
Machine Learning for Signal
Processing

Deterministic Representations

Instructor: Mahmoud Al Ismail

11755/18979 – Slides taken from Bhiksha Raj
1

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 2

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 3

Representing Data

• The first and most important step in
processing signals is representing them
appropriately

11-755/18-797 4

Representing an Elephant
• It was six men of Indostan,

To learning much inclined,
Who went to see the elephant,
(Though all of them were blind),
That each by observation
Might satisfy his mind.

• The first approached the elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! But the elephant
Is very like a wall!“

• The second, feeling of the tusk,
Cried: "Ho! What have we here,
So very round and smooth and sharp?
To me 'tis very clear,
This wonder of an elephant
Is very like a spear!“

• The third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
"I see," quoth he, "the elephant
Is very like a snake!“

• The fourth reached out an eager hand,
And felt about the knee.
"What most this wondrous beast is like
Is might plain," quoth he;
"Tis clear enough the elephant
Is very like a tree."

• The fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most:
Deny the fact who can,
This marvel of an elephant
Is very like a fan.“

• The sixth no sooner had begun
About the beast to grope,
Than seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the elephant
Is very like a rope.“

• And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong.
Though each was partly right,
All were in the wrong.

11-755/18-797 5

Representation
• Describe these images

– Such that a listener
can visualize what you
are describing

11-755/18-797 6

Representation
• Describe these images

– Such that a listener
can visualize what you
are describing

• More images

11-755/18-797 7

Still more images

11-755/18-797 8

How do you describe them?

Representation

• Pixel-based descriptions are uninformative

• Content-based descriptions are infeasible in
the general case

11-755/18-797 9

Sounds

• Sounds are just sequences of numbers

• When plotted, they just look like blobs
– Which leads to “natural sounds are blobs”

• Or more precisely, “sounds are sequences of numbers that, when plotted,
look like blobs”

– Which wont get us anywhere
11-755/18-797 10

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 11

Representation
• Representation is description
• But in compact form
• Must describe the salient characteristics of the data

– E.g. a pixel-wise description of the two images here will be
completely different

• Must allow identification, comparison, storage,
reconstruction..

11-755/18-797 12

A A

Representing images

• The most common element in the image: background
– Or rather large regions of relatively featureless shading
– Uniform sequences of numbers

11-755/18-797 13

Representing images using a “plain” image

• Most of the figure is a more-or-less uniform shade
– Dumb approximation – a image is a block of uniform shade

• Will be mostly right!

• How to compute the “best” description? Projection
– Represent the images as vectors and compute the projection of the

image on the “basis”

11-755/18-797 14

Image =

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

Npixel

pixel
pixel

.

2
1

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

1
.
1
1

B =

ageBBBBBWPROJECTION
ageBpinvW

ageBW

TT Im.)(
Im)(

Im

1-==
=

»

Adding more bases

• Lets improve the approximation
• Images have some fast varying regions

– Dramatic changes
– Add a second picture that has very fast changes

• A checkerboard where every other pixel is black and the rest are white

11-755/18-797 15

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

-
=

11
11
11
11
11

B

] [

Im

21
2

1

2211

BBB
w
w

W

BwBwage

=ú
û

ù
ê
ë

é
=

+»

B1 B2B2B1

Image.)(
Image)(

Image

1 TT BBBBBWPROJECTION
BpinvW

BW

-==
=

»

Adding still more bases

• Regions that change with different speeds

11-755/18-797 16

ageBpinvW
ageBW
Im)(

Im
=

»

] [

.

.

...Im

3213
2
1

332211

BBBBw
w
w

W

BwBwBwage

=

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

=

+++»

B1 B2 B3 B4 B5 B6

Getting closer at 625 bases!

Representation using checkerboards
• A “standard” representation

– Checker boards are the same regardless of the picture you’re trying to
describe

• As opposed to using “nose shape” to describe faces and “leaf colour” to
describe trees.

