Machine Learning for Signal Processing Lecture 4: Optimization

Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU)

Course Projects

- Projects will be done by teams of students
- Ideal team size: 4
- Find yourself a team
- If you wish to work alone, that is OK
- But we will not require less of you for this
- If you cannot find a team by yourselves, you will be assigned to a team
- Teams will be listed on the website
- All currently registered students will be put in a team eventually
- Will require background reading and literature survey
- Learn about the problem

Projects

- Teams must be formed by $17^{\text {th }}$ Tuesday
- Teams must send us a preliminary project proposal by $30^{\text {th }}$ September 2019
- Please send us proposals earlier, so that we can vet them
- The later you start, the less time you will have to work on the project

Quality of projects

- Project must include aspects of signal analysis and machine learning
- Prediction, classification or compression of signals
- Using machine learning techniques
- Several projects from previous years have led to publications
- Conference and journal papers
- Best paper awards
- Doctoral and Masters' dissertations

Projects from past years: 2015

- Loop querier - searching the rhythmic pattern
- Vision-based montecarlo localization for autonomous vehicle
- Beatbox to drum conversion
- City localization on flikr videos using only audio
- Facial landmarks based video frontalization and its application in face recognition
- Audioshop: Modifying and editing singing voice
- Predicting and classifying RF signal strength in an environment with obstacles
- Realtime detection of basketball players

Projects from past years: 2014

- IMPROVING SPATIALIZATION ON HEADPHONES FOR STEREO MUSIC
- PREDICTING THE OUTCOME OF ROULETTE
- FACIAL REPLACEMENT IN VIDEOS
- ISOLATED SIGN WORD RECOGNITION SYSTEM
- ACCENTED ENGLISH DIALECT CLASSIFICATION
- BRAIN IMAGE CLASSIFIER
- FACIAL EXPRESSION RECOGNITION
- MOOD BASED CLASSIFICATION OF SONGS TO IDENTIFY ACOUSTIC FEATURES THAT ALLEVIATE DEPRESSION
- PERSON IDENTIFICATION THROUGH FOOTSTEP-INDUCED FLOOR VIBRATION
- DETECT HUMAN HEAD-ORIENTATION BASED ON CONVOLUTIONAL NEURAL NETWORK AND DEPTH CAMERA
- NEURAL NETWORK BASED SLUDGE VOLUME INDEX PREDICTION

Projects from past years: 2014

- 8-BIT MUSIC NOTE IDENTIFICATION - TURNING MARIO INTO METAL
- STREET VIEW HOUSE NUMBER RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS
- TRAIN-BASED INFRASTRUCTURE MONITORING
- MANIFOLD INTERPOLATION OF X-RAY RADIOGRAPHS
- A SMARTPHONE BASED INDOOR POSITIONING SYSTEM AUGMENTED WITH INFRARED SENSING
- ROCK, PAPER, SCISSORS -- HAND GESTURE RECOGNITION
- LANGUAGE MODELS WITH SEMANTIC CONSTRAINTS
- LEARNING TO PREDICT WHERE A DRIVER LOOKS
- REAL TIME MONITORING OF STUDENT'S LEARNING PERFORMANCE

Projects from past years: 2013

- Automotive vision localization
- Lyric recognition
- Imaging without a camera
- Handwriting recognition with a Kinect
- Gender classification of frontal facial images
- Deep neural networks for speech recognition
- Predicting mortality in the ICU
- Human action tagging
- Art Genre classification
- Soccer tracking
- Image manipulation using patch transforms
- Audio classification
- Foreground detection using adaptive mixture models

Projects from previous years: 2012

- Skin surface input interfaces
- Chris Harrison
- Visual feedback for needle steering system
- Clothing recognition and search
- Time of flight countertop
- Chris Harrison
- Non-intrusive load monitoring using an EMF sensor
- Mario Berges
- Blind sidewalk detection
- Detecting abnormal ECG rhythms
- Shot boundary detection (in video)
- Stacked autoencoders for audio reconstruction
- Rita Singh
- Change detection using SVD for ultrasonic pipe monitoring
- Detecting Bonobo vocalizations
- Alan Black
- Kinect gesture recognition for musical control

Projects from previous years: 2011

- Spoken word detection using seam carving on spectrograms
- Rita Singh
- Bioinformatics pipeline for biomarker discovery from oxidative lipidomics of radiation damage
- Automatic annotation and evaluation of solfege
- Left ventricular segmentation in MR images using a conditional random field
- Non-intrusive load monitoring
- Mario Berges
- Velocity detection of speeding automobiles from analysis of audio recordings
- Speech and music separation using probabilistic latent component analysis and constant-Q transforms

Project Complexity

- Depends on what you want to do
- Complexity of the project will be considered in grading.
- Projects typically vary from cutting-edge research to reimplementation of existing techniques. Both are fine.
- Only caveat : The term "deep learning" must not relate to your project
- Absolutely no DL/Nnets

Incomplete Projects

- Be realistic about your goals.
- Incomplete projects can still get a good grade if
- You can demonstrate that you made progress
- You can clearly show why the project is infeasible to complete in one semester
- Remember: You will be graded by peers

"Local" Projects..

- Several project ideas routinely proposed by various faculty/industry partners
- Sarnoff labs, NASA, Mitsubishi, Adobe..
- Local faculty
- Alan Black is usually good for a project or two
- LP Morency has fantastic ideas on analysis of multimodal recordings of $\mathrm{H}-\mathrm{H}$ (and $\mathrm{H}-\mathrm{C}$) communication
- Roger Dannenberg is a world leader in computational music
- Mario Berges has helped in the past
- Rita Singh does nice work on speech forensics
- Others...

Questions?

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

A problem we recently saw

- The projection matrix P is the matrix that minimizes the total error between the projected matrix S and the original matrix M

The projection problem

- $S=P M$
- For individual vectors in the spectrogram
$-S_{i}=P M_{i}$
- Total projection error is
$-E=\sum_{i}\left\|M_{i}-P M_{i}\right\|^{2}$
- The projection matrix projects onto the space of notes in N
$-P=N C$
- The problem of finding P : Minimize $E=\sum_{i}\left\|M_{i}-P M_{i}\right\|^{2}$ such that $P=N C$
- This is a problem of constrained optimization

Optimization

- Optimization is finding the "best" value of a function $f(x)$ (which can be the best minimum)

$\min f(x)$
 x

Examples of Optimization : Multivariate functions

- Find the optimal point in these functions

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

Simple Approach: Turning Point

- The "minimum" of the function is always a "turning point"
- Points where the function "turns" around
- In every direction
- For minima, the function increases on either side
- How to identify these turning points?

