Machine Learning for Signal Processing
 Detecting faces (\& other objects) in images

Bhiksha Raj

Last Lecture: How to describe a face

The typical face

- A "typical face" that captures the essence of "facehood"..
- The principal Eigen face..

A collection of least squares typical faces

- Extension: Many Eigenfaces
- Approximate every face f as $\mathrm{f}=\mathrm{w}_{\mathrm{f}, 1} \mathrm{~V}_{1}+\mathrm{w}_{\mathrm{f}, 2} \mathrm{~V}_{2}+. .+\mathrm{w}_{\mathrm{f}, \mathrm{k}} \mathrm{V}_{\mathrm{k}}$
- V_{2} is used to "correct" errors resulting from using only V_{1}
$-V_{3}$ corrects errors remaining after correction with V_{2}
- And so on..
- $\mathrm{V}=\left[\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}\right]$ can be computed through Eigen analysis

Detecting Faces in Images

Detecting Faces in Images

- Finding face like patterns
- How do we find if a picture has faces in it
- Where are the faces?
- A simple solution:
- Define a "typical face"
- Find the "typical face" in the image

Given an image and a 'typical' face ${ }^{\text {mus. }}$ how do I find the faces?

Finding faces in an image

- Picture is larger than the "typical face"
- E.g. typical face is 100×100, picture is 600×800
- First convert to greyscale
$-R+G+B$
- Not very useful to work in color

Finding faces in an image

- Goal .. To find out if and where images that look like the "typical" face occur in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
- These are the spots at which we probably have a face!

How to "match"

- What exactly is the "match"
- What is the match "score"

How to "match"

- What exactly is the "match"
- What is the match "score"
- The DOT Product
- Express the typical face as a vector
- Express the region of the image being evaluated as a vector
- Compute the dot product of the typical face vector and the "region" vector

What do we get

- The right panel shows the dot product at various locations
- Redder is higher
- The locations of peaks indicate locations of faces!

What do we get

- The right panel shows the dot product at various locations
- Redder is higher
- The locations of peaks indicate locations of faces!
- Correctly detects all three faces
- Likes George's face most
- He looks most like the typical face
- Also finds a face where there is none!
- A false alarm

What do we get

- The right panel shows the dot product at various locations
- Redder is higher
- The locations of peaks indicate locations of faces!
- Correctly detects all three faces
- Likes George’s face most
- He looks most like the typical face
- Also finds a face where there is none!
- A false alarm

Sliding windows solves only the issue of location - what about scale?

- Not all faces are the same size
- Some people have bigger faces
- The size of the face on the image changes with perspective
- Our "typical face" only represents one of these sizes

Scale-Space Pyramid

Scale the image
 (but keep your typical face template fixed)

Figure 1.4: The Scale-Space Pyramid. The detector is run using the sliding windows approach over the input image at various scales. When the scale of the person matches the detector scale the classifier will (hopefully) fire yielding an accurate detection.

Location - Scale - What about Rotation?

- The head need not always be upright!
- Our typical face image was upright

Solution

- Create many "typical faces"
- One for each scaling factor
- One for each rotation
- How will we do this?
- Match them all
- Does this work
- Kind of .. Not well enough at all
- We need more sophisticated models

Face Detection: A Quick Historical Perspective

Figure 1: The basic algorithm used for face detection.

- Many more complex methods
- Use edge detectors and search for face like patterns
- Find "feature" detectors (noses, ears..) and employ them in complex neural networks..
- The Viola Jones method
- Boosted cascaded classifiers

Face Detection: A Quick Historical Perspective

Figure 1: The basic algorithm used for face detection.

- Many more complex methods
- Use edge detectors and search for face like patterns
- Find "feature" detectors (noses, ears..) and employ them in complex neural networks..
- The Viola Jones method (30K+ Citations!)
- Boosted cascaded classifiers

And even before that - what is classification?

- Given "features" describing an entity, determine the category it belongs to
- Walks on two legs, has no hair. Is this
- A Chimpanizee
- A Human
- Has long hair, is $5^{\prime} 6^{\prime \prime}$ tall, is this
- A man
- A woman
- Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25 , "nose" pattern with score 0.1. Are we looking at
- A face
- Not a face?

Classification

- Multi-class classification
- Many possible categories
- E.g. Sounds "AH, IY, UW, EY.."
- E.g. Images "Tree, dog, house, person.."
- Binary classification
- Only two categories
- Man vs. Woman
- Face vs. not a face...