• Any image can be specified as (for example)
Image
= 0.8 𝑐ℎ𝑒𝑐𝑘𝑒𝑟𝑏𝑜𝑎𝑟𝑑3 + 0.2 𝑐ℎ𝑒𝑐𝑘𝑒𝑟𝑏𝑜𝑎𝑟𝑑6
+ 0.82𝑐ℎ𝑒𝑐𝑘𝑒𝑟𝑏𝑜𝑎𝑟𝑑7 +⋯

• The definition is sufficient to reconstruct the image to some
degree
– Not perfectly though

11-755/18-797 17

What about sounds?

• Square wave equivalents of checker boards

11-755/18-797 18

Projecting sounds

11-755/18-797 19

SignalBpinvBBWPROJECTION
SignalBpinvW

SignalBW

)).(.(
)(

==
=

»

] [321

3

2
1

332211

BBBB
w
w
w

W

BwBwBwSignal

=
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

++»

ú
ú
ú

û

ù

ê
ê
ê

ë

é

B1 B2 B3

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

3

2

1

w
w
w

=

General Philosophy of Representation
• Identify a set of standard structures

– E.g. checkerboards
– We will call these “bases”

• Express the data as a weighted combination of these bases
– X = w1 B1 + w2 B2 + w3 B3 + …

• Chose weights w1, w2, w3.. for the best representation of X
– I.e. the error between X and Si wi Bi is minimized
– The error is generally chosen to be ||X – Si wi Bi||2

• The weights w1, w2, w3.. fully specify the data
– Since the bases are known beforehand
– Knowing the weights is sufficient to reconstruct the data

11-755/18-797 20

CRITERIA FOR “GOOD” BASES

11-755/18-797 21

Bases requirements
• Non-redundancy

– Each basis must represent information not already
represented by other bases

– I.e. bases must be orthogonal
• <Bi, Bj> = 0 for i != j

– Mathematical benefit: can compute wi = <Bi,X>

• Compactness
– Must be able to represent most of X with fewest bases
– Completeness: For D-dimensional data, need no more

than D bases

11-755/18-797 22

Useful fact: Property of orthogonal
bases

• The inverse of a matrix whose columns (rows) are unit length and
orthogonal to one another is its transpose

• If the columns (rows) are not unit length (but still orthogonal), the inverse
is still a transpose, but with the rows (columns) scaled by the squared
length of the column vectors

• This is also true for non-square matrices: The pseudo inverse is just the
transpose
– With scaled rows, if the original columns are not unit length

11755/18979 23

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

333231

232221

131211

bbb
bbb
bbb

B
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=-

332313

322212

312111
1

bbb
bbb
bbb

B

Bases based representation

• Place all bases in basis matrix B

• For orthogonal bases

11-755/18-797 24

XBPinvW
XBW
)(=

»

2||||
,

i

i
i B

XBw ><
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

3

2

1

3

2

1

X
X
X

w
w
w

ú
ú
ú

û

ù

ê
ê
ê

ë

é

333231

232221

131211

bbb
bbb
bbb

Bases based representation

• Challenge: Choice of appropriate bases

11-755/18-797 25

Why checkerboards are great bases
• We cannot explain one

checkerboard in terms of
another
– The two are orthogonal to one

another!

• This means we can determine
the contributions of individual
bases separately
– Joint decomposition with multiple

bases gives the same result as
separate decomposition with each

– This never holds true if one basis
can explain another

11-755/18-797 26

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

-
=

11
11
11
11
11

B

B1 B2

] [

Im

21
2

1
2211

BBB
w
w

W

BwBwage

=ú
û

ù
ê
ë

é
=

+»

𝑤: =
𝐵:, 𝐼𝑚𝑎𝑔𝑒

𝐵: 7

Checker boards are not good bases

• Sharp edges
– Can never be used to explain rounded curves

11-755/18-797 27

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 28

Sinusoids ARE good bases

• They are orthogonal
• They can represent rounded shapes nicely

– Unfortunately, they cannot represent sharp corners

11-755/18-797 29

What are the frequencies of the sinusoids
• Follow the same format as the

checkerboard:
– DC
– The entire length of the signal is

one period
– The entire length of the signal is

two periods.
• And so on..

• The k-th sinusoid:
– F(k) = sin(2pkn/N)

• N is the length of the signal
• k is the number of periods in N

samples

11-755/18-797 30

How many frequencies in all?

