MLSP linear algebra refresher

$$
\begin{gathered}
\text { I bearbed } \\
\text { somethỉng obd } \\
\text { today! }
\end{gathered}
$$

Book

- Fundamentals of Linear Algebra, Gilbert Strang
- Important to be very comfortable with linear algebra
- Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
- Appears through various properties of matrices that are used in machine learning
- Often used in the processing of data of various kinds
- Will use sound and images as examples
- Today’ s lecture: Definitions
- Very small subset of all that' s used
- Important subset, intended to help you recollect

Incentive to use linear algebra

- Simplified notation!

$$
\mathbf{x}^{T} \cdot \mathbf{A} \cdot \mathbf{y} \longleftrightarrow \sum_{j} y_{j} \sum_{i} x_{i} a_{i j}
$$

- Easier intuition
- Really convenient geometric interpretations
- Easy code translation!

```
for i=1:n
    for j=1:m
        c(i)=c(i)+y(j)*x(i)*a(i,j)
    end
end
```


And other things you can do

From Bach's Fugue in Gm

- Manipulate Data
- Extract information from data
- Represent data..
- Etc.

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Determinant
- Inverse
- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Determinant
- Inverse
- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

What is a vector

- A rectangular or horizontal arrangement of numbers

What is a vector

- A rectangular or horizontal arrangement of numbers
- Which, without additional context, is actually a useless and meaningless mathematical object

A meaningful vector

- A rectangular or horizontal arrangement of numbers
- Where each number refers to a different quantity

What is a vector

$$
\boldsymbol{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- Each component of the vector ${ }^{5}$ actually represents the number of steps along a set of basis directions
- The vector cannot be interpreted without reference to the bases!!!!!
- The bases are often implicit - we all just agree upon them and don't have to mention them

Standard Bases

- "Standard" bases are "Orthonormal"
- Each of the bases is at 90° to every other basis
- Moving in the direction of one basis results in no motion along the directions of other bases
- All bases are unit length

A vector by another basis..

$$
\boldsymbol{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { using } \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}}, \overrightarrow{\boldsymbol{z}}
$$

$\boldsymbol{v}=d \overrightarrow{\boldsymbol{s}}+e \overrightarrow{\boldsymbol{t}}+f \overrightarrow{\boldsymbol{u}} \quad \boldsymbol{v}=\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$

$$
\boldsymbol{v}=a \overrightarrow{\boldsymbol{x}}+b \overrightarrow{\boldsymbol{y}}+c \overrightarrow{\boldsymbol{z}}
$$

- For non-standard bases we will generally have to specify the bases to be understood

Length of a vector

$$
\boldsymbol{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

$$
|v|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

- The Euclidean distance from origin to the location of the vector

Length of a vector..

$$
\begin{aligned}
& \boldsymbol{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { using } \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}}, \overrightarrow{\boldsymbol{z}} \\
& \boldsymbol{v}=a \overrightarrow{\boldsymbol{x}}+b \overrightarrow{\boldsymbol{y}}+c \overrightarrow{\boldsymbol{z}} \\
& \boldsymbol{v}=d \overrightarrow{\boldsymbol{s}}+e \overrightarrow{\boldsymbol{t}}+f \overrightarrow{\boldsymbol{u}} \quad \boldsymbol{v}=\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right] \\
& |\boldsymbol{v}|=\sqrt{a^{2}+b^{2}+c^{2}} \text { OR }|\boldsymbol{v}|=\sqrt{d^{2}+e^{2}+f^{2}}
\end{aligned}
$$

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. A segment of an audio signal

- Represented as a vector of sample values

$$
\left[\begin{array}{llllll}
s_{1} & s_{2} & s_{3} & s_{4} & \ldots & s_{N}
\end{array}\right]
$$

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. The spectrum segment of an audio signal

- Represented as a vector of sample values

$$
\left[\begin{array}{llllll}
S_{1} & S_{2} & S_{3} & S_{4} & \ldots & S_{M}
\end{array}\right]
$$

- Each component of the vector represents a frequency component of the spectrum

Representing an image as a vector

- 3 pacmen
- A 321×399 grid of pixel values
- Row and Column = position
- A 1×128079 vector
- "Unraveling" the image

$$
\left[\begin{array}{llllllllllll}
1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1
\end{array}\right]
$$

- Note: This can be recast as the grid that forms the image

Vector operations

- Addition
- Multiplication
- Inner product
- Outer product

Vector Operations: Multiplication by scalar

- Vector multiplication by scalar: each component multiplied by scalar
- $2.5 \times[3,4,5]=[7.5,10,12.5]$
- Note: as a result, vector norm is also multiplied by the scalar
- ||2.5x[3,4,5]||=2.5x||[3,4,5]||

Vector Operations: Addition

- Vector addition: individual components add

$$
-[3,4,5]+[3,-2,-3]=[6,2,2]
$$

Vector operation: Inner product

- Multiplication of a row vector by a column vector to result in a scalar
- Note order of operation
- The inner product between two row vectors \boldsymbol{u} and \boldsymbol{v} is the product of \boldsymbol{u}^{T} and \boldsymbol{v}
- Also called the "dot" product

$$
\begin{gathered}
\boldsymbol{u}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right] \\
\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=a . d+b . e+c . f
\end{gathered}
$$

Vector operation: Inner product

- The inner product of a vector with itself is its squared norm
- This will be the squared length

$$
\boldsymbol{u}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

$$
\boldsymbol{u} \cdot \boldsymbol{u}=\boldsymbol{u}^{T} \boldsymbol{u}=a^{2}+b^{2}+c^{2}=\|\boldsymbol{u}\|^{2}
$$

Vector dot product

- Example:
- Coordinates are yards, not ave/st
$-\mathbf{a}=[2001600]$, $\mathbf{b}=\left[\begin{array}{ll}770 & 300\end{array}\right]$
- The dot product of the two vectors relates to the length of a projection
- How much of the first vector have we covered by following the second one?
- Must normalize by the length of the "target" vector

$$
\frac{\mathbf{a} \cdot \mathbf{b}^{T}}{\|\mathbf{a}\|}=\frac{\left[\begin{array}{ll}
200 & 1600
\end{array}\right] \cdot\left[\begin{array}{l}
770 \\
300
\end{array}\right]}{\left.\|\left[\begin{array}{ll}
200 & 1600
\end{array}\right] \right\rvert\,} \approx 393 \mathrm{yd}
$$

Vector dot product

- Vectors are spectra
- Energy at a discrete set of frequencies
- Actually 1×4096
- X axis is the index of the number in the vector
- Represents frequency
- Y axis is the value of the number in the vector
- Represents magnitude

Vector dot product

- How much of C is also in E
- How much can you fake a C by playing an E
- C.E / |C||E|=0.1
- Not very much
- How much of C is in C 2 ?
- C.C2 / |C| /|C2| $=0.5$
- Not bad, you can fake it

The notion of a "Vector Space"

An introduction to spaces

- Conventional notion of "space": a geometric construct of a certain number of "dimensions"
- E.g. the 3-D space that this room and every object in it lives in

A vector space

- A vector space is an infinitely large set of vectors with the following properties
- The set includes the zero vector (of all zeros)
- The set is "closed" under addition
- If X and Y are in the set, $\mathrm{aX}+\mathrm{bY}$ is also in the set for any two scalars a and b
- For every X in the set, the set also includes the additive inverse $\mathrm{Y}=-\mathrm{X}$, such that $\mathrm{X}+\mathrm{Y}=0$

Additional Properties

- Additional requirements:
- Scalar multiplicative identity element exists: $1 \mathrm{X}=\mathrm{X}$
- Addition is associative: $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
- Addition is commutative: $(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})$
- Scalar multiplication is commutative: $a(b X)=(a b) X$
- Scalar multiplication is distributive:

$$
\begin{aligned}
& (a+b) X=a X+b X \\
& a(X+Y)=a X+a Y
\end{aligned}
$$

Example of vector space

$$
\mathbf{S}=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { for all } x, y, z \in \mathcal{R}\right\}
$$

- Set of all three-component column vectors
- Note we used the term three-component, rather than threedimensional
- The set includes the zero vector
- For every \mathbf{X} in the set $\alpha \in \mathcal{R}$, every $\alpha \mathbf{X}$ is in the set
- For every \mathbf{X}, \mathbf{Y} in the set, $\alpha \mathbf{X}+\beta \mathbf{Y}$ is in the set
- -X is in the set
- Etc.

