > b =Tyx+ Ty
To1 Ty y B
T T c c =T31x+ T3,y
137 132

a
Given [lj find [;C,]

Inverting the transform is identical to solving simultaneous
equations

Rank-deficient transforms result in too few independent equations
— Cannot be inverted to obtain a unique solution

Or too many equations
— Cannot be inverted to obtain an exact solution
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The Pseudo Inverse (PINV)

V=T

X X X
y] B Vipprox ~ T H — H = Pinv(T)V
YA YA YA

* When you can’t really invert T, you perform the pseudo
inverse

127
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Generalization to matrices

Unique exact solution exists
T must be square

X=TYD Y=T71X X=YT D Y=XT"1

Left multiplication Right multiplication

No unique exact solution exists

— At least one (if not both) of the forward and backward equations may
be inexact

T may or may not be square

X = TY D Y = Pinv(T)X X =YT 9Y = XPinv(T)

Left multiplication Right multiplication

128



Underdetermined Pseudo Inverse
=T j> T

x ZA
[y‘ = Pinv(T) [Zl

X
y
Z

Plane of solutions

—

Figure only meant for illustration Shortest solution

for the above equations, actual

set of solutions is a line, not a
plane. Pinv(T)A will be the point on
the line closest to origin

e Case 1: Too many solutions
* Pinv(T)A picks the shortest solution

129



The Pseudo Inverse for the
underdetermined case

a _T a = T11x + ley + T13Z
[b] - —> b = T21x + Tzzy + T23Z
X

y]

YA

Pinv(T) = TT(TT") !

X
y
Z

VT = Pinv(T)V

X
y
Z

X

y
Z

T |y| = TPinv(T)V = TTT(TTT)" Vv =V

130
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The Pseudo Inverse

Ty, Ty, a X a=Ty1x+ T,y
T=(T21 T2 b|=T ly] > b=Tyx+ T,y
T31 T32 C cC = T31X + T32y

1A —TX]J?

Figure only meant for illustration
for the above equations, Pinv(T) will
actually have 6 components. The
error is a quadratic in 6 dimensions

e Case 2: No exact solution

* Pinv(T)A picks the solution that results in the
lowest error 131




MLSP

Machivkasing o Sgp3aProcesing (rotg:

The Pseudo Inverse for the
overdetermined case
E=|TX - A|? =(TX — A)T(TX — 4)
E=X"TTTX - 2X"TTA+ A"A
Differentiating and equating to O we get:

X=({T"T)"TTA = Pinv(T)A

Pinv(T) = (T'T)~ 1T

132
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Shortcut: overdetermined case

a X a = T11x + ley
[b =T ly] > b = T21X + Tzzy
¢ ¢ =T31x + T3y

o] vt -

Pinv(T) = (T'T)~ 1"

Note that in this case:

= (") Tt'Vy

X
T [y] — TPinv(T)V = T(TTT)"'TTV # V

Why?

133



Overdetermined vs
Underdetermined

e Underdetermined case: Exact solution exists.
We find one of the exact solutions. Hence..

X

y
Z

T |y| = TPinv(T)V = TTT(TTT) Vv =V

* Overdetermined case: Solution generally does
not exist. Solution is only an approximation..

X
T [y] — TPinv(T)V = T(TTT)"'TTV = V



Properties of the Pseudoinverse

* For the underdetermined case:

TPinv(T) =1

 For the overdetermined case
TPinv(T) =?

— We return to this question shortly



Matrix inversion (division)

The inverse of matrix multiplication
— Not element-wise division!!

Provides a way to “undo” a linear transformation

For square matrices: Pay attention to multiplication side!
A-B=C, A=C-B", B=A""-C
If matrix is not square use a matrix pseudoinverse:

A-B~C, A=C-B", B=A"-C

MLSEP



Finding the Transform

* Given examples

~ T.Xy =Yy

e FindT

137



Finding the Transform

X = ! -: ! 1 /?4‘"'?'"'/ ﬁiﬁ‘ NS
— X1 ‘e XN -0\ o I”?M'/ .
[ ) N | HN
(R =
Y — Yl .'. YN
!+ ]

Y=TX T =YPinv(X)

* Pinv works here too

138



Finding the Transform: Inexact

T+ 1
X=|X;y ~ Xy

AT

T 1 R
Y= -~ YN]

O

Y ~ TX|$ T = YPinv(X) minimizes z 1Y; — TX;||

* Even works for inexact solutions
 We desire to find a linear transform T that maps X to Y
— But such a linear transform doesn’t really exist

* Pinv will give us the “best guess” for T that minimizes the total
squared error between Y and TX 139
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Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Determinant
— Inverse

— Rank

Solving simultaneous equations
Projections

Eigen decomposition

SVvD
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Flashback: The true
representation of a vector

v=du+ev+fw v=|e

a
V= [b] using X, 7y, Z
c

v=aX+by+cz |(V=IX ¥

Nl

o -

X

 What the column (or row) of numbers really means
— The “basis matrix” is implicit i



Flashforward: Changing bases

N

o 4

X

!