• A max of L/2 periods are possible
• If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2

– X) periods
– With sign inversion

• Example for L = 20
– Red curve = sine with 9 cycles (in a 20 point sequence)

• Y(n) = sin(2p9n/20)
– Green curve = sine with 11 cycles in 20 points

• Y(n) = -sin(2p11n/20)
– The blue lines show the actual samples obtained

• These are the only numbers stored on the computer
• This set is the same for both sinusoids

11-755/18-797 31

How to compose the signal from sinusoids

• The sines form the vectors of the projection matrix
– Pinv() will do the trick as usual

11-755/18-797 32

] [321

3

2
1

332211

BBBB
w
w
w

W

BwBwBwSignal

=
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

++»

ú
ú
ú

û

ù

ê
ê
ê

ë

é

B1 B2 B3

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

3

2

1

w
w
w

=

𝐵𝑊 ≈ 𝑆𝑖𝑔𝑛𝑎𝑙
𝑊 = 𝑃𝑖𝑛𝑣 𝐵 𝑆𝑖𝑔𝑛𝑎𝑙

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = (𝐵 𝐵K𝐵 L6𝐵K) 𝑆𝑖𝑔𝑛𝑎𝑙

How to compose the signal from sinusoids

• The sines form the vectors of the projection matrix
– Pinv() will do the trick as usual

11-755/18-797 33

SignalBpinvW
SignalBW
)(=

»

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

-

=

=
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

++»

]1[
.

]1[
]0[

] [321

3

2
1

332211

Ls

s
s

Signal

BBBB
w
w
w

W

BwBwBwSignal

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

---]1[
.
.

]1[
]0[

.

.

/L))1).(2/(.sin(2../L))1.(1.sin(2/L))1.(0.sin(2
.....
.....

/L)1).2/(.sin(2../L)1.1.sin(2/L)1.0.sin(2
/L)0).2/(.sin(2../L)0.1.sin(2/L)0.0.sin(2

2/

2

1

Ls

s
s

w

w
w

LLLL

L
L

Lppp

ppp
ppp

L/2 columns only

)/2sin(Lknp

Interpretation..

• Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
– The amplitude is the weight of the sinusoid

• This can be done independently for each sinusoid

11-755/18-797 34

Interpretation..

• Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
– The amplitude is the weight of the sinusoid

• This can be done independently for each sinusoid

11-755/18-797 35

Interpretation..

• Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
– The amplitude is the weight of the sinusoid

• This can be done independently for each sinusoid

11-755/18-797 36

Interpretation..

• Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
– The amplitude is the weight of the sinusoid

• This can be done independently for each sinusoid

11-755/18-797 37

• Every sine starts at zero
– Can never represent a signal that is non-zero in the first sample!

• Every cosine starts at 1
– If the first sample is zero, the signal cannot be represented!

11-755/18-797 38

Sines by themselves are not enough

The need for phase

• Allow the sinusoids to move!

• How much do the sines shift?

11-755/18-797 39

....)/2sin()/2sin(2211 ++++= fpfp NknwNknwsignal

Sines are shifted:
do not start with
value = 0

Determining phase

• Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes
– Find the combination of amplitude and phase that results in the

lowest squared error

• We can still do this separately for each sinusoid
– The sinusoids are still orthogonal to one another

11-755/18-797 40

Determining phase

• Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes
– Find the combination of amplitude and phase that results in the

lowest squared error

• We can still do this separately for each sinusoid
– The sinusoids are still orthogonal to one another

11-755/18-797 41

Determining phase

• Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes
– Find the combination of amplitude and phase that results in the

lowest squared error

• We can still do this separately for each sinusoid
– The sinusoids are still orthogonal to one another

11-755/18-797 42

Determining phase

• Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes
– Find the combination of amplitude and phase that results in the

lowest squared error

• We can still do this separately for each sinusoid
– The sinusoids are still orthogonal to one another

11-755/18-797 43

The problem with phase

• This can no longer be expressed as a simple linear algebraic
equation
– The “basis matrix” depends on the unknown phase

• I.e. there’s a component of the basis itself that must be estimated!

