#### Machine Learning for Signal Processing Independent Component Analysis

Instructor: Bhiksha Raj

#### **Revisiting the Covariance Matrix**

- Assuming centered data
- $\mathbf{C} = \Sigma_{\mathbf{X}} \mathbf{X} \mathbf{X}^{\mathsf{T}}$
- $= X_1 X_1^{\mathsf{T}} + X_2 X_2^{\mathsf{T}} + \dots$
- Let us view C as a transform..

- $(X_1X_1^{\top} + X_2X_2^{\top} + \dots) V = X_1X_1^{\top}V + X_2X_2^{\top}V + \dots$
- Consider a 2-vector example

In two dimensions for illustration



- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector



- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector



- More vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector



• Major axis of component ellipses proportional to the squared length of the corresponding vector



• Major axis of component ellipses proportional to the squared length of the corresponding vector

11755/18797

- The covariance matrix captures the directions of maximum variance
- What does it tell us about trends?



- Axis aligned covariance
- At any X value, the average Y value of vectors is 0
  - X cannot predict Y
- At any Y, the average X of vectors is 0
  - Y cannot predict X
- The X and Y components are *uncorrelated*



- Tilted covariance
- The average Y value of vectors at any X varies with X
  - X predicts Y
- Average X varies with Y
- The X and Y components are *correlated*



- Shifting to using the major axes as the coordinate system
  - $L_1$  does not predict  $L_2$  and vice versa
  - In this coordinate system the data are uncorrelated
- We have *decorrelated* the data by rotating the axes

#### The statistical concept of correlatedness

- Two variables X and Y are correlated if If knowing X gives you an *expected* value of Y
- X and Y are uncorrelated if knowing X tells you nothing about the *expected* value of Y
  - Although it could give you other information
  - How?

#### **Correlation vs. Causation**

• The consumption of burgers has gone up steadily in the past decade



In the same period, the penguin population of

Antarctica has gone down



Correlation, not Causation (unless McDonalds has a top-secret Antarctica division)



11755/18797

#### The concept of correlation

 Two variables are correlated if knowing the value of one gives you information about the *expected value* of the other



#### A brief review of basic probability

- Uncorrelated: Two random variables X and Y are uncorrelated iff:
  - The *average* value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of X and one instance of Y
  - I.e one instance of (X,Y)
- E[XY] = E[X]E[Y]
- The average value of Y is the same regardless of the value of X

### **Correlated Variables**



- Expected value of Y given X:
  - Find average of Y values of all samples at (or close) to the given X
  - If this is a function of X, X and Y are correlated

#### Uncorrelatedness



- Knowing X does not tell you what the *average* value of Y is
  - And vice versa

#### **Uncorrelated Variables**



• The average value of Y is the same regardless of the value of X and vice versa

#### Uncorrelatedness in Random Variables



• Which of the above represent uncorrelated RVs?

#### **Benefits of uncorrelatedness..**

- Uncorrelatedness of variables is generally considered desirable for modelling and analyses
  - For Euclidean error based regression models and probabilistic models, uncorrelated variables can be separately handled
    - Since the value of one doesn't affect the average value of others
    - Greatly reduces the number of model parameters
  - Otherwise their interactions must be considered
- We will frequently transform correlated variables to make them uncorrelated
  - "Decorrelating" variables

#### The notion of decorrelation



• So how does one transform the correlated variables (X,Y) to the uncorrelated (X', Y')

#### What does "uncorrelated" mean



• If **Y** is a matrix of vectors, **YY**<sup>T</sup> = diagonal

#### Decorrelation

- Let  ${\bf X}$  be the matrix of correlated data vectors
  - Each component of  ${\bf X}$  informs us of the mean trend of other components
- Need a transform M such that if Y = MX such that the covariance of Y is diagonal

#### – $\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$ is the covariance if $\mathbf{Y}$ is zero mean

- For uncorrelated components,  $\mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{Diagonal}$
- $\Rightarrow$ MXX<sup>T</sup>M<sup>T</sup> = Diagonal
- $\Rightarrow$ **M.**Cov(**X**).**M**<sup>T</sup> = **Diagonal**

#### Decorrelation

- Easy solution:
  - Eigen decomposition of Cov(X):