Detection vs Classification

- Detection: Find an X
- Classification: Find the correct label X, Y, Z etc.

Detection vs Classification

- Detection: Find an X
- Classification: Find the correct label X, Y, Z etc.
- Binary Classification as Detection: Find the correct label X or not-X

Face Detection as Classification

For each square, run a classifier to find out if it is a face or not

- Faces can be many sizes
- They can happen anywhere in the image
- For each face size
- For each location
- Classify a rectangular region of the face size, at that location, as a face or not a face
- This is a series of binary classification problems

Binary classification

- Classification can be abstracted as follows
- $\mathrm{H}: \mathrm{X} \rightarrow(+1,-1)$
- A function H that takes as input some X and outputs a +1 or -1
- X is the set of "features"
- +1/-1 represent the two classes
- Many mechanisms (may types of " H ")
- Any many ways of characterizing " x "
- We' ll look at a specific method based on voting with simple rules
- A "META" method

Introduction to Boosting

- An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier
- Simple classifiers are often called "weak" learners
- The complex classifiers are called "strong" learners
- Each weak learner focuses on instances where the previous classifier failed
- Give greater weight to instances that have been incorrectly classified by previous learners
- Restrictions for weak learners
- Better than 50\% correct
- Final classifier is weighted sum of weak classifiers

Boosting: A very simple idea

- One can come up with many rules to classify
- E.g. Chimpanzee vs. Human classifier:
- If arms == long, entity is chimpanzee
- If height > 5'6" entity is human
- If lives in house == entity is human
- If lives in zoo == entity is chimpanzee
- Each of them is a reasonable rule, but makes many mistakes
- Each rule has an intrinsic error rate
- Combine the predictions of these rules
- But not equally
- Rules that are less accurate should be given lesser weight

Boosting and the Chimpanzee Problem

- The total confidence in all classifiers that classify the entity as a chimpanzee is

$$
\text { Score }_{\text {chimp }}=\sum_{\text {classifier favors }} \alpha_{\text {chimpanzee }}
$$

- The total confidence in all classifiers that classify it as a human is

$$
\text { Score }_{\text {human }}=\sum_{\text {classifier favors human }} \alpha_{\text {classifier }}
$$

- If Score chimpanzee $>$ Score $_{\text {human }}$ then the our belief that we have a chimpanzee is greater than the belief that we have a human

Boosting

- The basic idea: Can a "weak" learning algorithm that performs just slightly better than a random guess be boosted into an arbitrarily accurate "strong" learner
- This is a "meta" algorithm, that poses no constraints on the form of the weak learners themselves

Boosting: A Voting Perspective

- Boosting is a form of voting
- Let a number of different classifiers classify the data
- Go with the majority
- Intuition says that as the number of classifiers increases, the dependability of the majority vote increases
- Boosting by majority
- Boosting by weighted majority
- A (weighted) majority vote taken over all the classifiers
- How do we compute weights for the classifiers?
- How do we actually train the classifiers

ADA Boost

- Challenge: how to optimize the classifiers and their weights?
- Trivial solution: Train all classifiers independently
- Optimal: Each classifier focuses on what others missed
- But joint optimization becomes impossible
- Adaptive Boosting: Greedy incremental optimization of classifiers
- Keep adding classifiers incrementally, to fix what others missed

AdaBoost

MLSP

ILLUSTRATIVE EXAMPLE

AdaBoost

AdaBoost

AdaBoost

MLSP

AdaBoost

AdaBoost

RETURNING TO THE SECOND WEAK LEARNER

AdaBoost

AdaBoost

MLSP

Boosting: An Example

- Red dots represent training data from Red class
- Blue dots represent training data from Blue class

Boosting: An Example

- The final strong learner has learnt a complicated decision boundary

Boosting: An Example

- The final strong learner has learnt a complicated decision boundary
- Decision boundaries in areas with low density of training points assumed inconsequential

Overall Learning Pattern

- Strong learner increasingly accurate with increasing number of weak learners
- Residual errors increasingly difficult to correct
- Additional weak learners less and less effective

Overfitting

- Note: Can continue to add weak learners EVEN after strong learner error goes to 0!
- Shown to IMPROVE generalization!