• Linear algebraic notation can only be used if the bases are
fully known
– We can only (pseudo) invert a known matrix

11-755/18-797 44

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

+-+-+-

+++
+++

]1[
.
.

]1[
]0[

.

.

)/L)1).(2/(.sin(2..)/L)1.(1.sin(2)/L)1.(0.sin(2
.....
.....

)/L1).2/(.sin(2..)/L1.1.sin(2)/L1.0.sin(2
)/L0).2/(.sin(2..)/L0.1.sin(2)/L0.0.sin(2

2/

2

1

L/210

L/210

L/210

Ls

s
s

w

w
w

LLLL

L
L

Lfpfpfp

fpfpfp
fpfpfp

L/2 columns only

• The cosine is the real part of a complex exponential
– The sine is the imaginary part

• A phase term for the sinusoid becomes a multiplicative
term for the complex exponential!! 45

Complex Exponential to the rescue
𝑏 𝑛 = 𝑠𝑖𝑛(𝑓𝑟𝑒𝑞×𝑛)

𝑏 𝑛 = 𝑒𝑥𝑝 𝑗. 𝑓𝑟𝑒𝑞. 𝑛 = cos 𝑓𝑟𝑒𝑞. 𝑛 + 𝑗𝑠𝑖𝑛(𝑓𝑟𝑒𝑞. 𝑛)
𝑗 = −1

𝑒𝑥𝑝 𝑗. (𝑓𝑟𝑒𝑞. 𝑛 + 𝜑) = 𝑒𝑥𝑝 𝑗. 𝑓𝑟𝑒𝑞. 𝑛)exp(𝑗𝜑
= cos 𝑓𝑟𝑒𝑞. 𝑛 + 𝜑 + 𝑗𝑠𝑖𝑛(𝑓𝑟𝑒𝑞. 𝑛 + 𝜑)

11-755/18-797 46

A x

Explaining with Complex Exponentials

+

=

+B x

C x

• Like sinusoids, a complex exponential of one
frequency can never explain one of another
– They are orthogonal

• They represent smooth transitions

• Bonus: They are complex
– Can even model complex data!

• They can also model real data
– exp(j x) + exp(-j x) is real

• cos(x) + j sin(x) + cos(x) – j sin(x) = 2cos(x)

11-755/18-797 47

Complex exponentials are well behaved

Complex Exponential bases

• Explain the data using L complex exponential bases

11-755/18-797 48

b0 b1 bL/2

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

=
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

-

+

-

1

12/

2/

12/

0

.

.

L

L

L

L

w

w
w
w

w

Complex Exponential Bases: Algebraic
Formulation

• Note: The basis do not include phase
– The phase is obtained through a multiplicative

term exp(𝑗𝜑) which factors into S and is
estimated

11-755/18-797 49

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-
-

-]1[
.
.

]1[
]0[

.

.

/L))1).(1(.exp(j2./L))1).(2/(.exp(j2./L))1.(0.exp(j2
.....
.....

/L)1).1(.exp(j2../L)1).2/(.exp(j2./L)1.0.exp(j2
/L)0).1(.exp(j2../L)0).2/(.exp(j2./L)0.0.exp(j2

1

2/

0

Ls

s
s

S

S

S

LLLLL

LL
LL

L

L

ppp

ppp
ppp

• Conjugate symmetry

– is real
• The complex exponentials with frequencies equally

spaced from L/2 are complex conjugates

11-755/18-797 50

÷
ø

ö
ç
è

æ +
+÷
ø

ö
ç
è

æ -
L

nxLj
L

nxLj)2/(2exp)2/(2exp pp

Complex exponentials are well behaved

• is real

– The complex exponentials with frequencies equally spaced from
L/2 are complex conjugates

• “Frequency = k” è k periods in L samples

– Is also real
– If the two exponentials are multiplied by numbers that are

conjugates of one another the result is real

11-755/18-797 51

÷
ø

ö
ç
è

æ +
+÷
ø

ö
ç
è

æ -
L

nxLj
L

nxLj)2/(2exp)2/(2exp pp

÷
ø

ö
ç
è

æ +
+÷
ø

ö
ç
è

æ -
L

nxLjaconjugate
L

nxLja)2/(2exp)()2/(2exp pp

Complex exponentials are well behaved

Complex Exponential bases

• For real signals:
• The weights given to the (L/2 + k)th basis and the (L/2 – k)th

basis should be complex conjugates, to make the result real
• Fortunately, a least squares fit will give us complex conjugate

weights to both bases automatically
11-755/18-797 52

b0 b1 bL/2

ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

-

+

-

1

12/

2/

12/

0

.