 $\operatorname{Cov}(\mathbf{X}) = \mathbf{E} \mathbf{\Lambda} \mathbf{E}^{\mathrm{T}}$ 

- $\mathbf{E}\mathbf{E}^{\mathrm{T}} = \mathbf{I}$
- Let  $\mathbf{M} = \mathbf{E}^{\mathrm{T}}$
- $\mathbf{M}\mathbf{C}\mathbf{ov}(\mathbf{X})\mathbf{M}^{\mathrm{T}} = \mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{\Lambda}\mathbf{E}^{\mathrm{T}}\mathbf{E} = \mathbf{\Lambda} = \text{diagonal}$
- PCA:  $\mathbf{Y} = \mathbf{E}^{\mathrm{T}} \mathbf{X}$ 
  - Projects the data onto the Eigen vectors of the covariance matrix
  - *Diagonalizes* the covariance matrix
  - "Decorrelates" the data

#### PCA



• PCA:  $\mathbf{Y} = \mathbf{E}^{\mathrm{T}} \mathbf{X}$ 

- Projects the data onto the Eigen vectors of the covariance matrix
  - Changes the coordinate system to the Eigen vectors of the covariance matrix
- *Diagonalizes* the covariance matrix
- "Decorrelates" the data



• Are there other decorrelating axes?



• Are there other decorrelating axes?



• Are there other decorrelating axes?



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?
- What is special about these axes?

#### The statistical concept of Independence

- Two variables X and Y are *dependent* if If knowing X gives you *any information about* Y
- X and Y are *independent* if knowing X tells you nothing at all of Y

#### A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
  - Their joint probability equals the product of their individual probabilities
- P(X,Y) = P(X)P(Y)
- Independence implies uncorrelatedness
  - The average value of  $\boldsymbol{X}$  is the same regardless of the value of  $\boldsymbol{Y}$ 
    - E[X|Y] = E[X]
  - But uncorrelatedness does not imply independence

#### A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
- The average value of *any function* of X is the same regardless of the value of Y

– Or any function of  $\boldsymbol{Y}$ 

• E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()

#### Independence



- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?

#### A brief review of basic probability



- The expected value of an odd function of an RV is 0 if
  - The RV is 0 mean
  - The PDF is of the RV is symmetric around 0
- E[f(X)] = 0 if f(X) is odd symmetric
You flip a coin. You must inform your friend in the next room about whether the outcome was heads or tails



• You roll a four-side dice. You must inform your friend in the next room about the outcome



• You roll an *eight-sided polyheldral* dice. You must inform your friend in the next room about the outcome



• You roll a *six-sided* dice. You must inform your friend in the next room about the outcome







- Instead of sending individual rolls, you roll the dice *twice*
  - And send the *pair* to your friend
- How many bits do you send *per roll?*

| 1 | 1 |
|---|---|
| 1 | 2 |
| 1 | 3 |
|   |   |
| 2 | 1 |
| 2 | 2 |
|   |   |
| 6 | 6 |





- Instead of sending individual rolls, you roll the dice *twice* 
  - And send the *pair* to your friend
- How many bits do you send per roll?
- 36 combinations: 6 bits per pair of numbers
  - Still 3 bits per roll

| 1 | 1 |
|---|---|
| 1 | 2 |
| 1 | 3 |
|   |   |
| 2 | 1 |
| 2 | 2 |
|   |   |
| 6 | 6 |







- Instead of sending individual rolls, you roll the dice *three times*
  - And send the *triple* to your friend
- How many bits do you send *per roll?*
- 216 combinations: 8 bits per triple
  - Still 2.666 bits per roll
  - Now we're talking!

| 1 | 1  | 1  |
|---|----|----|
| 1 | 1  | 2  |
|   | •• | •• |
| 1 | 6  | 3  |
|   |    |    |
| 2 | 1  | 1  |
| 2 | 1  | 2  |
|   |    |    |
| 6 | 6  | 6  |

- Batching *four rolls* 
  - 1296 combinations
  - 11 bits per outcome (4 rolls)
  - 2.75 bit per roll
- Batching *five rolls* 
  - 7776 combinations
  - 13 bits per outcome (5 rolls)
  - 2.6 bits per roll







No. of rolls batched together

• Where will it end?