Example: a function space

$$
\mathbf{S}=\left\{\begin{array}{c}
a \cos (\mathrm{x})+b \sin (3 \mathrm{x}) \text { for all } a, b, \in \mathcal{R}\}, \\
x \in[-\pi, \pi]
\end{array}\right\}
$$

- Entries are functions from $[-\pi, \pi]$ to $[-1,1]$

$$
f:[-\pi, \pi] \rightarrow[-1,1]
$$

- Define $(f+g)(\mathrm{x})=f(\mathrm{x})+g(\mathrm{x})$ for any f and g in the set
- Verify that this is a space!

Dimension of a space

- Every element in the space can be composed of linear combinations of some other elements in the space
- For any \mathbf{X} in \mathbf{S} we can write $\mathbf{X}=\mathrm{a} \mathbf{Y}_{1}+\mathrm{b} \mathbf{Y}_{2}+\mathrm{c} \mathbf{Y}_{3} .$. for some other $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$. in \mathbf{S}
- Trivial to prove..

Dimension of a space

- What is the smallest subset of elements that can compose the entire set?
- There may be multiple such sets
- The elements in this set are called "bases"
- The set is a "basis" set
- The number of elements in the set is the "dimensionality" of the space

Dimensions: Example

$$
\mathbf{S}=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { for all } x, y, z \in \mathcal{R}\right\}
$$

- What is the dimensionality of this vector space

Dimensions: Example

$$
\mathbf{Z}=\left\{a\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+b\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \text {, for all } a, b \in \mathcal{R}\right\}
$$

- What is the dimensionality of this vector space?
- First confirm this is a proper vector space
- Note: all elements in \mathbf{Z} are also in \mathbf{S} (slide 36)
$-\mathbf{Z}$ is a subspace of \mathbf{S}

Dimensions: Example

$$
\mathbf{S}=\left\{\begin{array}{c}
a \cos (\mathrm{x})+b \sin (3 \mathrm{x}) \text { for all } a, b, \in \mathcal{R}\}, \\
x \in[-\pi, \pi]
\end{array}\right\}
$$

- What is the dimensionality of this space?
- Return to reality..

Returning to dimensions..

- Two interpretations of "dimension"
- The spatial dimension of a vector:
- The number of components in the vector
- An N-component vector "lives" in an N dimensional space
- Essentially a "stand-alone" definition of a vector against "standard" bases
- The embedding dimension of the vector
- The minimum number of bases required to specify the vector
- The dimensionality of the subspace the vector actually lives in
- Only makes sense in the context where the vector is one element of a restricted set, e.g. a subspace or hyperplane
- Much of machine learning and signal processing is aimed at finding the latter from collections of vectors

Matrices..

What is a matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
\text { A } 2 \times 3 \text { matrix } \\
1 & 2.2 & 6 \\
3.1 & 1 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

- Rectangular (or square) arrangement of numbers

Dimensions of a matrix

- The matrix size is specified by the number of rows and columns

$$
\mathbf{c}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{r}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]
$$

$-c=3 \times 1$ matrix: 3 rows and 1 column (vectors are matrices too)
$-r=1 \times 3$ matrix: 1 row and 3 columns

$$
\mathbf{S}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

$$
38
$$

$-S=2 \times 2$ matrix

- $\mathrm{R}=2 \times 3$ matrix
- Pacman $=321 \times 399$ matrix

Dimensionality and Transposition

- A transposed matrix gets all its row (or column) vectors transposed in order
- An NxM matrix becomes an MxN matrix

$$
\begin{array}{r}
\mathbf{x}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \mathbf{x}^{T}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \mathbf{y}^{T}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
\mathbf{X}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \mathbf{X}^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{l}
\end{array}\right]
\end{array}
$$

What is a matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
\text { A } 2 \times 3 \text { matrix } \\
1 & 2.2 & 6 \\
3.1 & 1 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
a 3 \times 2 \text { matrix } \\
d & b & c \\
g & h & f
\end{array}\right]
$$

- A matrix by itself is uninformative, except through its relationship to vectors

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as transforms

$$
\boldsymbol{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

- Multiplying a vector by a matrix transforms the vector

$$
-\boldsymbol{A} \boldsymbol{b}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\left[\begin{array}{l}
a_{11} b_{1}+a_{12} b_{2}+a_{12} b_{3}+a_{14} b_{4} \\
a_{21} b_{1}+a_{22} b_{2}+a_{32} b_{3}+a_{44} b_{4} \\
a_{31} b_{1}+a_{32} b_{2}+a_{32} b_{3}+a_{44} b_{4}
\end{array}\right]
$$

- A matrix is a transform that transforms a vector
- Above example: left multiplication. Matrix transforms a column vector
- Dimensions must match!!
- No. of columns of matrix = size of vector
- Result inherits the number of rows from the matrix

Matrices as transforms

$$
\boldsymbol{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

- Multiplying a vector by a matrix transforms the vector

$$
-\boldsymbol{b} \boldsymbol{A}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{l}
a_{11} b_{1}+a_{21} b_{2}+a_{31} b_{3} \\
a_{12} b_{1}+a_{22} b_{2}+a_{32} b_{3} \\
a_{13} b_{1}+a_{23} b_{2}+a_{33} b_{3} \\
a_{14} b_{1}+a_{24} b_{2}+a_{34} b_{3}
\end{array}\right]^{T}
$$

- A matrix is a transform that transforms a vector
- Example: right multiplication. Matrix transforms a row vector
- Dimensions must match!!
- No. of rows of matrix = size of vector
- Result inherits the number of columns from the matrix

Matrices transform a space

- A matrix is a transform that modifies vectors and vector spaces

- So how does it transform the entire space?
- E.g. how will it transform the following figure?

Multiplication of vector space by matrix

- The matrix rotates and scales the space
- Including its own row vectors

Multiplication of vector space by matrix

- The normals to the row vectors in the matrix become the new axes
- X axis = normal to the second row vector
- Scaled by the inverse of the length of the first row vector

Matrix Multiplication

- The k-th axis corresponds to the normal to the hyperplane represented by the 1.. $k-1, k+1$.. N -th row vectors in the matrix
- Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
- The distance along the new axis equals the length of the projection on the k-th row vector
- Expressed in inverse-lengths of the vector

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as data containers

- A matrix can be vertical stacking of row vectors

$$
\mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

- The space of all vectors that can be composed from the rows of the matrix is the row space of the matrix
- Or a horizontal arrangement of column vectors

$$
\mathbf{R}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

- The space of all vectors that can be composed from the columns of the matrix is the column space of the matrix

Representing a signal as a matrix

- Time series data like audio signals are often represented as spectrographic matrices

- Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

- Time series data like audio signals are often represented as spectrographic matrices

- Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

- Images are often just represented as matrices

Storing collections of data

(4) (0)	X	
$1-1-1$	$\left[\begin{array}{ccc}1 & 3 & 0 \\ \cdot & \cdot & 0 \\ 9 & 24 & \cdot \\ \cdot & \cdot & 1\end{array}\right]$	$\left[\begin{array}{ccc}f_{11} & \cdots & f_{K 1} \\ \vdots & \ddots & \vdots \\ f_{1 N} & \cdots & f_{K N}\end{array}\right]$

- Individual data instances can be packed into columns (or rows) of a matrix
- A "data container" matrix

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as space constructors

- Right multiplying a matrix by a column vector mixes the columns of the matrix according to the numbers in the vector

$$
\begin{gathered}
-\boldsymbol{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{32} & a_{32} & a_{33} & a_{34}
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] \\
\boldsymbol{A} \boldsymbol{b}=b_{1}\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]+b_{2}\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]+b_{3}\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]+b_{4}\left[\begin{array}{l}
a_{14} \\
a_{24} \\
a_{34}
\end{array}\right]
\end{gathered}
$$

- "Mixes" the columns
- "Transforms" row space to column space
- "Generates" the space of vectors that can be formed by mixing its own columns

Multiplying a vector by a matrix

- Left multiplying a matrix by a row vector mixes the rows of the matrix according to the numbers in the vector

$$
\begin{aligned}
-\boldsymbol{A} & =\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{32} & a_{32} & a_{33} & a_{34}
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] \\
\boldsymbol{b} \boldsymbol{A} & =b_{1}\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right]+b_{2}\left[\begin{array}{llll}
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right] \\
& +b_{3}\left[\begin{array}{llll}
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
\end{aligned}
$$

- "Mixes" the rows
- "Transforms" column space to row space
- "Generates" the space of vectors that can be formed by mixing its own rows

Matrix multiplication: Mixing vectors

- A physical example
- The three column vectors of the matrix X are the spectra of three notes
- The multiplying column vector Y is just a mixing vector
- The result is a sound that is the mixture of the three notes

Matrix multiplication: Mixing vectors

- Mixing two images
- The images are arranged as columns
- position value not included
- The result of the multiplication is rearranged as an image

Interpretations of a matrix

- As a transform that modifies vectors and vector spaces

- As a container for data (vectors)

$$
\left[\begin{array}{lllll}
a & b & c & d & e \\
f & g & h & i & j \\
k & l & m & n & o
\end{array}\right]
$$

- As a generator of vector spaces..

Matrix ops..

Vector multiplication: Outer product

- Product of a column vector by a row vector
- Also called vector direct product
- Results in a matrix
- Transform or collection of vectors?

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{lll}
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
a \cdot d & a \cdot e & a \cdot f \\
b \cdot d & b \cdot e & b \cdot f \\
c \cdot d & c \cdot e & c \cdot f
\end{array}\right]
$$

Vector outer product

- The column vector is the spectrum
- The row vector is an amplitude modulation
- The outer product is a spectrogram
- Shows how the energy in each frequency varies with time
- The pattern in each column is a scaled version of the spectrum
- Each row is a scaled version of the modulation

Matrix multiplication

$$
\left[\begin{array}{cccc}
a_{11} & \cdot & \cdot & a_{1 N} \\
a_{21} & \cdot & \cdot & a_{2 N} \\
\cdot & \cdot & \cdot & \cdot \\
a_{M 1} & \cdot & \cdot & a_{M N}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdot & b_{1 K} \\
\cdot & \cdot & \cdot \\
b_{N 1} & \cdot & b_{N K}
\end{array}\right]=\left[\begin{array}{cccc}
\sum_{j} a_{1 j} b_{j 1} & \cdot & \cdot & \sum_{j} a_{1 j} b_{j K} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\sum_{j} a_{M j} b_{j 1} & \cdot & \cdot & \sum_{j} a_{M j} b_{j K}
\end{array}\right]
$$

- Standard formula for matrix multiplication

Matrix multiplication

$$
\left.\left[\begin{array}{cccc}
a_{11} & \cdot & \cdot & a_{1 N} \\
a_{21} & \cdot & \cdot & a_{2 N} \\
\cdot & \cdot & \cdot & \cdot \\
a_{M 1} & \cdot & \cdot & a_{M N}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} \\
\cdot \\
b_{N 1}
\end{array}\right] \cdot \begin{array}{cccc}
& b_{1 K} \\
\cdot & b_{N K}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{a}_{1} \cdot \mathbf{b}_{1} & \cdot & \cdot & \mathbf{a}_{1} \cdot \mathbf{b}_{K} \\
\mathbf{a}_{2} \cdot \mathbf{b}_{1} & \cdot & \cdot & \mathbf{a}_{2} \cdot \mathbf{b}_{K} \\
\cdot & \cdot & \cdot & \cdot \\
\mathbf{a}_{M} \cdot \mathbf{b}_{1} & \cdot & \cdot & \mathbf{a}_{M} \cdot \mathbf{b}_{K}
\end{array}\right]
$$

- Matrix A : A column of row vectors
- Matrix B : A row of column vectors
- $\boldsymbol{A B}$: A matrix of inner products
- Mimics the vector outer product rule

Matrix multiplication: another view

$$
\left[\begin{array}{cccc}
a_{11} & \cdot & a_{1 N} \\
a_{21} & \cdot & \cdot & a_{2 N} \\
\cdot & \cdot & \cdot & \cdot \\
a_{M 1} & \cdot & \cdot & a_{M N}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdot & b_{N K} \\
\cdot & \cdot & \cdot \\
b_{N 1} & \cdot & b_{N K}
\end{array}\right]=\left[\begin{array}{c}
a_{11} \\
\cdot \\
\cdot \\
a_{M 1}
\end{array}\right]\left[\begin{array}{lll}
b_{11} & \cdot & b_{1 K}
\end{array}\right]+\left[\begin{array}{c}
a_{12} \\
\cdot \\
\cdot \\
a_{M 2}
\end{array}\right]\left[\begin{array}{lll}
b_{21} & \cdot & b_{2 K}
\end{array}\right]+\ldots+\left[\begin{array}{c}
a_{1 N} \\
\cdot \\
\cdot \\
a_{M N}
\end{array}\right]\left[\begin{array}{lll}
b_{N 1} & \cdot & b_{N K}
\end{array}\right]
$$

- The outer product of the first column of A and the first row of $B+$ outer product of the second column of A and the second row of $B+\ldots$...
- Sum of outer products

Why is that useful?

$\left[\begin{array}{cccccccccc}0 & 0.5 & 0.75 & 1 & 0.75 & 0.5 & 0 & \ldots & . & . \\ 1 & 0.9 & 0.7 & 0.5 & 0 & 0.5 & \ldots & \ldots & \cdot \\ 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 1 & \ldots & .\end{array}\right]$

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

 spectra

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 3 & 0 \\
. & . & 0 \\
9 & 24 & . \\
. & . & 1
\end{array}\right]} \\
x
\end{gathered}
$$

$$
\left[\begin{array}{cccccccccc}
0 & 0.5 & 0.75 & 1 & 0.75 & 0.5 & 0 & \ldots & . & . \\
1 & 0.9 & 0.7 & 0.5 & 0 & 0.5 & \ldots & \ldots & . & . \\
0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 1 & \ldots & .
\end{array}\right]
$$

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

 spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra

- Sounds: T रhree notes modulated independently

Matrix multiplication: Mixing modulated spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

 spectra

- Sounds: Three notes modulated independently

Matrix multiplication: Image transition

- Image1 fades out linearly
- Image 2 fades in linearly

Matrix multiplication: Image transition

$\left[\begin{array}{l}\dot{i}_{1} \\ \dot{i}_{2} \\ \cdot \\ \cdot \\ .\end{array}\right]\left[\begin{array}{ccccccccccc}1 & .9 & .8 & .7 & .6 & .5 & .4 & .3 & .2 & .1 & 0 \\ - & & - & - & \cdot & \cdots & - & - & - & \end{array}\right]$

- Each column is one image
- The columns represent a sequence of images of decreasing intensity
- Image1 fades out linearly

Matrix multiplication: Image transition

- Image 2 fades in linearly

Matrix multiplication: Image transition

- Image1 fades out linearly
- Image 2 fades in linearly

Matrix Operations: Properties

- $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- Actual interpretation: for any vector \mathbf{x}
- $(\mathbf{A}+\mathbf{B}) \mathbf{x}=(\mathbf{B}+\mathbf{A}) \mathbf{x}$ (column vector \mathbf{x} of the right size)
- $\mathbf{x}(\mathbf{A}+\mathbf{B})=\mathbf{x}(\mathbf{B}+\mathbf{A})$ (row vector \mathbf{x} of the appropriate size)
- $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$

Multiplication properties

- Properties of vector/matrix products
- Associative

$$
\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})=(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}
$$

- Distributive

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}
$$

- NOT commutative!!!