The "derivative" of a curve

- The derivative α_{x} of a curve is a multiplicative factor explaining how much y changes in response to a very small change in x

$$
\Delta y=\alpha_{x} \Delta x
$$

- For scalar functions of scalar variables, often expressed as $\frac{d y}{d x}$ or as $f^{\prime}(x)$

$$
\Delta y=\frac{d y}{d x} \Delta x \quad \Delta y=f^{\prime}(x) \Delta x
$$

- We have all learned how to compute derivatives in basic calculus

The derivative of a Curve

Positive

 derivative

- In upward-rising regions of the curve, the derivative is positive
- Small increase in X cause Y to increase
- In downward-falling regions, the derivative is negative
- At turning points, the derivative is 0
- Assumption: the function is differentiable at the turning point

Geometrical application of Calculus to the derivative of a curve

- Find all values of x for which $f(x)=x^{2}-4 x+4$ is increasing, decreasing and stationary
\quad Increasing
$f(x)=x^{2}-4 x+4$
$f^{\prime}(\mathrm{x})=2 \mathrm{x}-4$
$2 \mathrm{x}-4>0$
$2 \mathrm{x}>4$
$\mathrm{x}>2$

$$
\begin{aligned}
& \text { Decreasing } \\
& f(x)=x^{2}-4 x+4 \\
& f^{\prime}(\mathrm{x})=2 \mathrm{x}-4 \\
& 2 \mathrm{x}-4<0 \\
& 2 \mathrm{x}<4 \\
& \mathrm{x}<2
\end{aligned}
$$

Stationary

$$
\begin{aligned}
& f(x)=x^{2}-4 x+4 \\
& f^{\prime}(x)=2 x-4 \\
& 2 x-4=0 \\
& 2 x=4 \\
& x=2
\end{aligned}
$$

Finding the minimum of a function

- Find the value x at which $f^{\prime}(x)=0$
- Solve

$$
\frac{d f(x)}{d x}=0
$$

- The solution is a turning point
- But is it a minimum?

Turning Points

- Both maxima and minima have zero derivative
- Both maxima and minima are turning points

Derivatives of a curve

- Both maxima and minima are turning points
- Both maxima and minima have zero derivative

Derivative of the derivative of the

curve

- Both maxima and minima are turning points
- Both maxima and minima have zero derivative
- The second derivative $f^{\prime \prime}(x)$ is -ve at maxima and +ve at minima!
- At maxima the derivative goes from +ve to -ve, so the derivative decreases as x increases
- At minima the derivative goes from -ve to +ve and increases as x increases

Soln: Finding the minimum or

- Find the value x at which $f^{\prime}(x)=0$: Solve

$$
\frac{d f(x)}{d x}=0
$$

- The solution $x_{\text {soln }}$ is a turning point
- Check the double derivative at $x_{\text {soln }}$: compute

$$
f^{\prime \prime}\left(x_{\text {soln }}\right)=\frac{d f^{\prime}\left(x_{\text {soln }}\right)}{d x}
$$

- If $f^{\prime \prime}\left(x_{\text {soln }}\right)$ is positive $x_{\text {soln }}$ is a minimum, otherwise it is a maximum

What about functions of multiple variables?

- The optimum point is still "turning" point
- Shifting in any direction will increase the value
- For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

The Gradient of a scalar function

- The Gradient $\nabla f(X)$ of a scalar function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

$$
\Delta f(X)=\nabla f(X)^{T} \Delta X
$$

Gradients of scalar functions with multi-variate inputs

- Consider $f(X)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\nabla f(X)=\left[\begin{array}{c}
\frac{\partial f(X)}{\partial x_{1}} \\
\frac{\partial f(X)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(X)}{\partial x_{n}}
\end{array}\right]
$$

- Check:

$$
\begin{aligned}
& \Delta f(X)=\nabla f(X)^{T} \Delta X \\
& =\frac{\partial f(X)}{\partial x_{1}} \Delta x_{1}+\frac{\partial f(X)}{\partial x_{2}} \Delta x_{2}+\cdots+\frac{\partial f(X)}{\partial x_{n}} \Delta x_{n}
\end{aligned}
$$

A well-known vector property

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

- The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

Properties of Gradient

- $\Delta f(X)=\nabla f(X)^{T} \Delta X$
- The inner product between $\nabla f(X)$ and ΔX
- Fixing the length of ΔX
- E.g. $|\Delta X|=1$
- $\Delta f(X)$ is max if $\angle \nabla f(X), \Delta X=0$
- The function $f(X)$ increases most rapidly if the input increment ΔX is perfectly aligned to $\nabla f(X)$

The gradient is the direction of fastest increase in $f(X)$

Gradient

Gradient

Gradient

Gradient

Properties of Gradient: 2

- The gradient vector $\nabla f(X)$ is perpendicular to the level curve

Derivatives of vector function of vector input

- The Gradient $\nabla f(X)$ of a vector function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

$$
\Delta f(X)=\nabla f(X)^{T} \Delta X
$$

"Gradient" of vector function of

 vector input$$
\begin{aligned}
X & =\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right] \\
\nabla f(X)^{T} & =\left[\begin{array}{lllll}
& & & & \\
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdot & \cdot & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdot & \cdot & \frac{\partial y_{2}}{\partial x_{n}} \\
\cdot & \cdot & \cdot & \cdot \\
y_{2} \\
\cdot \\
\cdot \dot{y_{n}} \\
\frac{\partial y_{n}}{\partial x_{1}} & \frac{\partial y_{n}}{\partial x_{2}} & \cdot & \cdot & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right] \quad \begin{array}{l}
\text { Properties and interpretations } \\
\text { are similar to the case of } \\
\text { scalar functions of vector } \\
\text { inputs }
\end{array}
\end{aligned}
$$

Chain rule

- The gradient is based on derivatives
- The derivative of composed function $f(g(x))$ or $f \circ g$ can be very complicated to compute
- If $f \circ g$ is the composite of $y=f(u)$ and $u=g(x)$

Then $(f \circ g)^{\prime}=f_{a t u=g(x)}^{\prime} \bullet g_{a t x}^{\prime}$ or $\frac{d y}{d x} \frac{d y}{d u} \cdot \frac{d u}{d x}$

- This is known as Chain rule

Example of chain rule

- Differentiate $h(x)=\left(\frac{8 x-x^{6}}{x^{3}}\right)^{-\frac{4}{5}}$
- Simplification

$$
h(x)=\left(\frac{8 x-x^{6}}{x^{3}}\right)^{-\frac{4}{5}}=\left(\frac{8 x}{x^{3}}-\frac{x^{6}}{x^{3}}\right)^{-\frac{4}{5}}=\left(8 x^{-2}-x^{3}\right)^{-\frac{4}{5}}
$$

- Applying Chain rule

$$
y=f(u)=(u)^{-\frac{4}{5}} \quad u=g(x)=8 x^{-2}-x^{3}
$$

Example of chain rule

- Applying Chain rule

$$
\begin{aligned}
& h(x)=\left(-\frac{4}{5}\right)\left(8 x^{-2}-x^{3}\right)^{-\frac{4}{5}-1}\left(-8 x^{-2}-x^{3}\right)^{\prime} \\
& h(x)=\left(-\frac{4}{5}\right)\left(8 x^{-2}-x^{3}\right)^{-\frac{9}{5}}\left(-16 x^{-3}-3 x^{2}\right)
\end{aligned}
$$

- After simplification 9

$$
h(x)=\frac{4 x^{\overline{5}}\left(16+3 x^{5}\right)}{5\left(8-x^{5}\right)^{\frac{9}{5}}}
$$

Vector and Matrix derivatives

Vector and Matrix derivatives

- The derivative of scalar y by a vector $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \dot{b} \\ \dot{x_{n}}\end{array}\right]$ is

$$
\frac{\partial y}{\partial x}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \dot{x_{2}} \\ \frac{\partial y}{\partial x_{n}}\end{array}\right]
$$