* Given representation [a,b,c] and basesX y Z, how
do we derive the representation [d e f] in terms of a
different set of basess¢ ¢ 7
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Matrix as a Basis transform

X =av, + bv, + cv,, <= X =xu, + yu, + zu,

a
[b
C
* A matrix transforms a representation in terms of a

standard basis u, u, u; to a representation in terms of a
different bases v, v, v,

X

Z

* Finding best bases: Find matrix that transforms
standard representation to these bases



Basis based representation

* A “good” basis captures data structure

* Here u,, u, and u, all take large values for data in
the set

* Butin the (v,v,v;) set, coordinate values along
v, are always small for data on the blue sheet

— v, likely represents a “noise subspace” for these data

144



Basis based representation
A 4

uj

 The most important challenge in ML: Find the
best set of bases for a given data set

145



Basis based representation

3 AYUs

* Modified problem: Given the new basesv,, v,, v,

— Find best representation of every data point on v;-v,
plane

e Put it on the main sheet and disregard the v3 component



Basis based representation

3 AYUs

 Modified problem:
— For any vector x

— Find the closest approximation X = avy; + bv,
* Which lies entirely in the v;-v, plane



Basis based representation

V=[wyv,] a= [g]

V3 AYs,

u,

« P = VVTisthe “projection” matrix that
“projects” any vector x down to its “shadow” X
on the v4-v, plane
— Expanding: P = V(VTV) YT
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Projections onto a plane

0 %
-0.5
-1 -1

 What would we see if the cone to the left were transparent if
we looked at it from above the plane shown by the grid?
— Normal to the plane

— Answer: the figure to the right
* How do we get this? Projection

149



Projections

\

\ 9Q0degrees

;4 /S /S )/
4/ / / / [/ /

JA /
./'...An

X777 777 /// =/
" -_ ‘
[TV T 2 LT S ]
////// b
/////////

[ 17 7 projection

Actual problem: for each vector

— What is the corresponding vector on the plane that is
“closest approximation” to it?

— What is the transform that converts the vector to its
approximation on the plane?



Projections
error X — PX

INEFTT
N/ /777777 projection PX

Arithmetically: Ihhe matrix P such that

— For every vector X, PX lies on the plane

* The plane is the column space of P

—|IX — PX]J]* is the smallest possible
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Projection Matrix

\ 90degrees
% \

/S S S/
///////////

//
//I///)‘ ////////// /
W2/ V////

[T 77 7\/ 777777 W projection

* Consider any set of independent vectors (bases) W, W, ... on the
plane

— Arranged as a matrix [W{, W, ...]
* The plane is the column space of the matrix

— Any vector can be projected onto this plane

— The matrix P that rotates and scales the vector so that it becomes its
projection is a projection matrix 152
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Projection Matrix

\ 90degrees
% \

s /S S S/
///////////

/4
//I///)‘ //////

77 77
W2///////

;7 / /
/| V’I..ﬂ.’;

/
4

L||

[ Al [+] L~ /
(777777
77777 Wi Srojection

* Given a set of vectors W, W5, ... which form a matrix W = [W{, W, ..]]

* The projection matrix to transform a vector X to its projection on the plane is
- P=wWwWiw)-wT
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- Projections

0 %
-0.5
-1 -1

* HOW?