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

- left multiplications $=$ right multiplications
- Transposition

$$
(\mathbf{A} \cdot \mathbf{B})^{T}=\mathbf{B}^{T} \cdot \mathbf{A}^{T}
$$

The Space of Matrices

- The set of all matrices of a given size (e.g. all 3×4 matrices) is a space!
- Addition is closed
- Scalar multiplication is closed
- Zero matrix exists
- Matrices have additive inverses
- Associativity and commutativity rules apply!

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Determinant
- Inverse
- Rank
- Projections
- Eigen decomposition
- SVD

The Identity Matrix

- An identity matrix is a square matrix where
- All diagonal elements are 1.0
- All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

Diagonal Matrix

$$
Y=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
- May flip axes

Permutation Matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
y \\
z \\
x
\end{array}\right]
$$

- A permutation matrix simply rearranges the axes
- The row entries are axis vectors in a different order
- The result is a combination of rotations and reflections
- The permutation matrix effectively permutes the arrangement of the elements in a vector

Rotation Matrix

- A rotation matrix rotates the vector by some angle θ
- Alternately viewed, it rotates the axes
- The new axes are at an angle θ to the old one

More generally

- Matrix operations are combinations of rotations, permutations and stretching

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Rank
- Determinant
- Inverse
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

$P=$

- Some matrices will eliminate one or more dimensions during transformation
- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Non-square Matrices

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N} \\
z_{1} & z_{2} & \cdot & \cdot & z_{N}
\end{array}\right]} \\
& \mathrm{X}=3 \mathrm{D} \text { data, } \operatorname{rank} 3
\end{aligned}
$$

$$
\left[\begin{array}{lll}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
\hat{x}_{1} & \hat{x}_{2} & \cdot & \cdot & \hat{x}_{N} \\
\hat{y}_{1} & \hat{y}_{2} & \cdot & \cdot & \hat{y}_{N}
\end{array}\right]
$$

$P=$ transform

$$
\text { PX = 2D, rank } 2
$$

- Non-square matrices add or subtract axes
- More rows than columns \rightarrow add axes
- But does not increase the dimensionality of the data
- Fewer rows than columns \rightarrow reduce axes
- May reduce dimensionality of the data

The Rank of a Matrix

$$
\left[\begin{array}{ccc}
.3 & 1 & .2 \\
.5 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
.8 & .9 \\
.1 & .9 \\
.6 & 0
\end{array}\right]
$$

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never increase dimensions
- Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

Rank - an alternate definition

- In terms of bases..
- Will get back to this shortly..

Matrix Determinant

- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
- Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective

Volume $=\mathrm{V}_{1}$

- The (magnitude of the) determinant is the ratio of N -volumes
- If V_{1} is the volume of an N -dimensional sphere " O " in N -dimensional space
- O is the complete set of points or vertices that specify the object
- If V_{2} is the volume of the N -dimensional ellipsoid specified by $\mathrm{A}^{*} \mathrm{O}$, where A is a matrix that transforms the space
$-|A|=V_{2} / V_{1}$

Matrix Determinants

- Matrix determinants are only defined for square matrices
- They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
- Since they compress full-volumed N -dimensional objects into zerovolume N -dimensional objects
- E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
- Since they compress full-volumed N -dimensional objects into zero-volume objects

Determinant properties

- Associative for square matrices $\quad|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}|=|\mathbf{A}| \cdot|\mathbf{B}| \cdot|\mathbf{C}|$
- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

$$
|(\mathbf{B}+\mathbf{C})| \neq|\mathbf{B}|+|\mathbf{C}|
$$

- Commutative
- The order in which you scale the volume of an object is irrelevant

$$
|\mathbf{A} \cdot \mathbf{B}|=|\mathbf{B} \cdot \mathbf{A}|=|\mathbf{A}| \cdot|\mathbf{B}|
$$

Matrix Inversion

- A matrix transforms an N -dimensional object to a different N -dimensional object

- What transforms the new object back to the original?
- The inverse transformation
- The inverse transformation is called the matrix inverse

$$
Q=\left[\begin{array}{lll}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right]=T^{-1}
$$

Matrix Inversion

- The product of a matrix and its inverse is the identity matrix
- Transforming an object, and then inverse transforming it gives us back the original object

$$
\mathbf{T T}^{-1} \mathbf{D}=\mathbf{D} \Rightarrow \mathbf{T T}^{-1}=\mathbf{I}
$$

Non-square Matrices

$$
\begin{gathered}
{\left[\begin{array}{lllll}
x_{1} & x_{2} & \cdot & \cdot & x_{N} \\
y_{1} & y_{2} & \cdot & \cdot & y_{N}
\end{array}\right]} \\
\\
\mathrm{X}=2 \mathrm{D} \text { data }
\end{gathered}
$$

$$
P=\text { transform }
$$

$$
\left[\begin{array}{ccccc}
\hat{x}_{1} & \hat{x}_{2} & \cdot & \cdot & \hat{x}_{N} \\
\hat{y}_{1} & \hat{y}_{2} & \cdot & \cdot & \hat{y}_{N} \\
\hat{z}_{1} & \hat{z}_{2} & \cdot & \cdot & \hat{z}_{N}
\end{array}\right]
$$

$P X=3 D$, rank 2

- Non-square matrices add or subtract axes
- More rows than columns \rightarrow add axes
- But does not increase the dimensionality of the data

Recap: Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. A segment of an audio signal

- Represented as a vector of sample values

$$
\left[\begin{array}{llllll}
s_{1} & s_{2} & s_{3} & s_{4} & \ldots & s_{N}
\end{array}\right]
$$

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. The spectrum segment of an audio signal

- Represented as a vector of sample values

$$
\left[\begin{array}{llllll}
S_{1} & S_{2} & S_{3} & S_{4} & \ldots & S_{M}
\end{array}\right]
$$

- Each component of the vector represents a frequency component of the spectrum

Representing a signal as a matrix

- Time series data like audio signals are often represented as spectrographic matrices

- Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

- Time series data like audio signals are often represented as spectrographic matrices

- Each column is the spectrum of a short segment of the audio signal

Representing an image as a vector

- 3 pacmen
- A 321×399 grid of pixel values
- Row and Column = position
- A 1×128079 vector
- "Unraveling" the matrix

$$
\left[\begin{array}{llllllllllll}
1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1
\end{array}\right]
$$

- Note: This can be recast as the grid that forms the image

Representing a signal as a matrix

- Images are often just represented as matrices

Interpretations of a matrix

- As a transform that modifies vectors and vector spaces

- As a container for data (vectors)

$$
\left[\begin{array}{lllll}
a & b & c & d & e \\
f & g & h & i & j \\
k & l & m & n & o
\end{array}\right]
$$

- As a generator of vector spaces..