.

L

L

L

L

w

w
w
w

w

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

=

Complex
conjugates

)(2/2/ kLkL wconjugatew -+ =

Complex Exponential Bases: Algebraic
Formulation

• Note: The basis
• Note that SL/2+x = conjugate(SL/2-x) for real s

11-755/18-797 53

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-
-

-]1[
.
.

]1[
]0[

.

.

/L))1).(1(.exp(j2./L))1).(2/(.exp(j2./L))1.(0.exp(j2
.....
.....

/L)1).1(.exp(j2../L)1).2/(.exp(j2./L)1.0.exp(j2
/L)0).1(.exp(j2../L)0).2/(.exp(j2./L)0.0.exp(j2

1

2/

0

Ls

s
s

S

S

S

LLLLL

LL
LL

L

L

ppp

ppp
ppp

Shorthand Notation

• Note that for real signals SL/2+x = conjugate(SL/2-x)

11-755/18-797 54

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

-

-

-

]1[
.
.

]1[
]0[

.

.

..
.....
.....

...

...

)/2exp(1

1

2/

0

1,11,2/1,0

1,11,2/1,0

0,10,2/0,0

,

Ls

s
s

S

S

S

WWW

WWW
WWW

Lknj
L

W

L

L

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

nk
L p

A quick detour
• Real Orthonormal matrix:

– XXT = X X-1 = I
• But only if all entries are real

– The inverse of X is its own transpose

• Definition: Hermitian
– XH = Complex conjugate of XT

• Complex Orthonormal matrix
– XXH = XH X = I
– The inverse of a complex orthonormal matrix is its own

Hermitian
11-755/18-797 55

𝑾L𝟏 = 𝑾^

11-755/18-797 56

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

-

-

1,11,2/1,0

1,11,2/1,0

0,10,2/0,0

..
.....
.....

...

...

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

WWW

WWW
WWW

W

)/2exp(1, Lknj
L

W nk
L p=

)/2exp(1, Lknj
L

W nk
L p-=-

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

)1(),1(2/),1(0),1(

1,12/,1,0,1

1,02/,00,0

..
.....
.....

...

...

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

H

WWW

WWW
WWW

W

n The complex exponential basis is orthogonal
q Its inverse is its own Hermitian
q W-1 = WH

Doing it in matrix form

– Because 𝑊L6 = 𝑊^

11-755/18-797 57

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-]1[
.
.

]1[
]0[

..
.....
.....

...

...

.

.

)1(),1(2/),1(0),1(

1,12/,1,0,1

1,02/,00,0

1

2/

0

Ls

s
s

WWW

WWW
WWW

S

S

S

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

L

L

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

-

-

]1[
.
.

]1[
]0[

.

.

..
.....
.....

...

...

1

2/

0

1,11,2/1,0

1,11,2/1,0

0,10,2/0,0

Ls

s
s

S

S

S

WWW

WWW
WWW

L

L

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

The Discrete Fourier Transform

• The matrix to the right is called the “Fourier
Matrix”

• The weights (S0, S1. . Etc.) are called the Fourier
transform

11-755/18-797 58

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-]1[
.
.

]1[
]0[

..
.....
.....

...

...

.

.

)1(),1(2/),1(0),1(

1,12/,1,0,1

1,02/,00,0

1

2/

0

Ls

s
s

WWW

WWW
WWW

S

S

S

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

L

L

• The matrix to the left is the inverse Fourier matrix

• Multiplying the Fourier transform by this matrix gives us
the signal right back from its Fourier transform

11-755/18-797 59

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

-

-

-

]1[
.
.

]1[
]0[

.

.

..
.....
.....

...

...

