# Machine Learning for Signal Processing 

# Independent Component Analysis 

Instructor: Bhiksha Raj

## Revisiting the Covariance Matrix

- Assuming centered data
- $\mathrm{C}=\Sigma_{\mathrm{x}} X X^{\top}$
- $=X_{1} X_{1}^{\top}+X_{2} X_{2}^{\top}+\ldots$.
- Let us view C as a transform..


## Covariance matrix as a transform



- $\left(X_{1} X_{1}^{\top}+X_{2} X_{2}^{\top}+\ldots\right) V=X_{1} X_{1}^{\top} V+X_{2} X_{2}^{\top} V+\ldots$
- Consider a 2-vector example
- In two dimensions for illustration


## Covariance Matrix as a transform



- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector


## Covariance Matrix as a transform



- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector


## Covariance Matrix as a transform



- More vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector


## Covariance Matrix as a transform




- More vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector


## Covariance Matrix as a transform



- And still more vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector


## Covariance Matrix as-a transform

- The covariance matrix captures the directions of maximum variance
- What does it tell us about trends?


## Data Trends: Axis aligned

## covariance



- Axis aligned covariance
- At any $X$ value, the average $Y$ value of vectors is 0
- X cannot predict $Y$
- At any $Y$, the average $X$ of vectors is 0
- $Y$ cannot predict $X$
- The $X$ and $Y$ components are uncorrelated


## Data Trends: Tilted covariance <br> 

- Tilted covariance
- The average $Y$ value of vectors at any $X$ varies with $X$
- X predicts Y
- Average $X$ varies with $Y$
- The $X$ and $Y$ components are correlated

- Shifting to using the major axes as the coordinate system
- $L_{1}$ does not predict $L_{2}$ and vice versa
- In this coordinate system the data are uncorrelated
- We have decorrelated the data by rotating the axes


## The statistical concept of correlatedness

- Two variables $X$ and $Y$ are correlated if If knowing $X$ gives you an expected value of $Y$
- $X$ and $Y$ are uncorrelated if knowing $X$ tells you nothing about the expected value of $Y$
- Although it could give you other information
- How?


## Correlation vs. Causation

- The consumption of burgers has gone up steadily in the past decade

- In the same period, the penguin population of Antarctica has gone down


Correlation, not Causation
(unless McDonalds has a
top-secret Antarctica division)


## The concept of correlation

- Two variables are correlated if knowing the value of one gives you information about the expected value of the other



## A brief review of basic probability

- Uncorrelated: Two random variables X and Y are uncorrelated iff:
- The average value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of $X$ and one instance of $Y$
- I.e one instance of (X,Y)
- $\mathrm{E}[\mathrm{XY}]=\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]$
- The average value of $Y$ is the same regardless of the value of $X$


## Correlated Variables



- Expected value of Y given X :
- Find average of $Y$ values of all samples at (or close) to the given $X$
- If this is a function of $X, X$ and $Y$ are correlated


## Uncorrelatedness



- Knowing $X$ does not tell you what the average value of $Y$ is
- And vice versa


## Uncorrelated Variables



- The average value of $Y$ is the same regardless of the value of $X$ and vice versa


## Uncorrelatedness in Random Variables



- Which of the above represent uncorrelated RVs?


## Benefits of uncorrelatedness..

- Uncorrelatedness of variables is generally considered desirable for modelling and analyses
- For Euclidean error based regression models and probabilistic models, uncorrelated variables can be separately handled
- Since the value of one doesn't affect the average value of others
- Greatly reduces the number of model parameters
- Otherwise their interactions must be considered
- We will frequently transform correlated variables to make them uncorrelated
- "Decorrelating" variables


## The notion of decorrelation



- So how does one transform the correlated variables ( $X, Y$ ) to the uncorrelated ( $X^{\prime}, Y^{\prime}$ )