Vector and Matrix derivatives

$$
\frac{\partial x}{\partial y}=\left[\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} & \cdot & \frac{\partial x_{n}}{\partial y_{1}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\frac{\partial x_{2}}{\partial y_{n}} & \frac{\partial x_{n}}{\partial y_{2}} & \cdot & \cdot \\
{ }^{11-755 / 18-797} & & & \frac{\partial x_{n}}{\partial y_{m}}
\end{array}\right]
$$

Vector and Matrix derivatives

- The derivative of matrix $x=\left[\begin{array}{cccc}x_{1,2} & x_{1,2} & \cdots & x_{1, n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2, n} \\ \vdots & \vdots & \cdots & \vdots \\ x_{m, 1} & x_{m, 2} & \cdots & x_{m, n}\end{array}\right]$ by a scalar y is given by

$$
\frac{\partial X}{\partial y}=\left[\begin{array}{cccc}
\frac{\partial x_{1,1}}{\partial y} & \frac{\partial x_{1,2}}{\partial y} & \cdot & \cdot \\
\frac{\partial x_{1, n}}{\partial y} \\
\frac{\partial x_{2,1}}{\partial y} & \frac{\partial x_{2,2}}{\partial y} & \cdot & \cdot \\
\cdot & \frac{\partial x_{2, n}}{\partial y} \\
\cdot & \cdot & \cdot & \cdot \\
\frac{\partial x_{m, 1}}{\partial y} & \frac{\partial x_{m, 2}}{\partial y} & \cdot & \cdot \\
\cdot & \frac{\partial x_{m, n}}{\partial y}
\end{array}\right]
$$

Vector and Matrix derivatives

- The derivative a scalar y by a matrix

Vector and Matrix derivatives

- The derivative of vector x of n elements by a matrix Y of size (p, q) is given by

$\frac{\partial x}{\partial y_{i, j}}$ Is the derivative of scalar $y_{i, j}$ which is an element of the matrix Y

Vector and Matrix derivatives

- The derivative of matrix X of size (m, n) by another matrix Y of size (p, q) is given by

Gradient Example

- Compute the Gradient of the function

$$
\begin{gathered}
f\left(x_{1}, x_{2}, x_{3}\right)=15 x_{1}+2\left(x_{2}\right)^{2}-3 x_{1}\left(x_{3}\right) \\
\nabla f\left(x_{1}, x_{2}, x_{3}\right):=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}}
\end{array}\right] \\
\nabla f\left(x_{1}, x_{2}, x_{3}\right) \\
:=\left[\begin{array}{lll}
15-3\left(x_{3}\right)^{2} & 6\left(x_{2}\right)^{2} & -6 x_{1} x_{3}
\end{array}\right]
\end{gathered}
$$

The Hessian

- The Hessian of a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given by the second derivative

Hessian Example

- Compute the Hessian of the function

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=15 x_{1}+2\left(x_{2}\right)^{2}-3 x_{1}\left(x_{3}\right) \\
& \nabla f\left(x_{1}, x_{2}, x_{3}\right)::=\left[\begin{array}{lll}
15-3\left(x_{3}\right)^{2} & 6\left(x_{2}\right)^{2} & -6 x_{1} x_{3}
\end{array}\right] \\
& \nabla^{2} f\left(x_{1}, x_{2}, x_{3}\right):=\left[\begin{array}{ccc}
0 & 0 & -6 x_{3} \\
0 & 12 x_{2} & 0 \\
-6 x_{3} & 0 & -6 x_{1}
\end{array}\right]
\end{aligned}
$$

Returning to direct optimization...

Finding the minimum of a scalar function of a multi-variate input

- The optimum point is a turning point - the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the X where the gradient equation equals to zero

$$
\nabla f(X)=0
$$

2. Compute the Hessian Matrix $\nabla^{2} f(X)$ at the candidate solution and verify that

- Hessian is positive definite (eigenvalues positive) -> to identify local minima
- Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

- Minimize

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}\right)^{2}+x_{1}\left(1-x_{2}\right)-\left(x_{2}\right)^{2}-x_{2} x_{3}+\left(x_{3}\right)^{2}+x_{3}
$$

- Gradient

$$
\nabla f=\left[\begin{array}{c}
2 x_{1}+1-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}+1
\end{array}\right]
$$

Unconstrained Minimization of function (Example)

- Set the gradient to null

$$
\nabla f=0 \Rightarrow\left[\begin{array}{c}
2 x_{1}+1-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}+1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Solving the 3 equations system with 3 unknowns

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

Unconstrained Minimization of

function (Example)

- Compute the Hessian matrix $\nabla^{2} f=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
- Evaluate the eigenvalues of the Hessian matrix

$$
\lambda_{1}=3.414, \quad \lambda_{2}=0.586, \quad \lambda_{3}=2
$$

- All the eigenvalues are positives $=>$ the Hessian matrix is positive definite
- The point $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right]$ is 7 is a mil-797

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

Closed Form Solutions are not always

- Often it is not possible to simply solve $\nabla f(X)=0$
- The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
- Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

Iterative solutions

- Iterative solutions
- Start from an initial guess X_{0} for the optimal X
- Update the guess towards a (hopefully) "better" value of $\mathrm{f}(X)$
- Stop when $\mathrm{f}(X)$ no longer decreases
- Problems:
- Which direction to step in
- How big must the steps be

Descent methods

- Iterative solutions that attempt to "descend" the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
- Newton's method is based on both first and second derivatives
- Gradient descent is based only on the first derivative

Descent methods

- Iterative solutions that attempt to "descend" the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
- Newton's method is based on both first and second derivatives
- Gradient descent is based only on the first derivative

Newton's iterative method to find the

 zero of a function

- Newton's method to find the "zero" of a function
- Initialize estimate
- Approximate function by the tangent at initial value
- Update estimate to location where tangent becomes 0
- Iterate

Newton's Method to optimize a function

- Apply Newton's method to the derivative of the function!
- The derivative goes to 0 at the optimum
- Algorithm:
- Initialize x_{0}
- $\mathrm{K}^{\text {th }}$ iteration: Approximate $f^{\prime}(x)$ by the tangent at x_{k}
- Find the location $x_{\text {intersect }}$ where the tangent goes to 0 . Set $x_{\mathrm{k}+1}=x_{\text {intersect }}$
- Iterate

Newton's method to minimize univariate functions

- Apply Newton's algorithm to find the zero of the derivative $f^{\prime}(x)$

$$
x^{k+1}=x^{k}-\frac{f^{\prime}\left(x^{k}\right)}{f^{\prime \prime}\left(x^{k}\right)}
$$

- k is the current iteration
- The iterations continue until we achieve the stopping criterion $\left|x^{k+1}-x^{k}\right|<\epsilon$

Newton's method for multivariate functions

1. Select an initial starting point X^{0}
2. Evaluate the gradient $\nabla f\left(X^{k}\right)$ and Hessian $\nabla^{2} f\left(X^{k}\right)$ at X^{k}
3. Calculate the new X^{k+1} using the following

$$
X^{k+1}=X^{k}-\left[\nabla^{2} f\left(X^{k}\right)\right]^{-1} . \nabla f\left(X^{k}\right)
$$