AdaBoost: Summary

- No relation to Ada Lovelace
- Adaptive Boosting
- Adaptively Selects Weak Learners
- ~17.5K citations of just one paper by Freund and Schapire

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right) 1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
- For $i=1$... N
- $\operatorname{set} D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

First, some example data

```
=0.3 E1-0.6 E2
=0.5 E1-0.5 E2
=0.7 E1-0.1 E2
=0.6 E1-0.4 E2
```


$$
\text { Image }=\mathbf{a} * \mathbf{E} 1+\mathbf{b} * \mathbf{E} 2 \rightarrow \mathbf{a}=\text { Image } . \mathbf{E} 1
$$

- Face detection with multiple Eigen faces
- Step 0: Derived top 2 Eigen faces from Eigen face training data
- Step 1: On a (different) set of examples, express each image as a linear combination of Eigen faces
- Examples include both faces and non faces
- Even the non-face images are explained in terms of the Eigen faces

Training Data

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
- For $i=1$... N
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

Initialize $D_{1}\left(x_{i}\right)=1 / N$

Training Data

$=0.2 \mathrm{E} 1+0.4 \mathrm{E} 2$
$=$
$=-0.8 \mathrm{E} 1-0.1 \mathrm{E} 2$
$=$
$=0.4 \mathrm{E} 1-0.9 \mathrm{E} 2$
$=$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\varepsilon_{t} /\left(1-\varepsilon_{t}\right)\right)$
- For $i=1$... N
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

The E1 "Stump"

F	E	H	A	G	B	C	D
-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
threshold							

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face $=$ true
sign $=+1$ or -1

Sign $=+1$, error $=3 / 8$
Sign $=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

F	E	H	A	G	B	C	D
0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face $=$ true
$\operatorname{sign}=+1$ or -1

Sign $=+1$, error $=3 / 8$
Sign $=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

F	E	H	A	G	B	C	D	
		0.2	0.2		0.4			
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face $=$ true
$\operatorname{sign}=+1$ or -1

Sign $=+1$, error $=3 / 8$
Sign $=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

Sign $=+1$, error $=3 / 8$
Sign $=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

threshold

Sign $=+1$, error $=3 / 8$
Sign $=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

F	E	H	A	G	B	C	D
$\mathbf{- 0 . 8}$	$\mathbf{0 . 2}$	0.2	0.3	0.4	$\mathbf{0 . 5}$	0.6	0.7
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$

threshold

Sign $=+1$, error $=2 / 8$
Sign $=-1$, error $=6 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

F	E	H	A	G	B	C	C
-0.8	0.2	0.2	0.3	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$

threshold

Sign $=+1$, error $=1 / 8$
Sign $=-1$, error $=7 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

F	E	H	A	G	B	C	C
-0.8	0.2	0.2	0.3	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$

threshold
Sign $=+1$, error $=2 / 8$
Sign = -1, error = 6/8

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$

Sign $=+1$, error $=1 / 8$
Sign $=-1$, error $=7 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0) face $=$ true
sign $=+1$ or -1

F	E	H	A	G	B	C	D
-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7

$\begin{array}{lllllllll}1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8\end{array}$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The Best E1 "Stump"

Classifier based on E1:
if (sign*wt(E1) > thresh) >0) face $=$ true

Sign $=+1$
Threshold $=0.45$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The E2"Stump"

Note order

G	A	B	D	C	F	E	H
0.9	-0.6	-0.5	-0.4	-0.1	0.1	0.4	0.5
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0) face $=$ true
sign $=+1$ or -1

```
threshold
```

Sign $=+1$, error $=3 / 8$
Sign $=-1$, error $=5 / 8$

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The Best E2"Stump"

Classifier based on E2:

$$
\text { if }(\text { sign*wt(E2) }>\text { thresh })>0)
$$ face $=$ true

$\operatorname{sign}=-1$
Threshold $=0.15$

G	A	B	D	C	F	E	H
0.9	-0.6	0.5	0.4	0.1	0.1	0.4	0.5
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
				threshold			

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The Best "Stump"

F	E	H	A	G	B	C	D
0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7
1/8	1/8	1/8		1/8	1/8	1/8	1/8
				thres	hold		
	Sign $=+1$, error $=1 / 8$						

> The Best overall classifier based on a single feature is based on E1

> If $(w+(E 1)>0.45) \rightarrow$ Face

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

The Best "Stump"
MLSP

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\varepsilon_{t} /\left(1-\varepsilon_{t}\right)\right)$
- For $i=1$... N
-
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