## What does "uncorrelated" mean



- $\mathrm{E}\left[X^{\prime}\right]=$ constant
- $\mathrm{E}\left[Y^{\prime}\right]=$ constant
- $\mathrm{E}\left[Y^{\prime} \mid X^{\prime}\right]=$ constant
- $\mathrm{E}\left[X^{\prime} Y^{\prime}\right]=\mathrm{E}\left[X^{\prime}\right] \mathrm{E}\left[Y^{\prime}\right]$
- All will be 0 for centered data

$$
E\left[\binom{X^{\prime}}{Y^{\prime}}\left(\begin{array}{ll}
X^{\prime} & Y^{\prime}
\end{array}\right)\right]=E\left(\begin{array}{cc}
X^{\prime 2} & X^{\prime} Y^{\prime} \\
X^{\prime} Y^{\prime} & Y^{\prime 2}
\end{array}\right)=\left(\begin{array}{cc}
E\left[X^{\prime 2}\right] & 0 \\
0 & E\left[Y^{\prime 2}\right]
\end{array}\right)=\text { diagonal matrix }
$$

- If $\mathbf{Y}$ is a matrix of vectors, $\mathbf{Y} \mathbf{Y}^{\mathrm{T}}=$ diagonal


## Decorrelation

- Let $\mathbf{X}$ be the matrix of correlated data vectors
- Each component of $\mathbf{X}$ informs us of the mean trend of other components
- Need a transform $\mathbf{M}$ such that if $\mathbf{Y}=\mathbf{M X}$ such that the covariance of $\mathbf{Y}$ is diagonal
$-\mathbf{Y} \mathbf{Y}^{\mathrm{T}}$ is the covariance if $\mathbf{Y}$ is zero mean
- For uncorrelated components, $\mathbf{Y} \mathbf{Y}^{\mathrm{T}}=$ Diagonal
$\Rightarrow \mathbf{M X X} \mathbf{X}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}}=$ Diagonal
$\Rightarrow \mathbf{M} \cdot \operatorname{Cov}(\mathbf{X}) \cdot \mathbf{M}^{\mathrm{T}}=$ Diagonal


## Decorrelation

- Easy solution:
- Eigen decomposition of $\operatorname{Cov}(\mathbf{X})$ :
$\operatorname{Cov}(\mathbf{X})=\mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$
- $\mathbf{E E}^{\mathrm{T}}=\mathrm{I}$
- Let $\mathbf{M}=\mathbf{E}^{\mathrm{T}}$
- $\mathbf{M C o v}(\mathbf{X}) \mathbf{M}^{\mathrm{T}}=\mathbf{E}^{\mathrm{T}} \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}} \mathbf{E}=\Lambda=$ diagonal
- PCA: $\mathbf{Y}=\mathbf{E}^{\mathrm{T}} \mathbf{X}$
- Projects the data onto the Eigen vectors of the covariance matrix
- Diagonalizes the covariance matrix
- "Decorrelates" the data


## PCA

$$
\mathbf{X}=w_{1} \mathbf{E}_{1}+w_{2} \mathbf{E}_{2}
$$




- PCA: $\mathbf{Y}=\mathbf{E}^{\mathrm{T}} \mathbf{X}$
- Projects the data onto the Eigen vectors of the covariance matrix
- Changes the coordinate system to the Eigen vectors of the covariance matrix
- Diagonalizes the covariance matrix
- "Decorrelates" the data


## Decorrelating the data



- Are there other decorrelating axes?


## Decorrelating the data



- Are there other decorrelating axes?


## Decorrelating the data



- Are there other decorrelating axes?


## Decorrelating the data



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?


## Decorrelating the data



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?
- What is special about these axes?


## The statistical concept of Independence

- Two variables $X$ and $Y$ are dependent if If knowing $X$ gives you any information about $Y$
- $X$ and $Y$ are independent if knowing $X$ tells you nothing at all of $Y$


## A brief review of basic probability

- Independence: Two random variables X and Y are independent iff:
- Their joint probability equals the product of their individual probabilities
- $\mathrm{P}(\mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{Y})$
- Independence implies uncorrelatedness
- The average value of $X$ is the same regardless of the value of Y
- $\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]=\mathrm{E}[\mathrm{X}]$
- But uncorrelatedness does not imply independence


## A brief review of basic probability

- Independence: Two random variables X and Y are independent iff:
- The average value of any function of $X$ is the same regardless of the value of $Y$
- Or any function of Y
- $E[f(X) g(Y)]=E[f(X)] E[g(Y)]$ for all $f(), g()$


## Independence



- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?


## A brief review of basic probability

$y=f(x)$



- The expected value of an odd function of an RV is 0 if
- The RV is 0 mean
- The PDF is of the RV is symmetric around 0
- $E[f(X)]=0$ if $f(X)$ is odd symmetric


## A note on bits..

- You flip a coin. You must inform your friend in the next room about whether the outcome was heads or tails

- How many bits will you have to send?