Revise.. Vector dot product

- How much of C is also in E
- How much can you fake a C by playing an E
- C.E / |C||E|=0.1
- Not very much
- How much of C is in C 2 ?
- C.C2 / |C| /|C2| $=0.5$
- Not bad, you can fake it

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Determinant
- Inverse
- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

The Inverse Transform and Simultaneous Equations

- Given the Transform T and transformed vector \boldsymbol{Y}, how do we determine \boldsymbol{X} ?

Matrix inversion (division)

- The inverse of matrix multiplication
- Not element-wise division!!
- E.g.

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
3 / 4 & -1 / 4 & -1 / 4 \\
-1 / 4 & 3 / 4 & -1 / 4 \\
-1 / 4 & -1 / 4 & 3 / 4
\end{array}\right]
$$

Matrix inversion (division)

- Provides a way to "undo" a linear transform
- Undoing a transform must happen as soon as it is performed
- Effect on matrix inversion: Note order of multiplication

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{-1}, \quad \mathbf{B}=\mathbf{A}^{-1} \cdot \mathbf{C}
$$

Matrix inversion (division)

- Inverse of the unit matrix is itself

Matrix inversion (division)

- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal

Matrix inversion (division)

- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- In 2D a forward rotation θ by is cancelled by a backward rotation of $-\theta$

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \mathbf{R}^{-1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

- More generally, in any number of dimensions: $\mathbf{R}^{-1}=\mathbf{R}^{T}$

Inverting rank-deficient matrices

- Rank deficient matrices "flatten" objects
- In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
- Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Matrix inversion (division)

- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist!

Inverse Transform and Simultaneous Equation

$$
\mathbf{T}=\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right] \frac{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \square \begin{array}{l}
a=T_{11} x+T_{12} y+T_{13} z \\
b=T_{21} x+T_{22} y+T_{23} z \\
c=T_{31} x+T_{32} y+T_{33} z
\end{array}}{\text { Given }\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { and } \mathbf{T} \text { find }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
$$

- Inverting the transform is identical to solving simultaneous equations

Inverting rank-deficient matrices

- Rank deficient matrices have no inverse
- In this example, there is no unique inverse

Inverse Transform and Simultaneous Equation

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23}
\end{array}\right]\left[\left[\begin{array}{c}
a \\
b
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \square \begin{array}{l}
a=T_{11} x+T_{12} y+T_{13} z \\
b=T_{21} x+T_{22} y+T_{23} z
\end{array}\right. \\
& \text { Omplime raw }
\end{aligned}
$$

- Inverting the transform is identical to solving simultaneous equations
- Rank-deficient transforms result in too-few independent equations
- Cannot be inverted to obtain a unique solution

Non-square Matrices

- When the transform increases the number of components most points in the new space will not have a corresponding preimage

Inverse Transform and Simultaneous Equation

$$
\mathbf{T}=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22} \\
T_{31} & T_{32}
\end{array}\right] \quad\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right] \square \begin{aligned}
& a=T_{11} x+T_{12} y \\
& b=T_{21} x+T_{22} y \\
& c=T_{31} x+T_{32} y
\end{aligned}
$$

$$
\text { Given }\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { and T find }\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Inverting the transform is identical to solving simultaneous equations
- Rank-deficient transforms result in too few independent equations
- Cannot be inverted to obtain a unique solution
- Or too many equations
- Cannot be inverted to obtain an exact solution

The Pseudo Inverse (PINV)

$$
V \approx T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \square\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \approx \operatorname{Pinv}(T) V
$$

- When you can't really invert T, you perform the pseudo inverse

Generalization to matrices

- Unique exact solution exists
- T must be square

$$
\mathbf{X}=\mathbf{T Y} \Longleftrightarrow \mathbf{Y}=\mathbf{T}^{-1} \mathbf{X}
$$

Left multiplication

$$
\mathbf{X}=\mathbf{Y T} \Rightarrow \mathbf{Y}=\mathbf{X T}^{-1}
$$

Right multiplication

- No unique exact solution exists
- At least one (if not both) of the forward and backward equations may be inexact
- T may or may not be square

$$
\mathbf{X}=\mathbf{T Y} \Rightarrow \mathbf{Y}=\operatorname{Pinv}(\mathbf{T}) \mathbf{X}
$$

Left multiplication

$$
\mathbf{X}=\mathbf{Y T} \lesseqgtr \mathbf{Y}=\mathbf{X P i n v}(\mathbf{T})
$$

Right multiplication

Underdetermined Pseudo Inverse

$$
\left.\left[\begin{array}{l}
a \\
b
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \square \begin{array}{l}
a=T_{11} x+T_{12} y+T_{13} z \\
b=T_{21} x+T_{22} y+T_{23} z
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\operatorname{Pinv}(\mathbf{T})\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Figure only meant for illustration for the above equations, actual set of solutions is a line, not a plane. $\operatorname{Pinv}(T) A$ will be the point on the line closest to origin

- Case 1: Too many solutions
- $\operatorname{Pinv(T)A~picks~the~shortest~solution~}$

The Pseudo Inverse for the

underdetermined case

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \square \begin{aligned}
& a=T_{11} x+T_{12} y+T_{13} z \\
& b=T_{21} x+T_{22} y+T_{23} z
\end{aligned}
$$

$$
\begin{gathered}
V \approx T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longmapsto\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\operatorname{Pinv}(T) V \\
\operatorname{Pinv}(\boldsymbol{T})=\boldsymbol{T}^{T}\left(\boldsymbol{T}^{T}\right)^{-1}
\end{gathered}
$$

$$
\boldsymbol{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\boldsymbol{T} \operatorname{Pinv}(\boldsymbol{T}) \boldsymbol{V}=\boldsymbol{T T}^{T}\left(\boldsymbol{T}^{T}\right)^{-1} \boldsymbol{V}=\boldsymbol{V}
$$

The Pseudo Inverse

$$
\mathbf{T}=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22} \\
T_{31} & T_{32}
\end{array}\right] \quad\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right] \square \begin{aligned}
& a=T_{11} x+T_{12} y \\
& b=T_{21} x+T_{22} y \\
& c=T_{31} x+T_{32} y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\operatorname{Pinv}(\mathbf{T})\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

$$
\|\mathbf{A}-\mathbf{T X}\|^{2}
$$

Figure only meant for illustration for the above equations, $\operatorname{Pinv}(T)$ will actually have 6 components. The error is a quadratic in 6 dimensions

- Case 2: No exact solution
- $\operatorname{Pinv(T)A~picks~the~solution~that~results~in~the~}$ lowest error

The Pseudo Inverse for the overdetermined case

$$
\begin{aligned}
& E=\|\boldsymbol{T} \boldsymbol{X}-\boldsymbol{A}\|^{2}=(\boldsymbol{T} \boldsymbol{X}-\boldsymbol{A})^{T}(\boldsymbol{T} \boldsymbol{X}-\boldsymbol{A}) \\
& E=\boldsymbol{X}^{T} \boldsymbol{T}^{T} \boldsymbol{T} \boldsymbol{X}-2 \boldsymbol{X}^{T} \boldsymbol{T}^{T} \boldsymbol{A}+\boldsymbol{A}^{T} \boldsymbol{A}
\end{aligned}
$$

Differentiating and equating to 0 we get:

$$
\boldsymbol{X}=\left(\boldsymbol{T}^{T} \boldsymbol{T}\right)^{-1} \boldsymbol{T}^{T} \boldsymbol{A}=\operatorname{Pinv}(\boldsymbol{T}) \boldsymbol{A}
$$

$$
\operatorname{Pinv}(\boldsymbol{T})=\left(\boldsymbol{T}^{T} \boldsymbol{T}\right)^{-1} \boldsymbol{T}^{T}
$$