1

2/

0

1,11,2/1,0

1,11,2/1,0

0,10,2/0,0

Ls

s
s

S

S

S

WWW

WWW
WWW

L

L

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

The Inverse Discrete Fourier Transform

The Fourier Matrix

• Left panel: The real part of the Fourier matrix
– For a 32-point signal

• Right panel: The imaginary part of the Fourier matrix

11-755/18-797 60

The FAST Fourier Transform

• The outcome of the transformation with the Fourier matrix is the
DISCRETE FOURIER TRANSFORM (DFT)

• The FAST Fourier transform is an algorithm that takes advantage of
the symmetry of the matrix to perform the matrix multiplication
really fast

• The FFT computes the DFT
– Is much faster if the length of the signal can be expressed as 2N

11-755/18-797 61

Images
• The complex exponential is two dimensional

– Has a separate X frequency and Y frequency
• Would be true even for checker boards!

– The 2-D complex exponential must be unravelled
to form one component of the Fourier matrix

• For a KxL image, we’d have K*L bases in the matrix

11-755/18-797 62

Typical Image Bases

• Only real components of bases shown

11-755/18-797 63

DFT: Properties

• The DFT coefficients are complex
– Have both a magnitude and a phase

• Simple linear algebra tells us that
– DFT(A + B) = DFT(A) + DFT(B)
– The DFT of the sum of two signals is the DFT of their sum

• A horribly common approximation in sound processing
– Magnitude(DFT(A+B)) = Magnitude(DFT(A)) + Magnitude(DFT(B))
– Utterly wrong
– Absurdly useful

11-755/18-797 64

)exp(|| kkk SjSS Ð-=

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 65

Symmetric signals

• If a signal is (conjugate) symmetric around L/2, the Fourier coefficients are real!
– A(L/2-k) * exp(-j *f*(L/2-k)) + A(L/2+k) * exp(-j*f*(L/2+k)) is always real if

A(L/2-k) = conjugate(A(L/2+k))
– We can pair up samples around the center all the way; the final summation term is always real

• Overall symmetry properties
– If the signal is real, the FT is (conjugate) symmetric
– If the signal is (conjugate) symmetric, the FT is real
– If the signal is real and symmetric, the FT is real and symmetric

11-755/18-797 66

*
*
**

**
**

* *

*
**

**
*

*

Contributions from points equidistant from L/2
combine to cancel out imaginary terms

The Discrete Cosine Transform

• Compose a symmetric signal or image
– Images would be symmetric in two dimensions

• Compute the Fourier transform
– Since the FT is symmetric, sufficient to store only half the coefficients

(quarter for an image)
• Or as many coefficients as were originally in the signal / image

11-755/18-797 67

DCT

• Not necessary to compute a 2xL sized FFT
– Enough to compute an L-sized cosine transform
– Taking advantage of the symmetry of the problem

• This is the Discrete Cosine Transform

11-755/18-797 68

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

---+-

-+
-+

-]1[
.
.

]1[
]0[

.

.

/2L))1).(5.0(.cos(2../2L))1.(0.5)1.(cos(2/2L))1).(5.0(.cos(2
.....
.....

/2L)1).5.0(.cos(2../2L)1.0.5)1.(cos(2/2L)1).5.0(.cos(2
/2L)0).5.0(.cos(2../2L)0.0.5)1.(cos(2/2L)0).5.0(cos(2

1

1

0

Ls

s
s

w

w
w

LLLL

L
L

Lppp

ppp
ppp

L columns

Images and DCT

• Most common coding is the DCT
• JPEG: Each 8x8 element of the picture is converted using a

DCT
• The DCT coefficients are quantized and stored

– Degree of quantization = degree of compression

• Also used to represent textures etc for pattern recognition
and other forms of analysis

11-755/18-797 69

DCT

Multiply by
DCT matrix

Representing Sound and Images

• “Deterministic” representations of audio time
series and image data..

11-755/18-797 70

Aside: some tricks to computing
Fourier transforms

• Direct computation of the Fourier transform
can result in poor representations

• Boundary effects can cause error
– Solution : Windowing

• The size of the signal can introduce
inefficiency
– Solution: Zero padding

11-755/18-797 71

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 72

Sound: A thought experiment

• Analysis: Analyze the sound
using a bank of tuning forks

• Transduce the vibrations
and store / transmit them

• Synthesis: Activate tuning
forks with the transduced
signal

• What do we get?