## A note on bits..

- You roll a four-side dice. You must inform your friend in the next room about the outcome

- How many bits will you have to send?


## A note on bits..

- You roll an eight-sided polyheldral dice. You must inform your friend in the next room about the outcome

- How many bits will you have to send?


## A note on bits..

- You roll a six-sided dice. You must inform your friend in the next room about the outcome

- How many bits will you have to send?


## Batching up 6-sided dice rolls



- Instead of sending individual rolls, you roll the dice twice
- And send the pair to your friend
- How many bits do you send per roll?

| 1 | 1 |
| :--- | :--- |
| 1 | 2 |
| 1 | 3 |
| .. | .. |
| 2 | 1 |
| 2 | 2 |
| .. | .. |
| 6 | 6 |

## Batching up 6-sided dice rolls



- Instead of sending individual rolls, you roll the dice twice
- And send the pair to your friend
- How many bits do you send per roll?
- 36 combinations: 6 bits per pair of numbers
- Still 3 bits per roll

| 1 | 1 |
| :--- | :--- |
| 1 | 2 |
| 1 | 3 |
| .. | .. |
| 2 | 1 |
| 2 | 2 |
| .. | .. |
| 6 | 6 |

## Batching up 6-sided dice rolls



- Instead of sending individual rolls, you roll the dice three times
- And send the triple to your friend
- How many bits do you send per roll?
- 216 combinations: 8 bits per triple
- Still 2.666 bits per roll
- Now we're talking!

| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 2 |
| .. | .. | .. |
| 1 | 6 | 3 |
| .. |  | .. |
| 2 | 1 | 1 |
| 2 | 1 | 2 |
| .. |  | .. |
| 6 | 6 | 6 |

## Batching up 6-sided dice rolls

- Batching four rolls
- 1296 combinations

- 11 bits per outcome (4 rolls)
- 2.75 bit per roll
- Batching five rolls
- 7776 combinations

- 13 bits per outcome ( 5 rolls)
- 2.6 bits per roll


## Batching up 6-sided dice rolls



No. of rolls batched together

- Where will it end?


## Batching up 6-sided dice rolls



No. of rolls batched together

- Where will it end?
- $\lim _{k \rightarrow \infty} \frac{\lceil k \log 2(6)\rceil}{k}=\log 2(6)$ bits per roll in the limit
- This is the absolute minimum - no batching will give you less than these many bits per outcome


## Can we do better?

- A four-sided die needs 2 bits per roll
- But then you find not all sides are equally likely

- $\mathrm{P}(1)=0.5, \mathrm{P}(2)=0.25, \mathrm{P}(3) 0.125, \mathrm{P}(4)=0.125$
- Can you do better than 2 bits per outcome


## Can we do better?

- You have
$P(1)=0.5, P(2)=0.25, P(3) 0.125, P(4)=0.125$
- You use:

| 1 | 0 |
| :--- | :--- |
| 2 | 1 |$|$| 3 | 1 | 1 |
| :--- | :--- | :--- | 0

- Note receiver is never in any doubt as to what they received
- What is the average number of bits per outcome


## Can we do better?

- You have
$P(1)=0.5, P(2)=0.25, P(3) 0.125, P(4)=0.125$
- You use:

| 1 | 0 |
| :--- | :--- |
| 2 | 10 |
| 3 | 1110 |
| 4 | 1111 |



- Note receiver is never in any doubt as to what they received
- An outcome with probability $p$ is equivalent to obtaining one of $1 / p$ equally likely choices
- Requires $\log 2\left(\frac{1}{p}\right)$ bits on average


## Entropy



- The average number of bits per symbol required to communicate a random variable over a digitial channel using an optimal code is

$$
H(p)=\sum_{i} p_{i} \log \frac{1}{p_{i}}=-\sum_{i} p_{i} \log p_{i}
$$

- You can't do better
- Any other code will require more bits
- This is the entropy of the random variable


## A brief review of basic info. theory



- Entropy: The minimum average number of bits to transmit to convey a symbol

- Joint entropy: The minimum average number of bits to convey sets (pairs here) of symbols