No. of rolls batched together

- Where will it end?
- $\lim_{k \to \infty} \frac{[k \log 2(6)]}{k} = \log 2(6)$  bits per roll in the limit
  - This is the absolute minimum no batching will give you less than these many bits per outcome

#### Can we do better?

- A four-sided die needs 2 bits per roll
- But then you find not all sides are equally likely



- P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125
- Can you do better than 2 bits per outcome

#### Can we do better?

• You have

P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:



- Note receiver is never in any doubt as to what they received
- What is the average number of bits per outcome

#### Can we do better?

• You have

P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:



- Note receiver is never in any doubt as to what they received
- An outcome with probability p is equivalent to obtaining one of 1/p equally likely choices

– Requires 
$$log 2(\frac{1}{p})$$
 bits on average



• The average number of bits per symbol required to communicate a random variable over a digitial channel *using an optimal code* is

$$H(p) = \sum_{i} p_i \log \frac{1}{p_i} = -\sum_{i} p_i \log p_i$$

- You can't do better
  - Any other code will require more bits
- This is the *entropy of the random variable*

#### A brief review of basic info. theory



• Entropy: The *minimum average* number of bits to transmit to convey a symbol



• Joint entropy: The *minimum average* number of bits to convey sets (pairs here) of symbols

#### A brief review of basic info. theory



- Conditional Entropy: The *minimum average* number of bits to transmit to convey a symbol
  X, after symbol Y has already been conveyed
  - Averaged over all values of X and Y

#### A brief review of basic info. theory

Conditional entropy of X | Y = H(X) if X is independent of Y

 $H(X | Y) = \sum_{Y} P(Y) \sum_{X} P(X | Y) [-\log P(X | Y)] = \sum_{Y} P(Y) \sum_{X} P(X) [-\log P(X)] = H(X)$ 

 Joint entropy of X and Y is the sum of the entropies of X and Y if they are independent

$$H(X,Y) = \sum_{X,Y} P(X,Y)[-\log P(X,Y)] = \sum_{X,Y} P(X,Y)[-\log P(X)P(Y)]$$

$$= -\sum_{X,Y} P(X,Y) \log P(X) - \sum_{X,Y} P(X,Y) \log P(Y) = H(X) + H(Y)$$

#### Onward..

#### **Projection: multiple notes**





- $\mathbf{P} = \mathbf{W} (\mathbf{W}^{\mathrm{T}} \mathbf{W})^{-1} \mathbf{W}^{\mathrm{T}}$
- Projected Spectrogram = PM

11755/18797

#### We're actually computing a score



•  $\mathbf{H} = \operatorname{pinv}(\mathbf{W})\mathbf{M}$ 

#### How about the other way?



•  $M \sim WH$  W = Mpinv(H) U = WH

11755/18797

#### When both parameters are unknown



- Must estimate both H and W to best approximate M
- Ideally, must learn *both* the *notes* and *their* transcription!

#### A least squares solution

 $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}} ||_{F}^{2} + \Lambda(\overline{\mathbf{W}}^{T}\overline{\mathbf{W}} - \mathbf{I})$ 

- Constraint: W is orthogonal  $-W^{T}W = I$
- The solution: W are the Eigen vectors of MM<sup>T</sup>
  - PCA!!
- M ~ WH is an approximation
- Also, the rows of **H** are *decorrelated* 
  - Trivial to prove that  $\mathbf{H}\mathbf{H}^{\mathrm{T}}$  is diagonal



## $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2$ $\mathbf{M} \approx \mathbf{W} \mathbf{H}$

- The columns of W are the bases we have learned
  - The linear "building blocks" that compose the music
- They represent "learned" notes

#### So how does that work?



• There are 12 notes in the segment, hence we try to estimate 12 notes..

#### So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..
- Results are not good

# PCA through decorrelation of notes

 $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{H}} ||_{F}^{2} + \Lambda(\overline{\mathbf{H}}\overline{\mathbf{H}}^{T} - \mathbf{D})$ 



- Different constraint: Constraint **H** to be decorrelated
  - $-\mathbf{H}\mathbf{H}^{\mathrm{T}}=\mathbf{D}$
- This will result exactly in PCA too
- Decorrelation of H Interpretation: What does this mean?