4. Repeat Steps 2 and 3 until convergence

Newton's Method example

- This is the same optimization problem we saw previously
- Minimize

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}\right)^{2}+x_{1}\left(1-x_{2}\right)-\left(x_{2}\right)^{2}-x_{2} x_{3}+\left(x_{3}\right)^{2}+x_{3}
$$

- Gradient

$$
\nabla f=\left[\begin{array}{c}
2 x_{1}+1-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}+1
\end{array}\right]
$$

Newton's Method example

- Initial Value of $X^{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- The gradient for the vector X^{0}

$$
\nabla f(0,0,0)=\left[\begin{array}{c}
0-0+1 \\
-0+0-0 \\
-0-0+1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Unconstrained Minimization of function (Example)

- The Hessian matrix is

$$
\nabla^{2} f=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

- The inverse of the Hessian is needed as well

$$
\left[\nabla^{2} f\right]^{-1}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right]
$$

Newton's Method example

- The new vector x after iteration 1 is as follow

$$
\begin{aligned}
& X^{1}=X^{0}-\left[\nabla^{2} f\left(X^{0}\right)\right]^{-1} . \nabla f\left(X^{0}\right) \\
& X^{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{lll}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& X^{1}=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

Newton's Method example

- The updated value of the gradient for $x^{\prime}=\left[\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right]$

$$
\nabla f(-1,-1,-1)=\left[\begin{array}{c}
2+1+1 \\
-1+2-1 \\
-1-2+1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- The Gradient is zero => The Newton method has converged

Newton's Method

- Newton's approach is based on the computation of both gradient and Hessian
- Fast to converge (few iterations)
- Slow to compute

Newton's method (arrives at optimum in a single step)

- Can arrive at the optimal solution in a single step for a quadratic function

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
- Single step
- Repeat
- Can easily get lost if the initial point is poor

Newton's Method

- Newton's approach is based on the computation of both gradient and Hessian
- Fast to converge (few iterations)
- Slow to compute

Newton's method (arrives at optimum in a single step)

- Can be very efficient
- This method is very sensitive to the initial point
- If the initial point is very far from the optimal point, the optimization process may not converge

Descent methods

- Iterative solutions that attempt to "descend" the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
- Newton's method is based on both first and second derivatives
- Gradient descent is based only on the first derivative

The Approach of Gradient Descent

- Iterative solution:
- Start at some point
- Find direction in which to shift this point to decrease error
- This can be found from the derivative of the function
- A positive derivative \rightarrow moving left decreases error
- A negative derivative \rightarrow moving right decreases error
- Shift point in this direction

The Approach of Gradient Descent

- Iterative solution: Trivial algorithm
- Initialize x^{0}
- While $f^{\prime}\left(x^{k}\right) \neq 0$
- If $\operatorname{sign}\left(f^{\prime}\left(x^{k}\right)\right)$ is positive:

$$
-x^{k+1}=x^{k}-\text { step }
$$

- Else

$$
-x^{k+1}=x^{k}+\text { step }
$$

- But what must step be to ensure we actually get to the optimum?

The Approach of Gradient Descent

- Iterative solution: Trivial algorithm
- Initialize x^{0}
-While $f^{\prime}\left(x^{k}\right) \neq 0$
- $x^{k+1}=x^{k}-\operatorname{sign}\left(f^{\prime}\left(x^{k}\right)\right)$. step
- Identical to previous algorithm

The Approach of Gradient Descent

- Iterative solution: Trivial algorithm
- Initialize x_{0}
-While $f^{\prime}\left(x^{k}\right) \neq 0$
- $x^{k+1}=x^{k}-\eta^{k} f^{\prime}\left(x^{k}\right)$
$-\eta^{k}$ is the "step size"
- What must the step size be?

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function f iteratively
- To find a maximum move in the direction of the gradient

$$
x^{k+1}=x^{k}+\eta^{k} \nabla f\left(x^{k}\right)
$$

- To find a minimum move exactly opposite the direction of the gradient

$$
x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)
$$

- What is the step size η^{k}

1. Fixed step size

- Fixed step size
- Use fixed value for η^{k}

Influence of step size example (constant step size)

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}\right)^{2}+x_{1} x_{2}+4\left(x_{2}\right)^{2} \quad x^{\text {initial }}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

Variable step size

- Shrink step size by a constant factor each iteration:

$$
\eta^{k}=\alpha \eta^{k-1}
$$

- Where $\alpha<1$
- Gradient descent algorithm:
- Initialize x^{0}, η^{0}
- While $f^{\prime}\left(x^{k}\right) \neq 0$
- $x^{k+1}=x^{k}-\eta^{k} f^{\prime}\left(x^{k}\right)$
- $\eta^{k+1}=\alpha \eta^{k}$
- $k=k+1$

Optimal step size

- Finding the optimal step size is a challenge
- Ideally, step size changes with iteration
- Several algorithms to find optimal step size - On slides
- Please read the slides, this will appear in the quiz

2. Backtracking line search for step

size

- Two parameters α (typically 0.5) and β (typically 0.8)
- At each iteration, estimate step size as follows:
- Set $\eta^{k}=1$
- Update $\eta^{k}=\beta \eta^{k}$ until

$$
f\left(x^{k}-\eta^{k} \nabla f\left(x^{k}\right)\right) \leq f\left(x^{k}\right)-\alpha \eta^{k}\left\|\nabla f\left(x^{k}\right)\right\|^{2}
$$

- Update $x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)$
- Intuitively: At each iteration
- Take a unit step size and keep shrinking it until we arrive at a place where the function $f\left(x^{k}-\eta^{k} \nabla f\left(x^{k}\right)\right)$ actually decreases sufficiently w.r.t $f\left(x^{k}\right)$

2. Backtracking line search for step size

- Keep shrinking step size till we find a good one

2. Backtracking line search for step size

- Keep shrinking step size till we find a good one
- Update estimate to the position at the converged step size ${ }_{98}$

2. Backtracking line search for step size

- At each iteration, estimate step size as follows:
- Set $\eta^{k}=1$
- Update $\eta^{k}=\beta \eta^{k}$ until

$$
f\left(x^{k}-\eta^{k} \nabla f\left(x^{k}\right)\right) \leq f\left(x^{k}\right)-\alpha \eta^{k}\left\|\nabla f\left(x^{k}\right)\right\|^{2}
$$

- Update $x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)$
- Figure shows actual evolution of x^{k}

3. Full line search for step size

- At each iteration scan for η_{k} that minimizes $f\left(x^{k}-\eta^{k} \nabla f\left(x^{k}\right)\right)$
- Update $x^{k}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)$

3. Full line search for step size

- At each iteration scan for η_{k} that minimizes $f\left(x^{k}-\eta^{k} \nabla f\left(x^{k}\right)\right)$
- Can be computed by solving

$$
\frac{d f\left(x^{k}-\eta^{k} \nabla f\left(x^{k}\right)\right)}{d \eta^{k}}=0
$$

- Update $x^{k}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)$

Gradient descent convergence criteria

- The gradient descent algorithm converges when one of the following criteria is satisfied

$$
\left|f\left(x^{k+1}\right)-f\left(x^{k}\right)\right|<\varepsilon_{1}
$$

- Or $\left\|\nabla f\left(x^{k}\right)\right\|<\varepsilon_{2}$

Gradient descent example

- This is the same optimization problem as previously
- Minimize

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}\right)^{2}+x_{1}\left(1-x_{2}\right)-\left(x_{2}\right)^{2}-x_{2} x_{3}+\left(x_{3}\right)^{2}+x_{3}
$$