## A brief review of basic info. theory



- Conditional Entropy: The minimum average number of bits to transmit to convey a symbol $X$, after symbol $Y$ has already been conveyed
- Averaged over all values of $X$ and $Y$


## A brief review of basic info. theory

- Conditional entropy of $X \mid Y=H(X)$ if $X$ is independent of $Y$
$H(X \mid Y)=\sum_{Y} P(Y) \sum_{X} P(X \mid Y)[-\log P(X \mid Y)]=\sum_{Y} P(Y) \sum_{X} P(X)[-\log P(X)]=H(X)$
- Joint entropy of $X$ and $Y$ is the sum of the entropies of $X$ and $Y$ if they are independent

$$
\begin{aligned}
& H(X, Y)=\sum_{X, Y} P(X, Y)[-\log P(X, Y)]=\sum_{X, Y} P(X, Y)[-\log P(X) P(Y)] \\
& \quad=-\sum_{X, Y} P(X, Y) \log P(X)-\sum_{X, Y} P(X, Y) \log P(Y)=H(X)+H(Y)
\end{aligned}
$$

## Onward..

## Projection: multiple notes



- $\mathbf{P}=\mathbf{W}\left(\mathbf{W}^{\mathrm{T}} \mathbf{W}\right)^{-1} \mathbf{W}^{\mathrm{T}}$
- Projected Spectrogram = PM


## We're actually computing a score



## How about the other way?



## When both parameters are unknown

$$
\mathrm{H}=\text { ? }
$$

$$
\operatorname{approx}(\mathbf{M})=\text { ? }
$$

- Must estimate both $\mathbf{H}$ and $\mathbf{W}$ to best approximate $\mathbf{M}$
- Ideally, must learn both the notes and their transcription!


## A least squares solution

$$
\mathbf{W}, \mathbf{H}=\arg \min _{\overline{\mathbf{w}}, \overline{\mathbf{H}}}\|\mathbf{M}-\overline{\mathbf{W} \mathbf{H}}\|_{F}^{2}+\Lambda\left(\overline{\mathbf{W}}^{T} \overline{\mathbf{W}}-\mathbf{I}\right)
$$

- Constraint: $\mathbf{W}$ is orthogonal
$-\mathbf{W}^{\mathrm{T}} \mathbf{W}=\mathbf{I}$
- The solution: $\mathbf{W}$ are the Eigen vectors of $\mathbf{M M}^{\mathbf{T}}$
- PCA!!
- $\mathbf{M} \sim \mathbf{W H}$ is an approximation
- Also, the rows of $\mathbf{H}$ are decorrelated
- Trivial to prove that $\mathbf{H} \mathbf{H}^{\mathbf{T}}$ is diagonal


## PCA

$$
\begin{aligned}
& \mathbf{W}, \mathbf{H}=\arg \min _{\overline{\mathbf{w}}, \overline{\mathbf{H}}}\|\mathbf{M}-\overline{\mathbf{W} \mathbf{H}}\|_{F}^{2} \\
& \mathbf{M} \approx \mathbf{W H}
\end{aligned}
$$

- The columns of $W$ are the bases we have learned
- The linear "building blocks" that compose the music
- They represent "learned" notes


## So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..


## So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..
- Results are not good


## PCA through decorrelation of notes

$$
\mathbf{W}, \mathbf{H}=\arg \min _{\overline{\mathbf{w}}, \overline{\mathbf{H}}}\|\mathbf{M}-\overline{\mathbf{H}}\|_{F}^{2}+\Lambda\left(\overline{\mathbf{H}}^{T}-\mathbf{D}\right)
$$



- Different constraint: Constraint $\mathbf{H}$ to be decorrelated
- $\mathbf{H H}^{\mathrm{T}}=\mathbf{D}$
- This will result exactly in PCA too
- Decorrelation of $\mathbf{H}$ Interpretation: What does this mean?


## What else can we look for?



- Assume: The "transcription" of one note does not depend on what else is playing
- Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still..