11-755/18-797 73

+

FT

Inverse FT

The Fourier Transform and Perception:
Sound

• The Fourier transforms
represents the signal
analogously to a bank of
tuning forks

• Our ear has a bank of
tuning forks

• The output of the Fourier
transform is perceptually
very meaningful

11-755/18-797 74

+

FT

Inverse FT

The Fourier Transform and Perception:
Sound

• Processing Sound:
• Analyze the sound using a

bank of tuning forks
• Sample the transduced

output of the turning forks
at periodic intervals

11-755/18-797 75

+

FT

Inverse FT

Sound parameterization

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

11-755/18-797 76

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

• Adjacent segments overlap by 15-48 ms

11-755/18-797 77

Sound parameterization

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

• Adjacent segments overlap by 15-48 ms

11-755/18-797 78

Sound parameterization

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

• Adjacent segments overlap by 15-48 ms

11-755/18-797 79

Sound parameterization

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

• Adjacent segments overlap by 15-48 ms

11-755/18-797 80

Sound parameterization

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

• Adjacent segments overlap by 15-48 ms

11-755/18-797 81

Sound parameterization

• The signal is processed in segments of 25-64 ms
– Because the properties of audio signals change quickly
– They are “stationary” only very briefly

• Adjacent segments overlap by 15-48 ms

11-755/18-797 82

Sound parameterization

11-755/18-797 83

Each segment is typically 25-64
milliseconds wide
Audio signals typically do not change
significantly within this short time interval

Segments shift every 10-
16 milliseconds

Sound parameterization

11-755/18-797 84

Each segment is windowed
and a DFT is computed from it

Windowing

Frequency (Hz)

C
om

pl
ex

sp

ec
tru

m

Sound parameterization

11-755/18-797 85

Each segment is windowed
and a DFT is computed from it

Windowing

Sound parameterization

Computing a Spectrogram

11-755/18-797 86

Compute Fourier Spectra of segments of audio and stack them side-by-side

Computing a Spectrogram

11-755/18-797 87

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 88

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 89

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 90

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 91

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 92

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 93

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 94

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 95

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 96

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 97

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 98

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 99

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 100

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 101

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing a Spectrogram

11-755/18-797 102

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

Computing the Spectrogram

11-755/18-797 103

Compute Fourier Spectra of segments of audio and stack them side-by-side
The Fourier spectrum of each window can be inverted to get back the signal.
Hence the spectrogram can be inverted to obtain a time-domain signal

In this example each segment was 25 ms long and adjacent segments overlapped by
15 ms

The result of parameterization

• Each column here represents the FT of a single segment of signal
64ms wide.
– Adjacent segments overlap by 48 ms.

• DFT details
– 1024 points (16000 samples a second).
– 2048 point DFT – 1024 points of zero padding.
– Only 1025 points of each DFT are shown

• The rest are “reflections”

• The value shown is actually the magnitude of the complex spectral
values
– Most of our analysis / operations are performed on the magnitude

11-755/18-797 104

Magnitude and phase

• All the operations (e.g. the examples shown in the previous
class) are performed on the magnitude

• The phase of the complex spectrum is needed to invert a
DFT to a signal
– Where does that come from?

• Deriving phase is a serious, not-quite solved problem.
11-755/18-797 105

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

-

-

-

]1[
.
.

]1[
]0[

.

.

..
.....
.....

...

...

1

0

1,11,2/1,0

1,11,2/1,0

0,10,2/0,0

Ls

s
s

S

S

S

WWW

WWW
WWW

L

k

LL
L

LL
L

L
L

L
L

L
LL

L
L

L
LL

))(.exp(|| kkk SphasejSS =

?