- Gradient

$$
\nabla f=\left[\begin{array}{c}
2 x_{1}+1-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}+1
\end{array}\right]
$$

initial vector

$$
x^{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Gradient descent example

$$
\begin{aligned}
& \nabla f\left(x^{0}\right)=\left[\begin{array}{c}
2 \cdot 0+1-0 \\
-0+2 \cdot 0-0 \\
-0+2 \cdot 0+1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& x^{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-\alpha^{0}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\alpha^{0} \\
0 \\
-\alpha^{0}
\end{array}\right]
\end{aligned}
$$

- Find the best step value α^{0}

Gradient descent example

$$
\begin{aligned}
& f\left(x^{1}\right)=\left(-\alpha^{0}\right)^{2}-\alpha^{0}+\left(-\alpha^{0}\right)^{2}-\alpha^{0} \\
& \quad=2\left(\alpha^{0}\right)^{2}-2\left(\alpha^{0}\right) \\
& \frac{\partial f\left(x^{1}\right)}{\partial \alpha^{0}}=4\left(\alpha^{0}\right)-2
\end{aligned}
$$

- Set the derivative equal to zero

$$
\frac{\partial f\left(x^{1}\right)}{\partial \alpha^{0}}=4\left(\alpha^{0}\right)-2=0 \Rightarrow \alpha^{0}=\frac{1}{2} \quad x^{1}=\left[\begin{array}{c}
-\alpha^{0} \\
0 \\
-\alpha^{0}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]_{05}
$$

Gradient descent example

- Iteration 2

$$
\begin{aligned}
& \nabla f\left(-\frac{1}{2}, 0,-\frac{1}{2}\right)=\left[\begin{array}{c}
-1+1+0 \\
\frac{1}{2}+0+\frac{1}{2} \\
0-1+1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& x^{2}=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]-\alpha^{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-\alpha^{1} \\
-\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Gradient descent example

$$
\begin{gathered}
f\left(x^{2}\right)=\frac{1}{4}-\frac{1}{2}\left(1+\alpha^{1}\right)+\left(\alpha^{1}\right)^{2}-\frac{1}{2} \alpha^{1}+\frac{1}{4}-\frac{1}{2} \\
=\left(\alpha^{1}\right)^{2}-\alpha^{1}-\frac{1}{2}
\end{gathered}
$$

$$
\frac{\partial f\left(x^{2}\right)}{\partial \alpha^{1}}=2\left(\alpha^{1}\right)-1
$$

- Set the derivative equal to zero

$$
\frac{\partial f\left(x^{2}\right)}{\partial \alpha^{1}}=2\left(\alpha^{1}\right)-1=0 \Rightarrow \alpha^{1}=\frac{1}{2}
$$

$$
\left.\begin{array}{c}
-\frac{1}{2} \\
-\alpha^{1} \\
-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{r}
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]
$$

Gradient descent example

- Iteration 3

$$
\begin{aligned}
& \text { ation } 3 \quad \nabla f\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)=\left[\begin{array}{c}
2 \\
\frac{1}{2}-1+\frac{1}{2} \\
\frac{1}{2}-1+1
\end{array}\right]=\left[\begin{array}{l}
\overline{2} \\
0 \\
\frac{1}{2}
\end{array}\right] \\
& x^{3}=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]-\alpha^{2}\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}\left(\alpha^{2}+1\right) \\
-\frac{1}{2} \\
-\frac{1}{2}\left(\alpha^{2}+1\right)
\end{array}\right]
\end{aligned}
$$

Gradient descent example

$$
\begin{aligned}
& f\left(x^{3}\right)=\frac{1}{2}\left(\alpha^{2}+1\right)^{2}-\frac{3}{2}\left(\alpha^{2}+1\right)+\frac{1}{4} \\
& \frac{\partial f\left(x^{3}\right)}{\partial \alpha^{2}}=\left(\alpha^{2}+1\right)-\frac{3}{2}
\end{aligned}
$$

Gradient descent example

- Iteration 4

$$
\nabla f\left(-\frac{3}{4},-\frac{1}{2},-\frac{3}{4}\right)=\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right]
$$

$$
x^{4}=\left[\begin{array}{c}
-\frac{3}{4} \\
-\frac{1}{2} \\
-\frac{3}{4}
\end{array}\right]-\alpha^{3}\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{4} \\
-\frac{1}{2}\left(\alpha^{3}+1\right) \\
-\frac{3}{4}
\end{array}\right]
$$

Gradient descent example

$$
\begin{aligned}
& f\left(x^{4}\right)=\frac{1}{4}\left(\alpha^{3}+1\right)^{2}-\frac{3}{2}\left(\alpha^{3}\right)-\frac{3}{2} \\
& \frac{\partial f\left(x^{4}\right)}{\partial \alpha^{3}}=\frac{1}{2}\left(\alpha^{3}+1\right)-\frac{9}{8}
\end{aligned}
$$

- Set the derivative equal to zero $\left[\begin{array}{c}-\frac{3}{4} \\ \frac{\partial f\left(x^{4}\right)}{\partial \alpha^{3}}=\frac{1}{2}\left(\alpha^{3}+1\right)-\frac{9}{8}=0 \Rightarrow \alpha^{3}=\frac{5}{4} \quad x^{4}=\left[\begin{array}{c}-\frac{3}{4} \\ -\frac{1}{2}\left(\alpha^{3}+1\right) \\ -\frac{3}{4}\end{array}\right]=\left[\begin{array}{c}-\frac{9}{8} \\ -\frac{3}{4}\end{array}\right]\end{array}\right.$.

Gradient descent example

- Iteration 5

$$
\begin{array}{l|l}
\frac{5}{8}
\end{array}
$$

$$
x^{4}=\left[\begin{array}{c}
-\frac{3}{4} \\
-\frac{9}{8} \\
-\frac{3}{4}
\end{array}\right]-\alpha^{4}\left[\begin{array}{c}
\frac{5}{8} \\
-\frac{3}{4} \\
\frac{5}{8}
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{4} \\
\frac{5}{8}
\end{array}\right]\left[\begin{array}{c}
-\frac{1}{4}\left(3+\frac{5}{2} \alpha^{4}\right) \\
-\frac{3}{4}\left(\frac{3}{2}-\alpha^{4}\right) \\
-\frac{1}{4}\left(3+\frac{5}{3} \alpha^{4}\right)
\end{array}\right]
$$

Gradient descent example

$$
\begin{aligned}
& f\left(x^{5}\right)=\frac{73}{32}\left(\alpha^{4}\right)^{2}-\frac{43}{32}\left(\alpha^{4}\right)-\frac{51}{64} \\
& \frac{\partial f\left(x^{5}\right)}{\partial \alpha^{4}}=\frac{73}{16} \alpha^{4}-\frac{43}{32}
\end{aligned}
$$