## What else can we look for?



- Assume: The "transcription" of one note does not depend on what else is playing
- Or, in a multi-instrument piece, instruments are playing independently of one another
- Attempting to find statistically independent components of the mixed signal
- Independent Component Analysis


## Formulating it with Independence

$\mathbf{W}, \mathbf{H}=\arg \min _{\overline{\mathbf{w}}, \overline{\mathbf{H}}}\|\mathbf{M}-\overline{\mathbf{W H}}\|_{F}^{2}+\Lambda($ rows.of.$H$. are.independent)

- Impose statistical independence constraints on decomposition


## Changing problems for a bit



- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals


## A Separation Problem



- Separation challenge: Given only $\mathbf{M}$ estimate $\mathbf{H}$
- Identical to the problem of "finding notes"


## A Separation Problem

| $\mathbf{W}$ |  |
| :---: | :---: |
| $\mathrm{W}_{11}$ | $\mathrm{~W}_{12}$ |
| $\mathrm{~W}_{21}$ | $\mathrm{~W}_{22}$ |



- Separation challenge: Given only $\mathbf{M}$ estimate $\mathbf{H}$
- Identical to the problem of "finding notes"


## Imposing Statistical Constraints



- $\mathbf{M}=\mathbf{W H}$
- Given only M estimate $\mathbf{H}$
- $\mathbf{H}=\mathbf{W}^{-1} \mathbf{M}=\mathbf{A M}$
- Only known constraint: The rows of $\mathbf{H}$ are independent
- Estimate $\mathbf{A}$ such that the components of $\mathbf{A M}$ are statistically independent
- $\mathbf{A}$ is the unmixing matrix


## Statistical Independence

- $\mathbf{M}=\mathbf{W H} \quad \mathbf{H}=\mathbf{A M} \quad$ Remember this form


## An ugly algebraic solution

## $\mathbf{M}=\mathbf{W H}$ <br> $\mathbf{H}=\mathbf{A M}$

- We could decorrelate signals by algebraic manipulation
- We know uncorrelated signals have diagonal correlation matrix
- So we transformed the signal so that it has a diagonal correlation matrix ( $\mathbf{H H}^{\mathbf{T}}$ )
- Can we do the same for independence
- Is there a linear transform that will enforce independence?


## An ugly algebraic solution

- We decorrelated signals by diagonalizing the covariance matrix
- Is there a simple matrix we could just similarly diagonalize to make them independent?


## An ugly algebraic solution

- We decorrelated signals by diagonalizing the covariance matrix
- Is there a simple matrix we could just similarly diagonalize to make them independent?
- Not really, but there is a matrix we can diagonalize to make fourth-order moments independent
- Just as decorrelation made second-order moments independent


## Emulating Independence



- The rows of $\mathbf{H}$ are uncorrelated
$-E\left[\mathbf{h}_{\mathrm{i}} \mathbf{h}_{\mathrm{j}}\right]=\mathrm{E}\left[\mathbf{h}_{\mathrm{i}}\right] \mathrm{E}\left[\mathbf{h}_{\mathrm{j}}\right]$
- $\mathbf{h}_{\mathrm{i}}$ and $\mathbf{h}_{\mathrm{j}}$ are the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\mathrm{th}}$ components of any vector in $\mathbf{H}$
- The fourth order moments are independent
$-E\left[\mathbf{h}_{\mathrm{i}} \mathbf{h}_{\mathbf{j}} \mathbf{h}_{\mathrm{k}} \mathbf{h}_{1}\right]=\mathrm{E}\left[\mathbf{h}_{\mathrm{i}}\right] \mathrm{E}\left[\mathbf{h}_{\mathrm{j}}\right] \mathrm{E}\left[\mathbf{h}_{\mathrm{k}}\right] \mathrm{E}\left[\mathbf{h}_{\mathrm{h}}\right]$
$-\mathrm{E}\left[\mathbf{h}_{\mathrm{i}}{ }^{2} \mathbf{h}_{\mathrm{j}} \mathbf{h}_{\mathrm{k}}\right]=\mathrm{E}\left[\mathbf{h}_{\mathrm{i}}{ }^{2}\right] \mathrm{E}\left[\mathbf{h}_{\mathrm{j}}\right] \mathrm{E}\left[\mathbf{h}_{\mathrm{k}}\right]$
$-E\left[h_{i}{ }^{2} \mathbf{h}_{j}{ }^{2}\right]=E\left[\mathbf{h}_{\mathrm{i}}{ }^{2}\right] E\left[\mathbf{h}_{\mathrm{j}}{ }^{2}\right]$
- Etc.