154
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PrOj ections

7L
Yo Wi, /-
[/
/7
/[ [ il
[T 7 7] L= Ly
[ /L [/ 075\J /// /// /

Draw any two vectors W, and W, W, that lie on the plane
— ANY two so long as they have different angles

Compose a matrix W = [W, W,.. |
Compose the projection matrix P=W (WTW)-1 WT
Multiply every point on the cone by P to get its projection
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Projection matrix properties

/[ ////////// . //////////
[ /S /S S S [ /S /S S S

////////// i /7L7Z ////////// i /7L7Z

[ [ [/ ///////// [ [ [/ /////////

777 [ 17777 ‘ T 17777
IATATATA

[ /S S ] S ]
é%? é%?////////
/////////////////// [ LSS

/77 /% 77777
/7\&(//////// /7\&(////////
* The projection of any vector that is already on the plane is the vector itself

— PX=Xif X is on the plane

— If the object is already on the plane, there is no further projection to be
performed

* The projection of a projection is the projection
— P(PX)=PX
* Projection matrices are idempotent

~ P2=P
156
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Projections: A more physical meaning

* LetW,, W, .. W, be “bases”
* We want to explain our data in terms of these “bases”

— We often cannot do so
— But we can explain a significant portion of it

* The portion of the data that can be expressed in terms of
our vectors W,, W,, ... W,, is the projection of the data
on the W, ... W, (hyper) plane

— In our previous example, the “data” were all the points on a
cone, and the bases were vectors on the plane
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Projection : an example with sounds

L
i v | of k

|||‘ I l
‘ }Lmllhllllllll

= How much of the above music was composed of the

above notes

o l.e. how much can it be explained by the notes
158



PrOJectlon one note

= e ———

S000 =

- = = = == ——
e — e —— = _—— = T == = ———
coo — — = e e e ==
s = ————————— e ———m—_ = e ——— . — =

¢

—_ =
W
- —— — E e == = == = = =
- e — — . — —
== - == = = =

m M =spectrogram; W =note
= P = WWTw)~twr
= Projected Spectrogram = PM

MLSP
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Ff=t=Ta}

=z = = e 3 |
et 5] = = *‘,,
== P— ey ¥ - - e ] - —- —— i -—— - = =
- Eas e —— T W ~— - =g o el
sooo — = . = ] — = =
S5000 i~ e :: E ’7 = = - = - = — = 5 =
— = =l - R o o ey —  F = ==F :
M — = = — T == — W - o — - — - e
= aooo R — — e —————— e — = ——— F — — e
= —_— = > A = Eee 5 T Tt I = = — = = e &
FTOOO B e e e —= e e e e B e
— . ———— T T e = ———e e T — - e — e
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W 1
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—
=——3 = =i

= Floored all matrix values below a threshold to zero
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Prolectlon multlple notes
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 The spectrogram (matrix) of a piece of music
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Explanatlon W|th multlple notes
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How about the other way’
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Projections are often examples of rank-deficient transforms
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= P=WW'W) 'WT; Projected Spectrogram : M,,,.,; = PM

= The original spectrogram can never be recovered

o Pis rank deficient

= P explains all vectors in the new spectrogram as a mixture of
only the 4 vectorsin W
a2 There are only a maximum of 4 linearly independent bases

o Rankof Pis4
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= Projected Spectrogram =P

0 Every vector in it is a combination of only 4 bases

= The rank of the matrix is the smallest no. of bases required to

describe the output
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o E.g.if note no. 4 in P could be expressed as a combination of notes 1,2

and 3, it provides no additional information

o Eliminating note no. 4 would give us the same projection

o The rank of P would be 3!
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Pseudo-inverse (PINV)

Pinv() applies to non-square matrices and non-
invertible square matrices

Pinv (Pinv(A))) = A

APinv(A)= projection matrix!

— Projection onto the columns of A

If Aisa K X N matrixand K > N, A projects N-
dimensional vectors into a higher-dimensional K-
dimensional space

— Pinv(A) isa N X K matrix
— Pinv(A)A =1 in this case
Otherwise APinv(A) =1
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Overview

Vectors and matrices
Basic vector/matrix operations
Various matrix types

Matrix properties
— Determinant
— Inverse

— Rank

Solving simultaneous equations
Projections

Eigen decomposition

SVD
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Eigenanalysis

If something can go through a process mostly
unscathed in character it is an eigen-something

— Sound example: @ @

A vector that can undergo a matrix multiplication and
keep pointing the same way is an eigenvector
— Its length can change though

How much its length changes is expressed by its
corresponding eigenvalue

— Each eigenvector of a matrix has its eigenvalue

Finding these “eigenthings” is called eigenanalysis



Black

eigen

vectors

vectors ‘ L// Af=[
are 0 i;> :

EigenVectors and EigenValues

2
15
:l 3

1 N
5

0
¥s

1

I

1.5
—-0.7

-0.7
1.0

* Vectors that do not change angle upon
transformation

— They may change length

MV = AV

— V = eigen vector

— A =eigen value

MLSEP
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Eigen vector example
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Matrix multiplication revisited