- Set the derivative equal to zero

$$
\frac{\partial f\left(x^{5}\right)}{\partial \alpha^{4}}=\frac{73}{16} \alpha^{4}-\frac{43}{32}=0 \Rightarrow \alpha^{4}=\frac{43}{146}
$$

$$
x^{5}=\left[\begin{array}{c}
-\frac{1091}{1168} \\
-\frac{66}{73} \\
-\frac{1091}{1168}
\end{array}\right]
$$

Gradient descent example

- Verifying the stopping criteria $\left\|\nabla f\left(x^{5}\right)\right\|$

$$
\begin{gathered}
\nabla f\left(x^{5}\right)=\left[\begin{array}{c}
\frac{21}{584} \\
\frac{35}{584} \\
\frac{21}{584}
\end{array}\right] \\
\left\|\nabla f\left(x^{5}\right)\right\|=\sqrt{\left(\frac{21}{584}\right)^{2}+\left(\frac{35}{584}\right)^{2}+\left(\frac{21}{584}\right)^{2}}=0.0786
\end{gathered}
$$

Gradient descent example

- $\left\|\nabla f\left(x^{5}\right)\right\|=0.0786$ is very small. The stopping criteria is satisfied.
- The vector $x^{s}=\left[\begin{array}{c}-\frac{1091}{1168} \\ \text { minimum } \\ -\frac{66}{73} \\ -\frac{1091}{1168}\end{array}\right]$ can be taken as the
- The vector x^{5} is very close to the optimal $\operatorname{minimum}_{x^{\text {mamin }}}=\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right]$

Gradient descent vs. Newton's

- Gradient descent is typically much slower to converge than Newton's
- But much faster to compute

Newton's method

- Newton's method is exponentially faster for "con'vex" problems
- Although derivatives and Hessians may be hard to derive
- May not converge for non-convex problems

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

Online Optimization

- Often our objective function is an error
- The error is the cumulative error from many signals
- E.g. $E(W)=\sum_{x}\|y-f(x, W)\|^{2}$
- Optimization will find the W that minimizes total error across all x
- What if wanted to update our parameters after each input x instead of waiting for all of them to arrive?

A problem we saw

- Given the music \boldsymbol{M} and the score \boldsymbol{S} of only four of the notes, but not the notes themselves, find the notes

$$
M=N S \quad \Rightarrow \quad N=M \operatorname{Pinv}(\boldsymbol{S})
$$

The Actual Problem

- Given the music \boldsymbol{M} and the score \boldsymbol{S} find a matrix \boldsymbol{N} such the error of reconstruction
- $E=\sum_{i}\left\|M_{i}-\mathbf{N} S_{i}\right\|^{2}$
is minimized
- This is a standard optimization problem
- The solution gives us $\boldsymbol{N}=\boldsymbol{M} \operatorname{Pinv}(\boldsymbol{S})$

The Actual Problem

- Given the music \boldsymbol{M} and the score \boldsymbol{S} find a matrix \boldsymbol{N} such the error of reconstruction

$$
-E=\sum_{i}\left\|M_{i}-\mathbf{N} S_{i}\right\|^{2}
$$

is minimized

This requires "seeing" all of M and S to estimate N

- This is a standard optimization problem
- The solution gives us $\boldsymbol{N}=\boldsymbol{M} \operatorname{Pinv}(\boldsymbol{S})$

Online Updates

- What if we want to update our estimate of the notes after every input
- After observing each vector of music and its score
- A situation that arises in many similar problems

Incremental Updates

- Easy solution: To obtain the $\mathrm{k}^{\text {th }}$ estimate \mathbf{N}^{k}, minimize the error on the $k^{\text {th }}$ input
- The error on the $k^{\text {th }}$ input is:

$$
E_{k}=M_{K}-\mathbf{N} S_{K}
$$

- The squared error is:

$$
L_{k}=E_{K}^{2}=\left\|M_{K}-\mathbf{N} S_{K}\right\|^{2}
$$

- Differentiating it gives us

$$
\nabla \mathbf{N}=2\left(M_{K}-\mathbf{N} S_{K}\right) S_{K}^{T}=2 E_{K} S_{K}^{T}
$$

- Update the parameter to move in the direction of this update

$$
\mathbf{N}^{k+1}=\mathbf{N}^{k}+\eta E_{K} S_{K}^{T}
$$

- η must typically be very small to prevent the updates from being influenced entirely by the latest observation

Online update: Non-quadratic functions

- The earlier problem has a linear predictor as the underlying model

$$
\widehat{M}_{k}=\mathbf{N} S_{k}
$$

- We often have non-linear predictors

$$
\begin{gathered}
\hat{Y}_{k}=\mathrm{g}\left(\mathbf{W} X_{k}\right) \\
E_{k}=Y_{k}-\mathrm{g}\left(\mathbf{W} X_{k}\right)
\end{gathered}
$$

- The derivative of the squared error E_{K}^{2} w.r.t \mathbf{W} is often ugly or intractable
- For such problems we will still use the following generalization of the online update rule for linear predictors

$$
\mathbf{W}^{k+1}=\mathbf{W}^{k}+\eta E_{k} X_{k}^{T}
$$

- This is the Widrow-Hoff rule
- Based on quadratic Taylor series approximation of $g($.

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

A problem we recently saw

- The projection matrix P is the matrix that minimizes the total error between the projected matrix S and the original matrix M

CONSTRAINED optimization

- Recall the projection problem:
- Find P such that we minimize

$$
E=\sum_{i}\left\|M_{i}-P M_{i}\right\|^{2}
$$

- AND such that the projection is composed of the notes in N

$$
P=N C
$$

- This is a problem of constrained optimization

Optimization problem with constraints

- Finding the minimum of a function $f: \mathfrak{R}^{N} \longrightarrow \Re$ subject to constraints

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \\
& h_{j}(x)=\{1, \ldots, k\} \\
& j=\{1, \ldots, l\}
\end{array}
$$

- Constraints define a feasible region, which is nonempty

Optimization without constraints

- No Constraints $\min _{x} f(x, y, z)=x^{2}+y^{2}$
x

Optimization with constraints

- With Constraints

Optimization with constraints

- Minima w/ and w/o constraints $\min _{x, y} f(x, y)=x^{2}+y^{2}$
s.t. $2 x+y \leq-4$

Minimum
Without constraints

Solving for constrained optimization: the method of Lagrangians

- Consider a function $f(x, y)$ that must be maximized w.r.t (x, y) subject to

$$
g(x, y)=c
$$

- Note, we're using a maximization example to go with the figures that have been obtained from Wikipedia

The Lagrange Method

- Purple surface is $f(x, y)$
- Must be maximized
- Red curve is constraint $g(x, y)=c$
- All solutions must line on this curve
- Problem: Find the position of the largest $f(x, y)$ on the red curve!