#### What else can we look for?



- Assume: The "transcription" of one note does not depend on what else is playing
  - Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still..

#### What else can we look for?



- Assume: The "transcription" of one note does not depend on what else is playing
  - Or, in a multi-instrument piece, instruments are playing independently of one another
- Attempting to find statistically independent components of the mixed signal
  - Independent Component Analysis

#### Formulating it with Independence

 $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}},\overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}} \|_{F}^{2} + \Lambda(rows.of.H.are.independent)$ 

• Impose statistical independence constraints on decomposition



- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals

#### **A Separation Problem**



- H = "transcription"
- Separation challenge: Given only M estimate H
- Identical to the problem of "finding notes"



- Separation challenge: Given only  ${\bf M}$  estimate  ${\bf H}$
- Identical to the problem of "finding notes"

#### **Imposing Statistical Constraints**



- **M** = **W**H
- Given only  $\mathbf{M}$  estimate  $\mathbf{H}$
- $\mathbf{H} = \mathbf{W}^{-1}\mathbf{M} = \mathbf{A}\mathbf{M}$
- Only known constraint: The rows of **H** are independent
- Estimate A such that the components of AM are statistically independent
  - $\mathbf{A}$  is the *unmixing* matrix

#### **Statistical Independence**

• 
$$M = WH$$
  $H = AM$   
Remember this form

### An ugly algebraic solution $M = WH \dots H = AM$

- We could *decorrelate* signals by algebraic manipulation
  - We know uncorrelated signals have diagonal correlation matrix
  - So we transformed the signal so that it has a diagonal correlation matrix (HH<sup>T</sup>)
- Can we do the same for independence
  - Is there a linear transform that will enforce independence?
## An ugly algebraic solution

- We *decorrelated* signals by diagonalizing the covariance matrix
- Is there a simple matrix we could just similarly diagonalize to make them independent?

# An ugly algebraic solution

- We *decorrelated* signals by diagonalizing the covariance matrix
- Is there a simple matrix we could just similarly diagonalize to make them independent?
  - Not really, but there is a matrix we can diagonalize to make *fourth-order* moments independent
    - Just as decorrelation made second-order moments independent

## **Emulating Independence**



- The rows of  ${\bf H}$  are uncorrelated

$$- \mathbf{E}[\mathbf{h}_{i}\mathbf{h}_{j}] = \mathbf{E}[\mathbf{h}_{i}]\mathbf{E}[\mathbf{h}_{j}]$$

- $\mathbf{h}_i$  and  $\mathbf{h}_j$  are the i<sup>th</sup> and j<sup>th</sup> components of any vector in  $\mathbf{H}$
- The fourth order moments are independent
  - $E[\mathbf{h}_i \mathbf{h}_j \mathbf{h}_k \mathbf{h}_l] = E[\mathbf{h}_i]E[\mathbf{h}_j]E[\mathbf{h}_k]E[\mathbf{h}_l]$
  - $E[\mathbf{h}_i^2 \mathbf{h}_j \mathbf{h}_k] = E[\mathbf{h}_i^2]E[\mathbf{h}_j]E[\mathbf{h}_k]$
  - $E[\mathbf{h}_i^2 \mathbf{h}_j^2] = E[\mathbf{h}_i^2]E[\mathbf{h}_j^2]$
  - Etc.

## Zero Mean

- Usual to assume *zero mean* processes
  - Otherwise, some of the math doesn't work well
- $\mathbf{M} = \mathbf{W}\mathbf{H}$   $\mathbf{H} = \mathbf{A}\mathbf{M}$
- If mean(**M**) = 0 => mean(**H**) = 0

$$- E[H] = A \cdot E[M] = A0 = 0$$

– First step of ICA: Set the mean of  ${\bf M}$  to 0

$$\mu_{\mathbf{m}} = \frac{1}{cols (\mathbf{M})} \sum_{i} \mathbf{m}_{i}$$

$$\mathbf{m}_{i} = \mathbf{m}_{i} - \boldsymbol{\mu}_{\mathbf{m}} \qquad \forall i$$