The Best "Stump"
MLSP

The Best Error

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	$1 / 8$
B	0.5	-0.5	+1	$1 / 8$
C	0.7	-0.1	+1	$1 / 8$
D	0.6	-0.4	+1	$1 / 8$
E	0.2	0.4	-1	$1 / 8$
F	-0.8	-0.1	-1	$1 / 8$
G	0.4	-0.9	-1	$1 / 8$
H	0.2	0.5	-1	$1 / 8$

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED INSTANCES

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=\operatorname{Sum}\left\{D_{t}\left(x_{i}\right)^{1 / 2}\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
- For $i=1$... N
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

Computing Alpha

The Boosted Classifier Thus Far

$$
\begin{aligned}
& h 1(X)=w t(E 1)>0.45 ?+1:-1 \\
& H(X)=\operatorname{sign}(0.97 * h 1(X))
\end{aligned}
$$

It's the same as $h 1(x)$

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
- For $i=1$... N
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

The Best Error

F	E	H	A	G	B	C	D	
-0.8	0.2	0.2	0.3	0.4	0.5	0.6	0.7	$D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
1/8	1/8	1/8		1/8	1/8	1/8	1/8	$\begin{aligned} & \exp \left(\alpha_{t}\right)=\exp (0.97)=2.63 \\ & \exp \left(-\alpha_{t}\right)=\exp (-0.97)=0.38 \end{aligned}$

ID	E1	E2.	Class	Weight	Weight
A	0.3	-0.6	+1	$1 / 8{ }^{*} 2.63$	0.33
B	0.5	-0.5	+1	$1 / 8^{*} 0.38$	0.05
C	0.7	-0.1	+1	$1 / 8^{*} 0.38$	0.05
D	0.6	-0.4	+1	$1 / 8^{*} 0.38$	0.05
E	0.2	0.4	-1	$1 / 8^{*} 0.38$	0.05
F	-0.8	0.1	-1	$1 / 8^{*} 0.38$	0.05
G	0.4	-0.9	-1	$1 / 8^{*} 0.38$	0.05
H	0.2	0.5	-1	$1 / 8$ * 0.38	0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by $\mathbf{2 . 6 3}$

AdaBoost
MLSP

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\left(1-\varepsilon_{t}\right) / \varepsilon_{t}\right)$
- For $i=1$... N
- $\operatorname{set} D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

The Best Error

ID	E1	E2.	Class	Weight	Weight	Weight
A	0.3	-0.6	+1	$1 / 8^{*} 2.63$	0.33	0.48
B	0.5	-0.5	+1	$1 / 8^{*} 0.38$	0.05	0.074
C	0.7	-0.1	+1	$1 / 8^{*} 0.38$	0.05	0.074
D	0.6	-0.4	+1	$1 / 8^{*} 0.38$	0.05	0.074
E	0.2	0.4	-1	$1 / 8{ }^{*} 0.38$	0.05	0.074
F	-0.8	0.1	-1	$1 / 8^{*} 0.38$	0.05	0.074
G	0.4	-0.9	-1	$1 / 8^{*} 0.38$	0.05	0.074
H	0.2	0.5	-1	$1 / 8 * 0.38$	0.05	0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The Best Error

ID	E1	E2.	Class	Weight
A	0.3	-0.6	+1	0.48
B	0.5	-0.5	+1	0.074
C	0.7	-0.1	+1	0.074
D	0.6	-0.4	+1	0.074
E	0.2	0.4	-1	0.074
F	-0.8	0.1	-1	0.074
G	0.4	-0.9	-1	0.074
H	0.2	0.5	-1	0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The ADABoost Algorithm

- Initialize $D_{1}\left(x_{i}\right)=1 / N$
- For $t=1, \ldots, \mathrm{~T}$
- Train a weak classifier h_{t} using distribution D_{t}
- Compute total error on training data
- $\varepsilon_{t}=$ Average $\left\{1 / 2\left(1-y_{i} h_{t}\left(x_{i}\right)\right)\right\}$
- Set $\alpha_{t}=1 / 2 \ln \left(\varepsilon_{t} /\left(1-\varepsilon_{t}\right)\right)$
- For $i=1$... N
- set $D_{t+1}\left(x_{i}\right)=D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)$
- Normalize D_{t+1} to make it a distribution
- The final classifier is
$-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)$