Phase
• Common tricks: Obtain the phase from the original signal

– Sft = DFT(signal)
– Phase1 = phase(Sft)

• Each term is of the form real + j imag
• For each element, compute arctan(imag/real)

– Smagnitude = magnitude(Sft)
• For each element compute Sqrt(real*real + imag*imag)

– ProcessedSpectrum = Process(Smagnitude)
– New SFT = ProcessedSpectrum*exp(j*Phase)
– Recover signal from SFT

• Some other tricks:
– Compute the FT of a different signal of the same length
– Use the phase from that signal

11-755/18-797 106

Returning to the speech signal

• For each complex spectral vector, compute a signal from the inverse DFT
– Make sure to have the complete FT (including the reflected portion)

• If need be window the retrieved signal
• Overlap signals from adjacent vectors in exactly the same manner as

during analysis
– E.g. If a 48ms (768 sample) overlap was used during analysis, overlap adjacent

segments by 768 samples

11-755/18-797 107

Actually a matrix of complex numbers

16ms (256 samples)

Additional tricks
• The basic representation is the

magnitude spectrogram
• Often it is transformed to a log spectrum

– By computing the log of each entry in the
spectrogram matrix

– After processing, the entry is
exponentiated to get back the magnitude
spectrum

• To which phase may be factored in to get
a signal

• The log spectrum may be “compressed”
by a dimensionality reducing matrix
– Usually a DCT matrix

11-755/18-797 108

Log()

x DCT(24x1025)

Index
• Representing signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 109

Representing Images

• DCT of small segments
– 8x8

– Each image becomes a matrix of DCT vectors

• DCT of the image

11-755/18-797 110

DCT

Npixels / 64 columns

Downsampling-based representations

• Downsampling an example
– Trying to reduce size by factor of 4 each time

• Select every alternate sample row-wise and column-wise

– What exactly did we capture?
• Clue : Results are horrible.

11-755/18-797 111

Downsampling-based representations

• Nasty aliasing effects!

11-755/18-797 112

The Gaussian Kernel

• A two-dimensional image of a Gaussian
• Characterized by

– Center (mean)
– Standard deviation s (assumed same in both directions)

• I.e. sphereical Gaussian
• The image can be represented by a vector

11-755/18-797 113

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

Ng

g
g

!

2

1

The Gaussian Kernel matrix

• Each column is one Gaussian
– Representing a Gaussian centered at one of the pixels

in the image
• As many columns as pixels

– Also as many rows as pixels
11-755/18-797 114

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

NNNN

N

N

ggg

ggg
ggg

!

"#""

!

!

21

22221

11211

G =

Downsampling-based representations

• Transform with Gaussian
kernel matrix

• Then downsample
11-755/18-797 115

G X
ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

Np

p
p

X
!

2

1

Downsampling-based representations

11-755/18-797 116

G X

G1 X1

The Gaussian Pyramid

• Successive smoothing and scaling
• The entire collection of images is the Gaussian

pyramid

11-755/18-797 117

Laplacians

11-755/18-797 118

G X

X - GX

G1 X1

X1 – G1X1

Laplacian Pyramid

11-755/18-797 119

Remember..

• The Gaussian is an anti-aliasing filter
• The Gaussian pyramid is the low-pass filtered

version of the image
• The Laplacian pyramid is the high-pass filtered

version of the image
11-755/18-797 120

Antialiasing
Filter Sampling

Analog signal Digital signal

The Gaussian/Laplacian
Decomposition

• Each low-pass filtered image is downsampled
• The process is recursively performed

11-755/18-797 121

The discrete wavelet transform

• Very similar in structure
• But the bases at each scale are orthogonal to

bases at other scales
– As opposed to a Gaussian kernel matrix

11-755/18-797 122

Haar Wavelets

• We have already encountered Haar wavelets

11-755/18-797 123

Other characterizations

• Content-based characterizations
– E.g. Hough transform

• Captures linear arrangements of pixels

– Radon transform
– SIFT features
– Etc.

11-755/18-797 124

Summary
• The need to represent signals
• Basis-based representations
• Haar bases

– For images and sound
• Fourier bases

– For images and sound
• Generalizes to any time-series signal or 2D signal

• Spectrograms
– For sound and time-series data

• Real Fourier representations, aka DCT
– For sound and images

• Gaussian and Laplacian pyramids for images

11-755/18-797 125

Next up..

• The representations we saw today were
deterministic

• The bases were designed without considering
the specific data set

• Next: data-dependent bases

11-755/18-797 126