1.0 —=0.07| -«
A=
-1.1 1.2 T

Y

MLSEP

* Matrix transformation “transforms” the space

— Warps the paper so that the normals to the two

vectors now lie along the axes
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A stretching operation

14| 08

e Draw two lines

MLSEP

* Stretch / shrink the paper along these lines by factors A,

and A,

— The factors could be negative — implies flipping the paper
 The result is a transformation of the space
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A stretching operation

Draw two lines
Stretch / shrink the paper along these lines by factors A,
and A,

o The factors could be negative — implies flipping the paper
The result is a transformation of the space
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A stretching operation

Draw two lines
Stretch / shrink the paper along these lines by factors A,
and A,

o The factors could be negative — implies flipping the paper
The result is a transformation of the space
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Physical interpretation of eigen vector

* The result of the stretching is exactly the same as transformation by a
matrix

The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

The EigenVectors and EigenValues convey all the information about the
matrix
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Physical interpretation of eigen vector

r=ln 7]
|4 0
A‘_o A,
M=VAV"

* The result of the stretching is exactly the same as transformation by a
matrix

e The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

 The EigenVectors and EigenValues convey all the information about the
matrix
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Eigen Analysis

* Not all square matrices have nice eigen values and

vectors

— E.g. consider a rotation matrix

sin @

{cos 6 —siné
R =

cos &

|

N\

:

— This rotates every vector in the plane
* No vector that remains unchanged

* Inthese cases the Eigen vectors and values are complex

\_—
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Singular Value Decomposition

1.0 -0.07
4=
-1.1 1.2

Matrix transformations convert circles to ellipses

Eigen vectors are vectors that do not change direction in the
process

There is another key feature of the ellipse to the left that carries
information about the transform

— Canyou identify it?
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Singular Value Decomposition

-

 The major and minor axes of the transformed ellipse
define the ellipse

— They are at right angles

* These are transformations of right-angled vectors on
the original circle!
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Singular Value Decomposition

I iU e L [10 —007
il 5 ~1.1 12 1
OF  crerrmmerreneenres Bre s reren L. i A — U S VT ok
matlab:
[U,S,V]=svd(A)

U and V are orthonormal matrices
— Columns are orthonormal vectors

S is a diagonal matrix

The right singular vectors in V are transformed to the left singular vectors
in U
— And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

2 T T T T
18- S1 U 1 -':-Lé.ﬁ‘;

s,U,

1 I L I L 1
5 1] 05 1 15 2 25

A matrix A converts right singular vectors V

A=USVT

AT=VSUT

to left singular vectors U

e AT convertsU to V

MLSEP
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Singular Value Decomposition

The left and right singular vectors are not the same

— If A'is not a square matrix, the left and right singular vectors will
be of different dimensions

The singular values are always real

The largest singular value is the largest amount by which a
vector is scaled by A

— Max (|Ax| / |x]) = Spa
The smallest singular value is the smallest amount by which
a vector is scaled by A
— Min (|Ax] / |x])
— This can be O (for low-rank or non-square matrices)

= Smin
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The Singular Values

-

82U1 _ 0.5 \

3 \‘ﬁ

ol 1 1 . 1 I L I L 1
25 -2 15 4 0.5 1] 05 1 15 2 25

e Square matrices: product of singular values = determinant of the matrix

— This is also the product of the eigen values

— l.e. there are two different sets of axes whose products give you the area of
an ellipse

* For any “broad” rectangular matrix A, the largest singular value of any
square submatrix B cannot be larger than the largest singular value of A

— An analogous rule applies to the smallest singular value
— This property is utilized in various problems a5
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SVD vs. Eigen Analysis

2 T T T T T T T T T
15}

N

s,U, ' \\

N \J

ol 1 1 . 1 I L I L 1
25 -2 15 4 0.5 1] 05 1 15 2 25

Eigen analysis of a matrix A:

— Find vectors such that their absolute directions are not changed by the
transform

SVD of a matrix A:

— Find orthogonal set of vectors such that the angle between them is not
changed by the transform

For one class of matrices, these two operations are the same
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* Multiplication by matrix A:

— Transforms right singular vectors in V to left singular
vectors U

* Multiplication by its transpose A':
— Transforms left singular vectors U to right singular vector V

« AA" : Converts V to U, then brings it back to V
— Result: Only scaling
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Symmetric Matrices

1.5 0.7
—0.7 1

Matrices that do not change on transposition
— Row and column vectors are identical