–  $\boldsymbol{m}_i$  are the columns of  $\boldsymbol{M}$ 

## **Emulating Independence..**



- Independence  $\rightarrow$  Uncorrelatedness
- Find C such that CM is decorrelated
   PCA
- Find **B** such that **B**(**CM**) is independent
- A little more than PCA

## **Decorrelating and Whitening**



- Eigen decomposition  $MM^T = ESE^T$
- $C = S^{-1/2}E^{T}$
- $\mathbf{X} = \mathbf{C}\mathbf{M}$
- Not merely decorrelated but whitened  $- \mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{C}\mathbf{M}\mathbf{M}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}^{-1/2} = \mathbf{I}$
- C is the *whitening matrix*

# **Uncorrelated != Independent**

• Whitening merely ensures that the resulting signals are uncorrelated, i.e.

 $E[\mathbf{x}_{i}\mathbf{x}_{j}] = 0 \text{ if } i != j$ 

• This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

 $E[\mathbf{x}_{i}^{2}\mathbf{x}_{j}^{2}] = E[\mathbf{x}_{i}^{2}]E[\mathbf{x}_{j}^{2}]$ 

- This is one of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments



- Will multiplying **X** by **B** *re-correlate* the components?
- Not if **B** is *unitary* 
  - $\mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{I}$
- $\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mathbf{B}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}} = \mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{I}$
- So we want to find a *unitary* matrix
  - Since the rows of  ${\bf H}$  are uncorrelated
    - Because they are independent

## **FOBI: Freeing Fourth Moments**

- Find **B** such that the rows of **H** = **BX** are independent
- The fourth moments of **H** have the form:
   E[**h**<sub>i</sub> **h**<sub>j</sub> **h**<sub>k</sub> **h**<sub>l</sub>]
- If the rows of **H** were independent  $E[\mathbf{h}_i \mathbf{h}_j \mathbf{h}_k \mathbf{h}_l] = E[\mathbf{h}_i] E[\mathbf{h}_j] E[\mathbf{h}_k] E[\mathbf{h}_l]$
- Solution: Compute B such that the fourth moments of H = BX are decoupled
  - While ensuring that **B** is Unitary
- FOBI: Fourth Order Blind Identification

## **ICA: Freeing Fourth Moments**

$$\mathbf{H} = \mathbf{h}_{\mathbf{k}}$$

Objective: Find a matrix B such that the rows of H=BX are statistically independent

Define a matrix D that would be diagonal if the rows of BX are independent

Compute B such that this matrix becomes diagonal

- Create a matrix of fourth moment terms that would be diagonal were the rows of H independent and diagonalize it
- A good candidate: the weighted correlation matrix of **H**

$$\boldsymbol{D} = E\left[\|\boldsymbol{h}\|^{2}\boldsymbol{h}\boldsymbol{h}^{\mathrm{T}}\right] = \sum_{k} \|\boldsymbol{h}_{k}\|^{2}\boldsymbol{h}_{k}\boldsymbol{h}_{k}^{\mathrm{T}}$$

- -h are the columns of H
- Assuming h is real, else replace transposition with Hermitian

#### **ICA: The D matrix**



## **ICA: The D matrix**

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & ..\\ d_{21} & d_{22} & d_{23} & ..\\ .. & .. & .. & .. \end{bmatrix} \qquad D = E[||h||^2 h h^T] \qquad d_{ij} = E\left[\left(\sum_{l} h_{l}^2\right) h_{l} h_{j}\right] \\ d_{ij} = \frac{1}{cols(\mathbf{H})} \sum_{k} \left(\sum_{l} h_{kl}^2\right) h_{ki} h_{kj}$$

- If the  $h_i$  terms were independent and zero mean
- For *i* !=*j*

$$E\left[h_{i}h_{j}\sum_{l}h_{l}^{2}\right] = E\left[h_{i}^{3}\right]E\left[h_{j}\right] + E\left[h_{i}\right]E\left[h_{j}^{3}\right] + E\left[h_{i}\right]E\left[h_{j}\right]\sum_{l\neq i, l\neq j}E\left[h_{l}^{3}\right] = \mathbf{0}$$