Shortcut: overdetermined case

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right] \square \begin{aligned}
& a=T_{11} x+T_{12} y \\
& b=T_{21} x+T_{22} y \\
& c=T_{31} x+T_{32} y
\end{aligned}
$$

$\boldsymbol{V} \approx \boldsymbol{T}\left[\begin{array}{l}x \\ y\end{array}\right] \quad \square \boldsymbol{T}^{T} \boldsymbol{V} \approx \boldsymbol{T}^{T} \boldsymbol{T}\left[\begin{array}{l}x \\ y\end{array}\right] \quad \square\left[\begin{array}{l}x \\ y\end{array}\right]=\left(\boldsymbol{T}^{T} \boldsymbol{T}\right)^{-1} \boldsymbol{T}^{T} \boldsymbol{V}$

$$
\operatorname{Pinv}(\boldsymbol{T})=\left(\boldsymbol{T}^{T} \boldsymbol{T}\right)^{-1} \boldsymbol{T}^{T}
$$

Note that in this case:

$$
\boldsymbol{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\boldsymbol{T} \operatorname{Pinv}(\boldsymbol{T}) \boldsymbol{V}=\boldsymbol{T}\left(\boldsymbol{T}^{T} \boldsymbol{T}\right)^{-1} \boldsymbol{T}^{T} \boldsymbol{V} \neq \boldsymbol{V}
$$

Overdetermined vs Underdetermined

- Underdetermined case: Exact solution exists. We find one of the exact solutions. Hence..

$$
\boldsymbol{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\boldsymbol{T} \operatorname{Pinv}(\boldsymbol{T}) \boldsymbol{V}=\boldsymbol{T} \boldsymbol{T}^{T}\left(\boldsymbol{T}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{V}=\boldsymbol{V}
$$

- Overdetermined case: Solution generally does not exist. Solution is only an approximation..

$$
\boldsymbol{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\boldsymbol{T} \operatorname{Pinv}(\boldsymbol{T}) \boldsymbol{V}=\boldsymbol{T}\left(\boldsymbol{T}^{T} \boldsymbol{T}\right)^{-1} \boldsymbol{T}^{\boldsymbol{T}} \boldsymbol{V} \neq \boldsymbol{V}
$$

Properties of the Pseudoinverse

- For the underdetermined case:

$$
\boldsymbol{T} \operatorname{Pinv}(\boldsymbol{T})=\mathbf{I}
$$

- For the overdetermined case

$$
T \operatorname{Pinv}(T)=?
$$

- We return to this question shortly

Matrix inversion (division)

- The inverse of matrix multiplication
- Not element-wise division!!
- Provides a way to "undo" a linear transformation
- For square matrices: Pay attention to multiplication side!

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{C}, \quad \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{-1}, \quad \mathbf{B}=\mathbf{A}^{-1} \cdot \mathbf{C}
$$

- If matrix is not square use a matrix pseudoinverse:

$$
\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \mathbf{A}=\mathbf{C} \cdot \mathbf{B}^{+}, \mathbf{B}=\mathbf{A}^{+} \cdot \mathbf{C}
$$

Finding the Transform

- Given examples
$-\mathrm{T} . \mathrm{X}_{1}=\mathrm{Y}_{1}$
$-\mathrm{T} . \mathrm{X}_{2}=\mathrm{Y}_{2}$
- ..
$-T . X_{N}=Y_{N}$
- Find T

Finding the Transform

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{ccc}
\uparrow & \vdots & \uparrow \\
X_{1} & \ddots & X_{N} \\
\downarrow & \vdots & \downarrow
\end{array}\right] \\
& \mathbf{Y}=\left[\begin{array}{ccc}
\uparrow & \vdots & \uparrow \\
Y_{1} & \ddots & Y_{N} \\
\downarrow & \vdots & \downarrow
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{Y}=\mathbf{T X} \quad \mathbf{T}=\mathbf{Y} \operatorname{Pinv}(\mathbf{X})
$$

- Pinv works here too

Finding the Transform: Inexact

- Even works for inexact solutions
- We desire to find a linear transform \mathbf{T} that maps \mathbf{X} to \mathbf{Y}
- But such a linear transform doesn't really exist
- Pinv will give us the "best guess" for \mathbf{T} that minimizes the total squared error between \mathbf{Y} and TX

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Determinant
- Inverse
- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Flashback: The true

 representation of a vector

- What the column (or row) of numbers really means
- The "basis matrix" is implicit

Flashforward: Changing bases

$$
\boldsymbol{v}=\left[\begin{array}{lll}
\overrightarrow{\boldsymbol{x}} & \overrightarrow{\boldsymbol{y}} & \overrightarrow{\mathbf{z}}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- Given representation $[a, b, c]$ and bases $\overrightarrow{\boldsymbol{x}} \quad \overrightarrow{\boldsymbol{y}} \quad \overrightarrow{\boldsymbol{z}}$, how do we derive the representation [def] in terms of a different set of bases $\overrightarrow{\boldsymbol{s}} \quad \overrightarrow{\boldsymbol{t}} \quad \overrightarrow{\boldsymbol{u}}$?

Matrix as a Basis transform

$$
\begin{gathered}
\mathbf{X}=a \mathbf{v}_{1}+b \mathbf{v}_{2}+c \mathbf{v}_{3}, \Longleftrightarrow \mathbf{X}=x \mathbf{u}_{1}+y \mathbf{u}_{2}+z \mathbf{u}_{3} \\
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{gathered}
$$

- A matrix transforms a representation in terms of a standard basis $\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}$ to a representation in terms of a different bases $\mathbf{v}_{1} \mathbf{v}_{\mathbf{2}} \mathbf{v}_{\mathbf{3}}$
- Finding best bases: Find matrix that transforms standard representation to these bases

Basis based representation

- A "good" basis captures data structure
- Here $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} all take large values for data in the set
- But in the $\left(\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right)$ set, coordinate values along \mathbf{v}_{3} are always small for data on the blue sheet
- \mathbf{v}_{3} likely represents a "noise subspace" for these data

Basis based representation

- The most important challenge in ML: Find the best set of bases for a given data set

Basis based representation

- Modified problem: Given the new bases $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
- Find best representation of every data point on $v_{1}-v_{2}$ plane
- Put it on the main sheet and disregard the v3 component

Basis based representation

- Modified problem:
- For any vector \mathbf{x}
- Find the closest approximation $\tilde{\mathbf{x}}=a \mathbf{v}_{1}+b \mathbf{v}_{2}$
- Which lies entirely in the $\mathbf{v}_{1}-\mathbf{v}_{2}$ plane

Basis based representation

$$
\begin{gathered}
\mathbf{V}=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right] \quad \mathbf{a}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
\mathbf{x} \approx \mathbf{V a} \\
\vdots \\
\mathbf{a}=\mathbf{V}^{+} \mathbf{x} \\
\zeta \\
\tilde{\mathbf{x}}=\mathbf{V V}^{+} \mathbf{x}
\end{gathered}
$$

- $\mathbf{P}=\mathbf{V V}^{+}$is the "projection" matrix that "projects" any vector \mathbf{x} down to its "shadow" $\tilde{\mathbf{x}}$ on the $\mathbf{v}_{1}-\mathbf{v}_{2}$ plane
- Expanding: $\mathbf{P}=\mathbf{V}\left(\mathbf{V}^{\mathrm{T}} \mathbf{V}\right)^{-1} \mathbf{V}^{\mathrm{T}}$

Projections onto a plane

- What would we see if the cone to the left were transparent if we looked at it from above the plane shown by the grid?
- Normal to the plane
- Answer: the figure to the right
- How do we get this? Projection

Projections

- Actual problem: for eàch vector
- What is the corresponding vector on the plane that is "closest approximation" to it?
- What is the transform that converts the vector to its approximation on the plane?