E1 classifier

F E	H	A	G	B	C	D
0.80 .2	0.2	0.3	0.4	0.5	0.6	0.7
. 074 \$ 074	. 074	. 48	. 074	. 074	. 074	. 074
threshold						

```
Classifier based on E1:
```

if (sign*wt(E1) > thresh) > 0)

```
if ( sign*wt(E1) > thresh) > 0)
    face = true
```

```
    face = true
```

```
sign \(=+1\) or -1
    \(\operatorname{sign}=+1\) or -1

Sign \(=+1\), error \(=0.222\)
Sign \(=-1\), error \(=0.778\)
\begin{tabular}{|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight \\
\hline A & 0.3 & -0.6 & +1 & 0.48 \\
\hline B & 0.5 & -0.5 & +1 & 0.074 \\
\hline C & 0.7 & -0.1 & +1 & 0.074 \\
\hline D & 0.6 & -0.4 & +1 & 0.074 \\
\hline E & 0.2 & 0.4 & -1 & 0.074 \\
\hline F & -0.8 & 0.1 & -1 & 0.074 \\
\hline G & 0.4 & -0.9 & -1 & 0.074 \\
\hline H & 0.2 & 0.5 & -1 & 0.074 \\
\hline
\end{tabular}

\section*{E1 classifier}
```

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

```
\(\operatorname{sign}=+1\) or -1


Sign \(=+1\), error \(=0.148\)
Sign \(=-1\), error \(=0.852\)
\begin{tabular}{|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight \\
\hline A & 0.3 & -0.6 & +1 & 0.48 \\
\hline B & 0.5 & -0.5 & +1 & 0.074 \\
\hline C & 0.7 & -0.1 & +1 & 0.074 \\
\hline D & 0.6 & -0.4 & +1 & 0.074 \\
\hline E & 0.2 & 0.4 & -1 & 0.074 \\
\hline F & -0.8 & 0.1 & -1 & 0.074 \\
\hline G & 0.4 & -0.9 & -1 & 0.074 \\
\hline H & 0.2 & 0.5 & -1 & 0.074 \\
\hline
\end{tabular}

\section*{The Best E1 classifier}
```

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline F E & 1 A & G & B & C & D \\
\hline 0.80 .2 & 0.20 .3 & 0.4 & 0.5 & 0.6 & 0.7 \\
\hline . 074.074 & . 074 ¢ 48 & . 074 & . 074 & . 074 & . 074 \\
\hline & threshold & & & & \\
\hline
\end{tabular}
\(\operatorname{sign}=+1\) or -1
face \(=\) true

Sign \(=+1\), error \(=0.074\)
\begin{tabular}{|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight \\
\hline A & 0.3 & -0.6 & +1 & 0.48 \\
\hline B & 0.5 & -0.5 & +1 & 0.074 \\
\hline C & 0.7 & -0.1 & +1 & 0.074 \\
\hline D & 0.6 & -0.4 & +1 & 0.074 \\
\hline E & 0.2 & 0.4 & -1 & 0.074 \\
\hline F & -0.8 & 0.1 & -1 & 0.074 \\
\hline G & 0.4 & -0.9 & -1 & 0.074 \\
\hline H & 0.2 & 0.5 & -1 & 0.074 \\
\hline
\end{tabular}

\section*{The Best E2 classifier}

\section*{Classifier based on E2: if ( sign*wt(E2) > thresh) > 0) face \(=\) true}
\(\operatorname{sign}=+1\) or -1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline G & A & B & D C & F & E & H \\
\hline 0.9 & 0.6 & 0.5 & -0.4 -0.1 & 0.1 & 0.4 & 0.5 \\
\hline \multirow[t]{2}{*}{. 074} & . 48 & . 074 & . 074.074 & . 074 & . 074 & . 074 \\
\hline & & & & thres & hold & \\
\hline
\end{tabular}

Sign \(=-1\), error \(=0.148\)
\begin{tabular}{|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight \\
\hline A & 0.3 & -0.6 & +1 & 0.48 \\
\hline B & 0.5 & -0.5 & +1 & 0.074 \\
\hline C & 0.7 & -0.1 & +1 & 0.074 \\
\hline D & 0.6 & -0.4 & +1 & 0.074 \\
\hline E & 0.2 & 0.4 & -1 & 0.074 \\
\hline F & -0.8 & 0.1 & -1 & 0.074 \\
\hline G & 0.4 & -0.9 & -1 & 0.074 \\
\hline H & 0.2 & 0.5 & -1 & 0.074 \\
\hline
\end{tabular}