• For i = j

 $- E[h_i h_j \sum_l h_l^2] = E[h_i^4] + E[h_i^2] \sum_{l \neq i} E[h_l^2] \neq \mathbf{0}$ 

i.e., if h<sub>i</sub> were independent, D would be a diagonal matrix
 Let us diagonalize D

# **Diagonalizing D**

- Recall:  $\mathbf{H} = \mathbf{B}\mathbf{X}$ 
  - B is what we're trying to learn to make H independent
  - Assumption: **B** is unitary, i.e.  $BB^{T} = I$

Objective: Find a matrix B such that the rows of H=BX are statistically independent

Define a matrix D that would be diagonal if the rows of BX are independent

Compute B such that this matrix becomes diagonal

- Note: if H = BX, then each vector h = Bx
- The fourth moment matrix of  ${\bf H}$  is
- $\mathbf{D} = \mathbf{E}[\mathbf{h}^{\mathrm{T}} \mathbf{h} \mathbf{h} \mathbf{h}^{\mathrm{T}}] = \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}]$  $= \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}]$   $= \mathbf{B}^{\mathrm{T}} \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{x} \mathbf{x}^{\mathrm{T}}] \mathbf{B}$   $= \mathbf{B}^{\mathrm{T}} \mathbf{E}[||\mathbf{x}||^{2} \mathbf{x} \mathbf{x}^{\mathrm{T}}] \mathbf{B}$

# **Diagonalizing D**

- Objective: Estimate B such that the fourth moment of H = BX is diagonal
- Compose  $\mathbf{D}_{\mathbf{x}} = \sum_{k} ||\mathbf{x}_{k}||^{2} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{T}}$
- Diagonalize  $\mathbf{D}_{\mathbf{x}}$  via Eigen decomposition  $\mathbf{D}_{\mathbf{x}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$
- $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$

– That's it!!!!

#### **B** frees the fourth moment

 $\mathbf{D}_{\mathbf{x}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$ ;  $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$ 

- U is a unitary matrix, i.e.  $U^T U = U U^T = I$  (identity)
- $\mathbf{H} = \mathbf{B}\mathbf{X} = \mathbf{U}^{\mathrm{T}}\mathbf{X}$
- $\mathbf{h} = \mathbf{U}^{\mathrm{T}}\mathbf{x}$
- The fourth moment matrix of **H** is  $E[||\mathbf{h}||^2 \mathbf{h} \mathbf{h}^T] = \mathbf{U}^T E[||\mathbf{x}||^2 \mathbf{x} \mathbf{x}^T] \mathbf{U}$   $= \mathbf{U}^T \mathbf{D}_{\mathbf{x}} \mathbf{U}$   $= \mathbf{U}^T \mathbf{U} \Lambda \mathbf{U}^T \mathbf{U} = \Lambda$
- The fourth moment matrix of  $\mathbf{H} = \mathbf{U}^{\mathrm{T}}\mathbf{X}$  is Diagonal!!

#### **Overall Solution**

- Objective: Estimate A such that the rows of H = AM are independent
- Step 1: Whiten M
  - C is the (transpose of the) matrix of Eigen vectors of MM<sup>T</sup>
  - $-\mathbf{X} = \mathbf{C}\mathbf{M}$
- Step 2: Free up fourth moments on  $\boldsymbol{X}$ 
  - B is the (transpose of the) matrix of Eigenvectors of X.diag(X<sup>T</sup>X).X<sup>T</sup>
  - -A = BC

## **FOBI for ICA**

- Goal: to derive a matrix **A** such that the rows of **AM** are independent
- Procedure:
  - 1. "Center" M
  - 2. Compute the autocorrelation matrix  $R_{MM}$  of M
  - 3. Compute whitening matrix  $\mathbf{C}$  via Eigen decomposition  $\mathbf{R}_{MM} = \mathbf{E}\mathbf{S}\mathbf{E}^{T}, \quad \mathbf{C} = \mathbf{S}^{-1/2}\mathbf{E}^{T}$
  - 4. Compute X = CM
  - 5. Compute the fourth moment matrix  $\mathbf{D}' = E[||\mathbf{x}||^2 \mathbf{x} \mathbf{x}^T]$
  - 6. Diagonalize  $\mathbf{D}'$  via Eigen decomposition
  - 7.  $\mathbf{D}' = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$
  - 8. Compute  $\mathbf{A} = \mathbf{U}^{\mathrm{T}} \boldsymbol{C}$
- The fourth moment matrix of **H=AM** is diagonal
  - Note that the autocorrelation matrix of H will also be diagonal