Projections

- Arithmetically: Find the matrix P such that
- For every vector $\boldsymbol{X}, \boldsymbol{P} \boldsymbol{X}$ lies on the plane
- The plane is the column space of \boldsymbol{P}
$-\|\boldsymbol{X}-\boldsymbol{P X}\|^{2}$ is the smallest possible

Projection Matrix

- Consider any set of independent vectors (bases) $\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \ldots$ on the plane
- Arranged as a matrix $\left[\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \ldots\right]$
- The plane is the column space of the matrix
- Find the projection matrix \boldsymbol{P} that projects on to the plane formed from $\left[\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \ldots\right]$

Projection Matrix

- Given a set of vectors $\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \ldots$ which form a matrix $\boldsymbol{W}=\left[\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \ldots\right]$
- The projection matrix to transform a vector \boldsymbol{X} to its projection on the plane is - $\boldsymbol{P}=\boldsymbol{W}\left(\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{T}$

Projections

- HOW?

Projections

- Draw any two vectors \boldsymbol{W}_{1} and $\boldsymbol{W}_{1} \boldsymbol{W}_{2}$ that lie on the plane
- ANY two so long as they have different angles
- Compose a matrix $\mathbf{W}=\left[\boldsymbol{W}_{1} \boldsymbol{W}_{2} ..\right]$
- Compose the projection matrix $\mathbf{P}=\mathbf{W}\left(\mathbf{W}^{\mathbf{T}} \mathbf{W}\right)^{-1} \mathbf{W}^{\mathbf{T}}$
- Multiply every point on the cone by \mathbf{P} to get its projection

Droiection nattrix properties

- The projection of any vector that is already on the plane is the vector itself
- $\mathbf{P X}=\mathbf{X}$ if \mathbf{X} is on the plane
- If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
- $\mathbf{P}(\mathbf{P X})=\mathbf{P X}$
- Projection matrices are idempotent
$-\mathbf{P}^{2}=\mathbf{P}$

Projections: A more physical meaning

- Let $\mathbf{W}_{1}, \mathbf{W}_{\mathbf{2}} . . \mathbf{W}_{\mathbf{k}}$ be "bases"
- We want to explain our data in terms of these "bases"
- We often cannot do so
- But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors $\mathbf{W}_{\mathbf{1}}, \mathbf{W}_{\mathbf{2}}, \ldots \mathbf{W}_{k}$, is the projection of the data on the $\mathbf{W}_{\mathbf{1}} \ldots \mathbf{W}_{\mathbf{k}}$ (hyper) plane
- In our previous example, the "data" were all the points on a cone, and the bases were vectors on the plane

Projection : an example with sounds

- The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
- I.e. how much can it be explained by the notes

Projection: one note

- The spectrogram (matrix) of a piece of music

- $M=$ spectrogram; $W=$ note
- $P=W\left(W^{T} W\right)^{-1} W^{T}$
- Projected Spectrogram = $P M$

Projection: one note - cleaned up

- The spectrogram (matrix) of a piece of music

- Floored all matrix values below a threshold to zero

Projection: multiple notes

$M=$

- The spectrogram (matrix) of a piece of music

- $P=W\left(W^{\top} W\right)^{-1} W^{\top}$
- Projected Spectrogram = $\mathrm{P}^{*} \mathrm{M}$

Projection: multiple notes, cleaned up

- The spectrogram (matrix) of a piece of music

- $\boldsymbol{P}=\boldsymbol{W}\left(\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{T}$
- Projected Spectrogram = $\boldsymbol{P M}$

Projection: one note

- The spectrogram (matrix) of a piece of music

- The "transcription" of the note is

$$
T=W^{+} M=\left(W^{T} W\right)^{-1} W^{T} M
$$

- Projected Spectrogram $=W T=P M$

Explanation with multiple notes

- The "transcription" of the set of notes is

$$
T=W^{+} M=\left(W^{T} W\right)^{-1} W^{T} M
$$

- Projected Spectrogram $=W T=P M$

How about the other way?

$$
u=\text { ? }
$$

- $W T \approx M$
$W=M \operatorname{Pinv}(T) \quad U=W T$

Projections are often examples of rank-deficient transforms

- $P=W\left(W^{T} W\right)^{-1} W^{T} ;$ Projected Spectrogram : $M_{\text {proj }}=P M$
- The original spectrogram can never be recovered
- P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
- There are only a maximum of 4 linearly independent bases
- Rank of P is 4

The Rank of Matrix

- Projected Spectrogram = PM
- Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
- E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
- Eliminating note no. 4 would give us the same projection
- The rank of P would be 3 !

Pseudo-inverse (PINV)

- $\operatorname{Pinv}()$ applies to non-square matrices and noninvertible square matrices
- $\operatorname{Pinv}(\operatorname{Pinv}(\mathbf{A})))=\mathbf{A}$
- $\mathbf{A} \operatorname{Pinv}(\mathbf{A})=$ projection matrix!
- Projection onto the columns of \mathbf{A}
- If \mathbf{A} is a $K \times N$ matrix and $K>N$, A projects N dimensional vectors into a higher-dimensional K dimensional space
$-\operatorname{Pinv}(\mathbf{A})$ is a $N \times K$ matrix
$-\operatorname{Pinv}(\mathbf{A}) \mathbf{A}=\mathbf{I}$ in this case
- Otherwise $\mathbf{A} \operatorname{Pinv}(\mathbf{A})=\mathbf{I}$

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
- Determinant
- Inverse
- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something
- Sound example: ©
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
- Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
- Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

Eigen Wectors and Eigenwaiues

Black vectors are eigen vectors

- Vectors that do not change angle upon transformation
- They may change length

$$
M V=\lambda V
$$

- $\mathrm{V}=$ eigen vector
$-\lambda=$ eigen value

Eigen vector example

Matrix multiplication revisited

- Matrix transformation "transforms" the space
- Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_{1} and λ_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_{1} and λ_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_{1} and λ_{2}
- The factors could be negative - implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

$$
\begin{aligned}
& V=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right] \\
& \Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \\
& M=V \Lambda V^{-1}
\end{aligned}
$$

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix
- The determinant of the matrix is the product of the eigenvalues

$$
|M|=|V||\Lambda|\left|V^{-1}\right|=C \cdot \prod_{i} \lambda_{i} \cdot C^{-1}=\prod_{i} \lambda_{i}
$$

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
- E.g. consider a rotation matrix

$$
\begin{gathered}
\mathbf{R}_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
X_{\text {new }}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
\end{gathered}
$$

- This rotates every vector in the plane

- No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Actually complex conjugate pairs

Singular Value Decomposition

- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
- Can you identify it?

Singular Value Decomposition

- The major and minor axes of the transformed ellipse define the ellipse
- They are at right angles
- These are transformations of right-angled vectors on the original circle!