The left and right singular vectors are identical
- U=V
— A=USUT

They are identical to the Eigen vectors of the matrix

Symmetric matrices do not rotate the space
— Only scaling and, if Eigen values are negative, reflection
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Symmetric Matrices

1.5 -=0.7
—0.7 1

* Matrices that do not change on transposition

— Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values are
always real

* Eigen vectors are always orthogonal
— At 90 degrees to one another
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Symmetrlc Matrlces

i

i

* Eigen vectors point in the direction of the

p—r
0 0.5

S
#
r
/ },
.
1

1.5 -=0.7
0.7 1

—

|
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major and minor axes of the ellipsoid resulting

from the transformation of a spheroid

— The eigen values are the lengths of the axes
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Symmetric matrices

Eigen vectors V, are orthonormal

TX s 1
Listing all eigen vectors in matrix form V
- VT: V—l
— VIV =]
— VVI=]
MV, =LAV,

In matrix form : MV =V A
— A is a diagonal matrix with all eigen values

M=VAVT
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Definiteness..

e SVD: Singular values are always positive!
* Eigen Analysis: Eigen values can be real or imaginary

— Real, positive Eigen values represent stretching of the space along
the Eigen vector

— Real, negative Eigen values represent stretching and reflection
(across origin) of Eigen vector

— Complex Eigen values occur in conjugate pairs

* A square (symmetric) matrix is positive definite if all Eigen
values are real and positive, and are greater than O

— Transformation can be explained as stretching along orthogonal
axes

— If any Eigen value is zero, the matrix is positive semi-definite
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Positive Definiteness..

* Property of a positive definite matrix: Defines
inner product norms

— xTAx is always positive for any vector x if A is positive
definite
* Positive definiteness is a test for validity of Gram
matrices
— Such as correlation and covariance matrices

— We will encounter these and other gram matrices
later



SVD on data- contalner matrlces
[0 0tieeeencese]

X=[X; Xz - Xnl
X = USV!
We can also perform SVD on matrices that are data containers

Sisa dx N rectangular matrix
— N vectors of dimension d

U is an orthogonal matrix of d vectors of size d
— All vectors are length 1

V is an orthogonal matrix of N vectors of size N
S is a d x N diagonal matrix with non-zero entries only on diagonal
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SVD on data-container matrices

-

[6920teecenceve]

X=[X; Xp - Xyl
X = USVT

S=O 0

|U|=1.0 for every vectorin U

|V:|=1.0 for every vectorinV
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SVD on data-container matrices

S:E).-Dgo




Expanding the SVD
[692atieeeenceve] "

X=[X1 X, Xyl

X=sUV'+s UV +s.UV +sUJV, +
I~¥V171 2~ 202 3©¥ 3" 3 4™~ 4" 4

Each left singular vector and the corresponding right singular vector
contribute on “basic” component to the data

The “magnitude” of its contribution is the corresponding singular

value
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Expanding the SVD

X =s UV +s,UV,} -I-SU VMSU Vf

Each left singular vector and the corresponding right singular vector
contribute on “basic” component to the data

The “magnitude” of its contribution is the corresponding singular
value

Low singular-value components contribute little, if anything

— Carry little information
— Are often just “noise” in the data



Expanding the SVD
X =sUV" +s,UV/ +SU VMSU Vf

/ /

X~sUV,' + S2U2V2T

* Low singular-value components contribute little, if anything
— Carry little information
— Are often just “noise” in the data

e Data can be recomposed using only the “major” components with
minimal change of value

— Minimum squared error between original data and recomposed data

— Sometimes eliminating the low-singular-value components will, in fact
“clean” the data
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An audio example
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The spectrogram has 974 vectors of dimension 1025
— A 1024x974 matrix!

Decompose: M =USV!= X sU V!
Uis 1024 x 1024

Vis 974 x 974

There are 974 non-zero singular values S,
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Singular Values

* Singular values for spectrogram M
— Most Singluar values are close to zero

— The corresponding components are “unimportant”
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An audio example
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 The same spectrogram constructed from only the 25
highest singular-value components

— Looks similar

* With 100 components, it would be indistinguishable from the
original

— Sounds pretty close
— Background “cleaned up”
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 The same spectrogram constructed from only the
5 highest-valued components
— Corresponding to the 5 largest singular values
— Highly recognizable

— Suggests that there are actually only 5 significant
unigue note combinations in the music
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 Next up: A brief trip through optimization..