## ICA by diagonalizing moment matrices

- FOBI is not perfect
  - Only a subset of fourth order moments are considered
    - Diagonalizing the particular fourth-order moment matrix we have chosen is not guaranteed to diagonalize every other fourth-order moment matrix
- JADE: (Joint Approximate Diagonalization of Eigenmatrices), J.F. Cardoso
  - Jointly diagonalizes multiple fourth-order cumulant matrices

# **Enforcing Independence**

- Specifically ensure that the components of H are independent
  - -H = AM
- *Contrast function*: A non-linear function that has a minimum value when the *output components* are independent
- Define and minimize a contrast function
   » F(AM)
- Contrast functions are often only *approximations* too..

# A note on pre-whitening

- The mixed signal is usually "prewhitened" for all ICA methods
  - Normalize variance along all directions
  - Eliminate second-order dependence
- Eigen decomposition  $\mathbf{M}\mathbf{M}^{\mathrm{T}} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}$
- $\mathbf{C} = \mathbf{S}^{-1/2} \mathbf{E}^{\mathrm{T}}$
- Can use *first K* columns of **E** only if only K independent sources are expected
  - In microphone array setup only K < M sources</li>
- $\mathbf{X} = \mathbf{C}\mathbf{M}$ 
  - $E[\mathbf{x}_i \mathbf{x}_j] = \delta_{ij}$  for centered signal

## The contrast function

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- An explicit contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{h}})$$

- With constraint : H = BX
  - $-\,X$  is "whitened" M

## **Linear Functions**

•  $\mathbf{h} = \mathbf{B}\mathbf{x}, \quad \mathbf{x} = \mathbf{B}^{-1}\mathbf{h}$ 

Individual columns of the H and X matrices
x is mixed signal, B is the *unmixing* matrix

$$P_{\mathbf{h}}(\mathbf{h}) = P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) |\mathbf{B}|^{-1}$$

$$H(\mathbf{x}) = -\int P(\mathbf{x}) \log P(\mathbf{x}) d\mathbf{x}$$
$$\log P(\mathbf{h}) = \log P_{\mathbf{x}} (\mathbf{B}^{-1}\mathbf{h}) - \log(|\mathbf{B}|)$$
$$H(\mathbf{h}) = H(\mathbf{x}) + \log|\mathbf{B}|$$

### The contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{h}})$$
$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\mathbf{x}) - \log |\mathbf{B}|$$

• Ignoring *H*(**x**) (Const)

$$J(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - \log |\mathbf{B}|$$

- Minimize the above to obtain  ${\boldsymbol{B}}$ 

- Recall PCA
- M = WH, the columns of W must be orthogonal
- Leads to:  $\min_{\mathbf{W}} ||\mathbf{M} \mathbf{W}\mathbf{W}^{\mathrm{T}}\mathbf{M}||^{2} + \Lambda.trace(\mathbf{W}^{\mathrm{T}}\mathbf{W})$

– Error minimization framework to estimate  ${\bf W}$ 

- Can we arrive at an error minimization framework for ICA
- Define an "Error" objective that represents independence

- Definition of Independence if x and y are independent:
  - $-\operatorname{E}[f(x)g(y)] = \operatorname{E}[f(x)]\operatorname{E}[g(y)]$
  - Must hold for every f() and g()!!