The Lagrange Method

- Dotted lines are constant-value contours $f(x, y)=C$
- $f(x, y)$ has the same value C at all points on a contour
- The constrained optimum will be at the point where the highest constant-value contour touches the red curve
- It will be tangential to the red curve

The Lagrange Method

- The constrained optimum is where the highest constant-value contour is tangential to the red curve
- The gradient of $f(x, y)=C$ will be parallel to the gradient of $g(x, y)=c$

The Lagrange Method

- At the optimum

$$
\begin{gathered}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
g(x, y)=c
\end{gathered}
$$

- Find (x, y) that satisfies both above conditions

The Lagrange Method

$$
\begin{gathered}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
g(x, y)=c
\end{gathered}
$$

- Find (x, y) that satisfies both above conditions
- Combine the above two into one equation

$$
L(x, y, \lambda)=f(x, y)-\lambda(g(x, y)-c)
$$

- Optimize it for (x, y, λ)
- Solving for (x, y),

$$
\nabla_{x, y} L(x, y, \lambda)=0 \quad \Rightarrow \quad \nabla f(x, y)=\lambda \nabla g(x, y)
$$

- Solving for λ

$$
\frac{\partial L(x, y, \lambda)}{\partial \lambda}=0 \quad \Rightarrow \quad g(x, y)=c
$$

The Lagrange Method

$$
\begin{gathered}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
g(x, y)=c
\end{gathered}
$$

- Find (x, y) that satisfies both above conditions
- Combine the above two into one equation

$$
L(x, y, \lambda)=f(x, y)-\lambda(g(x, y)-c)
$$

- Optimize it for (x, y, λ)
- So

Formally:

- so to maximize $f(x, y): \max _{x, y}\left(\min _{\lambda} L(x, y, \lambda)\right)$
to minimize $f(x, y): \min _{x, y}\left(\max _{\lambda} L(x, y, \lambda)\right)$

Generalizes to inequality constraints

- Optimization problem with constraints

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } g_{i}(x) \leq 0 i=\{1, \ldots, k\} \\
& h_{j}(x)=0 j=\{1, \ldots, l\}
\end{aligned}
$$

- Lagrange multipliers $\lambda_{i} \geq 0, v \in \mathfrak{R}$

$$
L(x, \lambda, v)=f(x)+\sum_{i=1}^{k} \lambda_{i} g_{i}(x)+\sum_{j=1}^{l} v_{j} h_{j}(x)
$$

- The necessary condition

$$
\nabla L(x, \lambda, v)=0 \Leftrightarrow \frac{\partial L}{\partial x}=0, \frac{\partial L}{\partial \lambda}=0, \frac{\partial L}{\partial v}=0
$$

Generalizes to inequality constraints

Maximize w.r.t λ

- Optimization problem with C(If constraint is not satisfied

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } g_{i}(x) \leq 0 i=\{1, .
\end{aligned}
$$

$$
\begin{array}{ll}
h_{j}(x)=0 j=\{1, \ldots, & \text { Minimizing the loss while maximizing } \\
& \lambda \text { forces constraint to be satisfied } \\
\text { and } \lambda \text { to go to } 0
\end{array}
$$

- Lagrange multipliers $\lambda_{i} \geq 0, v \in \mathfrak{R}$

$$
L(x, \lambda, v)=f(x)+\sum_{i=1}^{k} \lambda_{i} g_{i}(x)+\sum_{j=1}^{l} v_{j} h_{j}(x)
$$

- The necessary condition

$$
\nabla L(x, \lambda, v)=0 \Leftrightarrow \frac{\partial L}{\partial x}=0, \frac{\partial L}{\partial \lambda}=0, \frac{\partial L}{\partial v}=0
$$

Lagrange multiplier example

$$
\begin{aligned}
& \min _{x, y} f(x, y)=x^{2}+y^{2} \\
& \text { s.t. } 2 x+y \leq-4
\end{aligned}
$$

- Lagrange multiplier

$$
L=x^{2}+y^{2}+\lambda(2 x+y+4)
$$

- Evaluate

$$
\nabla L(x, \lambda, v)=0 \Leftrightarrow \frac{\partial L}{\partial x}=0, \frac{\partial L}{\partial \lambda}=0, \frac{\partial L}{\partial v}=0
$$

Lagrange multiplier example

- Critical point

Optimization with constraints

- Lagrange Multiplier results
$\min _{x, y} f(x, y)=x^{2}+y^{2}$
s.t. $2 x+y \leq-4$

Minimum With constraints (-8/5,-4/5,16/5)

An Alternate Approach: Projected Gradients

- The constraints specify a "feasible set"
- The region of the space where the solution can lie

An Alternate Approach: Projected Gradients

- From the current estimate, take a step using the conventional gradient descent approach
- If the update is inside the feasible set, no further action is required

An Alternate Approach: Projected

Gradients

- If the update falls outside the feasible set,

An Alternate Approach: Projected Gradients

- If the update falls outside the feasible set,
- find the closest point to the update on the boundary of the feasible set

An Alternate Approach: Projected Gradients

- If the update falls outside the feasible set,
- find the closest point to the update on the boundary of the feasible set
- And move the updated estimate to this new point

The method of projected gradients

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } g_{i}(x) \leq 0 i=\{1, \ldots, k\}
\end{aligned}
$$

- The constraints specify a "feasible set"
- The region of the space where the solution can lie
- Update current estimate using the conventional gradient descent approach
- If the update is inside the feasible set, no further action is required
- If the update falls outside the feasible set,
- find the closest point to the update on the boundary of the feasible set
- And move the updated estimate to this new point
- The closest point "projects" the update onto the feasible set
- For many problems, however, finding this "projection" can be difficult or intractable

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

Regularization

- Sometimes we have additional "regularization" on the parameters
- Note these are not hard constraints
- E.g.
- Minimize $f(X)$ while requiring that the length $\|X\|^{2}$ is also minimum
- Minimize $f(X)$ while requiring that $|X|_{1}$ is also minimal
- Minimize $f(X)$ such that $g(X)$ is maximum
- We will encounter problems where such requirements are logical

Contour Plot of a Quadratic Objective

- Left: Actual 3D plot
$-\mathbf{x}=\left[x_{1}, x_{2}\right]$
- Right: constant-value contours
- Innermost contour has lowest value
- Unconstrained/unregularized solution: The center of the innermost contour

Examples of regularization

- Left: " L_{1} " regularization, find \mathbf{x} that minimizes $f(\mathbf{x})$
- Also minimize $|\mathbf{x}|_{1}$
- $|\mathbf{x}|_{1}=$ const is a diamond
- Find \mathbf{x} that also minimizes "diameter" of diamond
- Right: " L_{2} " or Tikhonov regularization
- Also minimize $\|\mathbf{x}\|^{2}$
- $\|\mathbf{x}\|^{2}=$ const is a circle (sphere)
- Find \mathbf{x} that also minimizes "diameter" of circle

Regularization

- The problem: multiple simultaneous objectives
- Minimize $f(X)$
- Also minimize $g_{1}(X), g_{2}(X), \ldots$
- These are "regularizers"
- Solution: Define
$-L(X)=f(X)+\lambda_{1} g_{1}(X)+\lambda_{2} g_{2}(X)+\cdots$
$-\lambda_{1}, \lambda_{2}$ etc are regularization parameters. These are set and not estimated
- Unlike Lagrange multipliers
- Minimize $L(X)$

Contour Plot of a Quadratic Objective

- Left: Actual 3D plot
$-\mathbf{x}=\left[x_{1}, x_{2}\right]$
- Right: equal-value contours of $f(\mathbf{x})$
- Innermost contour has lowest value

With L_{1} regularization

- L_{1} regularized objective $f(\mathbf{x})+\lambda|\mathbf{x}|_{1}$, for different values of regularization parameter λ
- Note: Minimum value occurs on x_{1} axis for $\lambda=1$
- "Sparse" solution