\section*{The Best Classifier}


Classifier based on E1: if (wt(E1) > 0.45) face = true
\[
\begin{aligned}
\text { Alpha } & =0.5 \ln ((1-0.074) / 0.074) \\
& =1.26
\end{aligned}
\]

Sign \(=+1\), error \(=0.074\)
\begin{tabular}{|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight \\
\hline A & 0.3 & -0.6 & +1 & 0.48 \\
\hline B & 0.5 & -0.5 & +1 & 0.074 \\
\hline C & 0.7 & -0.1 & +1 & 0.074 \\
\hline D & 0.6 & -0.4 & +1 & 0.074 \\
\hline E & 0.2 & 0.4 & -1 & 0.074 \\
\hline F & -0.8 & 0.1 & -1 & 0.074 \\
\hline G & 0.4 & -0.9 & -1 & 0.074 \\
\hline H & 0.2 & 0.5 & -1 & 0.074 \\
\hline
\end{tabular}

\section*{The Boosted Classifier Thus Far}

\[
H(X)=\operatorname{sign}(0.97 * h 1(X)+1.26 * h 2(X))
\]

\section*{Reweighting the Data}

```

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = \operatorname{exp}(-1.26)=0.28

```

Sign \(=+1\), error \(=0.074\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight & \\
\hline A & 0.3 & -0.6 & +1 & \(0.48^{*} 0.28\) & 0.32 \\
\hline B & 0.5 & -0.5 & +1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline C & 0.7 & -0.1 & +1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline D & 0.6 & -0.4 & +1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline E & 0.2 & 0.4 & -1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline F & -0.8 & 0.1 & -1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline G & 0.4 & -0.9 & -1 & \(0.074^{*} 3.5\) & 0.38 \\
\hline H & 0.2 & 0.5 & -1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline
\end{tabular}

RENORMALIZE

\section*{Reweighting the Data}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline F & E & H & A & G & B & C & D \\
\hline 0.8 & 0.2 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 \\
\hline . 074. & . 074 & . 074 & . 48 & . 074 & . 074 & . 074 & . 074 \\
\hline \multicolumn{8}{|c|}{threshold} \\
\hline
\end{tabular}

> NOTE: THE WEIGHT OF "G" WHICH WAS MISCLASSIFIED BY THE SECOND CLASSIFIER IS NOW SUDDENLY HIGH

Sign \(=+1\), error \(=0.074\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline ID & E1 & E2. & Class & Weight & \\
\hline A & 0.3 & -0.6 & +1 & \(0.48^{*} 0.28\) & 0.32 \\
\hline B & 0.5 & -0.5 & +1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline C & 0.7 & -0.1 & +1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline D & 0.6 & -0.4 & +1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline E & 0.2 & 0.4 & -1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline F & -0.8 & 0.1 & -1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline G & 0.4 & -0.9 & -1 & \(0.074^{*} 3.5\) & 0.38 \\
\hline H & 0.2 & 0.5 & -1 & \(0.074^{*} 0.28\) & 0.05 \\
\hline
\end{tabular}

RENORMALIZE

\section*{AdaBoost}
- In this example both of our first two classifiers were based on E1
- Additional classifiers may switch to E2
- In general, the reweighting of the data will result in a different feature being picked for each classifier
- This also automatically gives us a feature selection strategy
- In this data the \(\mathrm{wt}(\mathrm{E} 1)\) is the most important feature

\section*{AdaBoost}
- NOT required to go with the best classifier so far
- For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier
- So long as its right more than 50\% of the time
- We can continue to add classifiers even after we get \(100 \%\) classification of the training data
- Because the weights of the data keep changing
- Adding new classifiers beyond this point is often a good thing to do

\section*{ADA Boost}

- The final classifier is
\(-H(x)=\operatorname{sign}\left(\Sigma_{t} \alpha_{t} h_{t}(x)\right)\)
- The output is 1 if the total weight of all weak learners that classify \(x\) as 1 is greater than the total weight of all weak learners that classify it as -1```