Define g(H) = g(BX) (component-wise function)



• Define **f**(**H**) = **f**(**BX**)

| f( <i>h</i> <sub>11</sub> ) | f( <i>h</i> <sub>21</sub> ) |  |  |
|-----------------------------|-----------------------------|--|--|
| f( <i>h</i> <sub>12</sub> ) | f( <i>h</i> <sub>22</sub> ) |  |  |
| •                           | •                           |  |  |
| •                           | •                           |  |  |
| •                           | •                           |  |  |





$$\mathbf{P}_{ij} = \mathbf{E}[\mathbf{g}(h_i)\mathbf{f}(h_j)]$$

#### This is a square matrix

• Must ideally be

 $\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}$ 

$$Q_{ij} = E[g(h_i)]E[f(h_j)] \quad i \neq j$$

$$Q_{ii} = E[g(h_i)f(h_i)]$$

• Error =  $\|\mathbf{P}-\mathbf{Q}\|_{\mathrm{F}}^2$ 

Ideal value for Q

• If g() and f() are odd symmetric functions  $E[g(h_i)] = 0$  for all i

- Since =  $E[h_i] = 0$  (**H** is centered)

• **Q** is a Diagonal Matrix!!!

• Minimize Error

 $\mathbf{P} = \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$  $\mathbf{Q} = Diagonal$ 

$$error = \left\| \mathbf{P} - \mathbf{Q} \right\|_{F}^{2}$$

• Leads to trivial Widrow Hopf type iterative rule:  $\mathbf{F} = Diag \quad \mathbf{g}(\mathbf{P}\mathbf{Y})\mathbf{f}(\mathbf{P}\mathbf{Y})^{\mathrm{T}}$ 

$$\mathbf{E} = Diag - \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathsf{T}}$$

$$\mathbf{B} = \mathbf{B} + \eta \mathbf{E} \mathbf{X}^{\mathrm{T}}$$

# **Update Rules**

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \eta \Delta \mathbf{B}$
- Jutten Herraut : Online update
  - $\Delta B_{ij} = f(\mathbf{h}_i)g(\mathbf{h}_j)$ ; -- actually assumed a recursive neural network
- Bell Sejnowski
  - $-\Delta \mathbf{B} = ([\mathbf{B}^{\mathrm{T}}]^{-1} \mathbf{g}(\mathbf{H})\mathbf{X}^{\mathrm{T}})$

## **Update Rules**

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \eta \Delta \mathbf{B}$
- Natural gradient -- f() = identity function

 $-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{H}^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$ 

Cichoki-Unbehaeven

 $-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{f}(\mathbf{H})^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$ 

# What are G() and F()

- Must be odd symmetric functions
- Multiple functions proposed

 $g(x) = \begin{cases} x + \tanh(x) & \text{x is super Gaussian} \\ x - \tanh(x) & \text{x is sub Gaussian} \end{cases}$ 

• Audio signals in general

 $-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{H}\mathbf{H}^{\mathrm{T}} - \mathbf{K} \mathbf{tanh}(\mathbf{H})\mathbf{H}^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$ 

• Or simply

 $-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{K} \mathbf{tanh}(\mathbf{H})\mathbf{H}^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$ 

## So how does it work?



- Example with instantaneous mixture of two speakers
- Natural gradient update
- Works very well!

#### **Another example!**



11755/18797

#### **Another Example**



• Three instruments..

## **The Notes**





• Three instruments..
# **ICA for data exploration**

 The "bases" in PCA represent the "building blocks"

- Ideally notes

- Very successfully used
- So can ICA be used to do the same?



# ICA vs PCA bases

- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
  - May not align with the data!
- ICA finds directions that are independent
  - More likely to "align" with the data

Non-Gaussian data



# Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
  - ICA returns localizes edge filters



### **Example case: ICA-faces vs. Eigenfaces**

#### **ICA-faces**

#### Eigenfaces



# **ICA for Signal Enhncement**



- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals
- ICA can be used to separate them out

## So how does that work?



• There are 12 notes in the segment, hence we try to estimate 12 notes..

## **PCA solution**



• There are 12 notes in the segment, hence we try to estimate 12 notes..

### So how does this work: ICA solution



- Better..
  - But not much
- But the issues here?

# **ICA** Issues

- No sense of *order* 
  - Unlike PCA
- Get K independent directions, but does not have a notion of the "best" direction
  - So the sources can come in any order
  - Permutation invariance
- Does not have sense of *scaling* 
  - Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order
  - In the best case
  - In worse case, output are not desired signals at all..

# What else went wrong?

- Notes are not independent
  - Only one note plays at a time
  - If one note plays, other notes are not playing

• Will deal with these later in the course..