L_{2} and $\mathrm{L}_{1}-\mathrm{L}_{2}$ regularization

- L_{2} regularized objective $f(\mathbf{x})+\lambda\|\mathbf{x}\|^{2}$ results in "shorter" optimum
- $\mathrm{L}_{1}-\mathrm{L}_{2}$ regularized objective results in sparse, short optimum
$-\lambda=1$ for both regularizers in example

Regularization

- Sparse signal reconstruction
- Minimum Square Error
- Signal \hat{x} of length 100
- 10 non-zero components

- Reconstructing the original signal from noisy 50 measurements

$$
b=A \hat{x}+\varepsilon
$$

Signal reconstruction Minimum Square Error

- Signal reconstruction
- Least square problem $\min \|A x-b\|_{2}^{2}$

L2-Regularization

- Signal reconstruction
- Least squares problem $\min \|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}$

L1-Regularization

- Signal reconstruction
- Least square problem $\min \|A x-b\|_{2}^{2}+\gamma\|x\|_{1}$

Index

1. The problem of optimization
2. Direct optimization
3. Descent methods

- Newton's method
- Gradient methods

4. Online optimization
5. Constrained optimization

- Lagrange's method
- Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals

Convex optimization Problems

- An convex optimization problem is defined by
- convex objective function
- Convex inequality constraints f_{i}
- Affine equality constraints h_{j}

$$
\begin{aligned}
\min _{x} & f_{0}(x) \quad(\text { convex function }) \\
\text { s.t. } & f_{i}(x) \leq 0(\text { convex sets }) \\
& h_{j}(x)=0(\text { Affine })
\end{aligned}
$$

Convex Sets

- a set $C \in \mathfrak{R}^{n}$ is convex, if for each $x, y \in C$ and $\alpha \in[0,1]$ then $\alpha x+(1-\alpha) y \in C$

Convex functions

- A function $f: \mathcal{R}^{N} \rightarrow \mathcal{R}$ is convex if for each $x, y \in \operatorname{domain}(f)$ and $\alpha \in[0,1]$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

Concave functions

- A function $f: \mathcal{R}^{N} \rightarrow \mathcal{R}$ is convex if for each $x, y \in \operatorname{domain}(f)$ and $\alpha \in[0,1]$

$$
f(\alpha x+(1-\alpha) y) \geq \alpha f(x)+(1-\alpha) f(y)
$$

Concave

First order convexity conditions

- A differentiable function $f: \mathcal{R}^{N} \rightarrow \mathcal{R}$ is convex if and only if for $x, y \in \operatorname{domain}(f)$ the following condition is satisfied

$$
f(y) \geq f(x)+\nabla f(x)^{t}(y-x)
$$

Second order convexity conditions

- A twice-differentiable function $f: \mathcal{R}^{N} \rightarrow \mathcal{R}$ is convex if and only if for all $x, y \in \operatorname{domain}(f)$ the Hessian is superior or equal to zero

$$
\nabla^{2} f(x) \geq 0
$$

Properties of Convex Optimization

- For convex objectives over convex feasible sets, the optimum value is unique
- There are no local minima/maxima that are not also the global minima/maxima
- Any gradient-based solution will find this optimum eventually
- Primary problem: speed of convergence to this optimum

Lagrange multiplier duality

- Optimization problem with constraints

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad i=\{1, \ldots, k\} \\
& h_{j}(x)=0
\end{array} \quad j=\{1, \ldots, l\}
$$

- Lagrange multipliers $\lambda_{i} \geq 0, v \in \mathfrak{R}$

$$
L(x, \lambda, v)=f(x)+\sum_{i=1}^{k} \lambda_{i} g_{i}(x)+\sum_{j=1}^{l} v_{j} h_{j}(x)
$$

- The Dual function

$$
\inf _{x} L(x, \lambda, v)=\inf _{x}\left\{f(x)+\sum_{\substack{i=1 \\ 11-755 / 18-797}}^{k} \lambda_{i} g_{i}(x)+\sum_{j=1}^{l} v_{j} h_{j}(x)\right\}
$$

Lagrange multiplier duality

- The Original optimization problem

$$
\min _{x}\left\{\sup _{\lambda \geq 0, v} L(x, \lambda, v)\right\}
$$

- The Dual optimization

$$
\max _{\lambda \geq 0, v}\left\{\inf _{x} L(x, \lambda, v)\right\}
$$

- Property of the Dual for convex function

$$
\sup _{\lambda \geq 0, v}\left\{\inf _{x} L(x, \lambda, v)\right\}=f\left(x^{*}\right)
$$

Lagrange multiplier duality

- Previous Example
- $f(x, y)$ is convex
- Constraint function is convex

$\min f(x, y)=x^{2}+y^{2}$
x, y
s.t. $\quad 2 x+y \leq-4$

Lagrange multiplier duality

- Primal system

$$
\begin{array}{cl}
\min _{x, y} & f(x, y)=x^{2}+y^{2} \\
\text { s.t. } & 2 x+y \leq-4
\end{array}
$$

- Lagrange Multiplier

$$
L=x^{2}+y^{2}+\lambda(2 x+y-4)
$$

- Dual system

$$
\begin{aligned}
& \max _{\lambda} w(\lambda)=\frac{5}{4} \lambda^{2}+4 \lambda \\
& \text { s.t. } \lambda \geq 0
\end{aligned}
$$

$$
\frac{\partial L}{\partial x}=2 x+2 \lambda=0 \Rightarrow x=-\lambda
$$

$$
\frac{\partial L}{\partial y}=2 y+\lambda=0 \Rightarrow y=-\frac{\lambda}{2}
$$

Lagrange multiplier duality

- Dual system

$$
\begin{aligned}
& \max _{\lambda} w(\lambda)=\frac{5}{4} \lambda^{2}+4 \lambda \\
& \text { s.t. } \lambda \geq 0
\end{aligned}
$$

- Concave function

- Convex function become concave function in dual problem

$$
\frac{\partial w}{\partial x}=-\frac{5}{2} \lambda+4=0 \Rightarrow \lambda^{*}=\frac{8}{5}
$$

Lagrange multiplier duality

- Primal system

$$
\begin{array}{ll}
\min _{x, y} & f(x, y)=x^{2}+y^{2} \\
\text { s.t. } & 2 x+y \leq-4
\end{array}
$$

- Dual system

$$
\begin{aligned}
& \max _{\lambda} w(\lambda)=\frac{5}{4} \lambda^{2}+4 \lambda \\
& \text { s.t. } \lambda \geq 0
\end{aligned}
$$

- Evaluating $w\left(\lambda^{*}\right)=f\left(x^{*}, y^{*}\right)$

$$
\begin{aligned}
& x^{*}=-\frac{8}{5}, y^{*}=-\frac{4}{5} \\
& f\left(x^{*}, y^{*}\right)=\left(-\frac{8}{5}\right)^{2}+\left(-\frac{4}{5}\right)^{2} \\
& f\left(x^{*}, y^{*}\right)=\frac{16}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{*}=\frac{8}{5} \\
& w\left(\lambda^{*}\right)=-\frac{5}{4}\left(\frac{8}{5}\right)^{2}+\frac{32}{5} \\
& w\left(\lambda^{*}\right)=\frac{16}{5}
\end{aligned}
$$