Singular Value Decomposition

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1.0 & -0.07 \\
-1.1 & 1.2
\end{array}\right] \\
& \mathrm{A}=\mathrm{U} \mathrm{~S} \mathrm{~V}
\end{aligned}
$$

- U and V are orthonormal matrices
- Columns are orthonormal vectors
- S is a diagonal matrix
- The right singular vectors in V are transformed to the left singular vectors in U
- And scaled by the singular values that are the diagonal entries of S

Singular Value Decomposition

$$
\begin{aligned}
& A=U S V^{\top} \\
& A^{\top}=V S U^{\top}
\end{aligned}
$$

- A matrix \boldsymbol{A} converts right singular vectors \boldsymbol{V} to left singular vectors \boldsymbol{U}
- $\boldsymbol{A}^{\mathrm{T}}$ converts \boldsymbol{U} to \boldsymbol{V}

Singular Value Decomposition

- The left and right singular vectors are not the same
- If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
$-\operatorname{Max}(|A x| /|x|)=s_{\max }$
- The smallest singular value is the smallest amount by which a vector is scaled by A
$-\operatorname{Min}(|A x| /|x|)=s_{\text {min }}$
- This can be 0 (for low-rank or non-square matrices)

The singuar Vaiues

- Square matrices: product of singular values = determinant of the matrix
- This is also the product of the eigen values
- l.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
- An analogous rule applies to the smallest singular value
- This property is utilized in various problems

SVD vs. Eigen Analysis

- Eigen analysis of a matrix A:
- Find vectors such that their absolute directions are not changed by the transform
- SVD of a matrix A:
- Find orthogonal set of vectors such that the angle between them is not changed by the transform
- For one class of matrices, these two operations are the same

A matrix vs. its transpose

- Multiplication by matrix A:
- Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^{\top} :
- Transforms left singular vectors U to right singular vector V
- $A A^{\top}$: Converts V to U, then brings it back to V
- Result: Only scaling

Symmetric Matrices

$$
\left[\begin{array}{cc}
1.5 & -0.7 \\
-0.7 & 1
\end{array}\right]
$$

- Matrices that do not change on transposition
- Row and column vectors are identical
- The left and right singular vectors are identical
$-U=V$
$-A=U S U^{\top}$
- They are identical to the Eigen vectors of the matrix
- Symmetric matrices do not rotate the space
- Only scaling and, if Eigen values are negative, reflection

Symmetric Matrices

$$
\left[\begin{array}{cc}
1.5 & -0.7 \\
-0.7 & 1
\end{array}\right]
$$

- Matrices that do not change on transposition
- Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
- At 90 degrees to one another

Symmetric Matrices

- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
- The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors V_{i} are orthonormal
$-V_{i}^{T} V_{i}=1$

$$
-\mathrm{V}_{\mathrm{i}}^{\mathrm{T}} \mathrm{~V}_{\mathrm{j}}=0, \mathrm{i}!=\mathrm{j}
$$

- Listing all eigen vectors in matrix form V
$-\mathrm{V}^{\mathrm{T}}=\mathrm{V}^{-1}$
$-\mathrm{V}^{\mathrm{T}} \mathrm{V}=\mathrm{I}$
$-\mathrm{VV}^{\mathrm{T}}=\mathrm{I}$
- $M V_{i}=\lambda V_{i}$
- In matrix form : M V $=\mathrm{V} \Lambda$
$-\Lambda$ is a diagonal matrix with all eigen values
- $\mathrm{M}=\mathrm{V} \Lambda \mathrm{V}^{\mathrm{T}}$

Definiteness.

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
- Real, positive Eigen values represent stretching of the space along the Eigen vector
- Real, negative Eigen values represent stretching and reflection (across origin) of Eigen vector
- Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is positive definite if all Eigen values are real and positive, and are greater than 0
- Transformation can be explained as stretching along orthogonal axes
- Transformation has no permutation or rotation
- If any Eigen value is zero, the matrix is positive semi-definite

Positive Definiteness..

- Property of a positive definite matrix: Defines inner product norms
$-x^{T} A x$ is always positive for any vector x if A is positive definite
- Positive definiteness is a test for validity of Gram matrices
- Such as correlation and covariance matrices
- We will encounter these and other gram matrices later

SVD on data-container matrices
 $$
\mathbf{x}=\left[\begin{array}{lll} X_{1} & X_{2} & \cdots \\ X_{N} \end{array}\right]
$$
 $$
\mathbf{X}=\mathbf{U S V}^{\mathrm{T}}
$$

- We can also perform SVD on matrices that are data containers
- \mathbf{S} is a $d \times N$ rectangular matrix
- N vectors of dimension d
- \mathbf{U} is an orthogonal matrix of d vectors of size d
- All vectors are length 1
- \mathbf{V} is an orthogonal matrix of N vectors of size N
- \mathbf{S} is a $d \times N$ diagonal matrix with non-zero entries only on diagonal

SVD on data-container matrices

$$
\left.\begin{array}{c}
\mathbf{X}=\left[\begin{array}{lll}
X_{1} & X_{2} & \cdots
\end{array} X_{N}\right.
\end{array}\right]
$$

$\mathbf{u}=\| \|\| \| \mathbf{s}=\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$

$\left|U_{\mathrm{i}}\right|=1.0$ for every vector in \mathbf{U}
$\left|V_{\mathrm{i}}\right|=1.0$ for every vector in \mathbf{V}

SVD on data-container matrices

$$
+\square+\|
$$

$$
+\rrbracket
$$

$$
\mathrm{x}=\sum_{i} s v_{l} V_{i} V_{T}^{T}
$$

$$
\begin{aligned}
& \mathrm{u}=\| \| \| \mathrm{s}=0 \\
& \mathbf{X}=\mathbf{U S V}^{\mathrm{T}}=
\end{aligned}
$$

Expanding the SVD

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right] \quad \mathbf{X}=\mathbf{U S V}^{\mathrm{T}} \\
& \mathbf{X}=s_{1} U_{1} V_{1}^{T}+s_{2} U_{2} V_{2}^{T}+s_{3} U_{3} V_{3}^{T}+s_{4} U_{4} V_{4}^{T}+\ldots
\end{aligned}
$$

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value

Expanding the SVD

$$
\mathbf{X}=\left[\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right] \quad \mathbf{X}=\mathbf{U S V}^{\mathrm{T}}
$$

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value

Expanding the SVD

$$
\mathbf{X}=s_{1} U_{1} V_{1}^{T}+s_{2} U_{2} V_{2}^{T}+s_{3} U_{3} V_{3}^{T}+s_{4} U_{4} V_{4}^{T}+\ldots
$$

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value
- Low singular-value components contribute little, if anything
- Carry little information
- Are often just "noise" in the data

Expanding the SVD

$$
\mathbf{X}=s_{1} U_{1} V_{1}^{T}+s_{2} U_{2} V_{2}^{T}+s_{3} U_{3} V_{3}^{T}+s_{4} U_{4} V_{4}^{T}+\ldots
$$

$$
\mathbf{X} \approx s_{1} U_{1} V_{1}^{T}+s_{2} U_{2} V_{2}^{T}
$$

- Low singular-value components contribute little, if anything
- Carry little information
- Are often just "noise" in the data
- Data can be recomposed using only the "major" components with minimal change of value
- Minimum squared error between original data and recomposed data
- Sometimes eliminating the low-singular-value components will, in fact "clean" the data

An audio example

- The spectrogram has 974 vectors of dimension 1025
- A 1024x974 matrix!
- Decompose: $\mathbf{M}=\mathbf{U S V}^{\mathrm{T}}=\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} U_{\mathrm{i}} V_{\mathrm{i}}^{\mathrm{T}}$
- \mathbf{U} is 1024×1024
- \mathbf{V} is 974×974
- There are 974 non-zero singular values S_{i}

Singular Values

- Singular values for spectrogram \mathbf{M}
- Most Singluar values are close to zero
- The corresponding components are "unimportant"

An audio example

- The same spectrogram constructed from only the 25 highest singular-value components
- Looks similar
- With 100 components, it would be indistinguishable from the original
- Sounds pretty close
- Background "cleaned up"

With only 5 components

- The same spectrogram constructed from only the 5 highest-valued components
- Corresponding to the 5 largest singular values
- Highly recognizable
- Suggests that there are actually only 5 significant unique note combinations in the music
- Next up: A brief trip through optimization..