## Zero Mean

- Usual to assume zero mean processes
- Otherwise, some of the math doesn't work well
- $\mathbf{M}=\mathbf{W H} \quad \mathbf{H}=\mathbf{A M}$
- If $\operatorname{mean}(\mathbf{M})=0 \Rightarrow \operatorname{mean}(\mathbf{H})=0$
$-\mathrm{E}[\mathbf{H}]=\mathbf{A} \cdot \mathrm{E}[\mathbf{M}]=\mathbf{A} \mathbf{0}=\mathbf{0}$
- First step of ICA: Set the mean of $\mathbf{M}$ to 0

$$
\begin{aligned}
& \mu_{\mathbf{m}}=\frac{1}{\operatorname{cols}(\mathbf{M})} \sum_{i} \mathbf{m}_{i} \\
& \mathbf{m}_{i}=\mathbf{m}_{i}-\mu_{\mathbf{m}} \quad \forall i
\end{aligned}
$$

- $\mathbf{m}_{\mathrm{i}}$ are the columns of $\mathbf{M}$


## Emulating Independence..




- Independence $\rightarrow$ Uncorrelatedness
- Find $\mathbf{C}$ such that $\mathbf{C M}$ is decorrelated
- PCA
- Find $\mathbf{B}$ such that $\mathbf{B}(\mathbf{C M})$ is independent
- A little more than PCA


## Decorrelating and Whitening



- Eigen decomposition $\mathbf{M} \mathbf{M}^{\mathrm{T}}=\mathbf{E S E}^{\mathrm{T}}$
- $\mathbf{C}=\mathbf{S}^{-1 / 2} \mathbf{E}^{\mathrm{T}}$
- $\mathbf{X}=\mathbf{C M}$
- Not merely decorrelated but whitened
- $\mathbf{X X}^{\mathrm{T}}=\mathbf{C M M}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}}=\mathbf{S}^{-1 / 2} \mathbf{E}^{\mathrm{T}} \mathbf{E S E}^{\mathrm{T}} \mathbf{E S}^{-1 / 2}=\mathbf{I}$
- C is the whitening matrix


## Uncorrelated != Independent

- Whitening merely ensures that the resulting signals are uncorrelated, i.e.

$$
\mathrm{E}\left[\mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{j}}\right]=0 \text { if } \mathrm{i}!=\mathrm{j}
$$

- This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

$$
\mathrm{E}\left[\mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{j}}^{2}\right]=\mathrm{E}\left[\mathbf{x}_{\mathrm{i}}^{2}\right] \mathrm{E}\left[\mathbf{x}_{\mathrm{j}}^{2}\right]
$$

- This is one of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments


## Decorrelating



- Will multiplying $\mathbf{X}$ by $\mathbf{B}$ re-correlate the components?
- Not if $\mathbf{B}$ is unitary
$-\mathbf{B B}^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{B}=\mathbf{I}$
- $\mathbf{H H}^{\mathrm{T}}=\mathbf{B X X}{ }^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}=\mathbf{B B}^{\mathrm{T}}=\mathbf{I}$
- So we want to find a unitary matrix
- Since the rows of $\mathbf{H}$ are uncorrelated
- Because they are independent


## FOBI: Freeing Fourth Moments

- Find $\mathbf{B}$ such that the rows of $\mathbf{H}=\mathbf{B X}$ are independent
- The fourth moments of $\mathbf{H}$ have the form:
$\mathrm{E}\left[\mathbf{h}_{i} \mathbf{h}_{j} \mathbf{h}_{k} \mathbf{h}_{l}\right]$
- If the rows of $\mathbf{H}$ were independent $\mathrm{E}\left[\mathbf{h}_{i} \mathbf{h}_{j} \mathbf{h}_{k} \mathbf{h}_{l}\right]=\mathrm{E}\left[\mathbf{h}_{i}\right] \mathrm{E}\left[\mathbf{h}_{j}\right] \mathrm{E}\left[\mathbf{h}_{k}\right] \mathrm{E}\left[\mathbf{h}_{l}\right]$
- Solution: Compute $\mathbf{B}$ such that the fourth moments of $\mathbf{H}=\mathbf{B X}$ are decoupled
- While ensuring that B is Unitary
- FOBI: Fourth Order Blind Identification


## ICA: Freeing Fourth Moments



Objective: Find a matrix $B$ such that the rows of $H=B X$ are statistically independent<br>Define a matrix $D$ that would be diagonal if the rows of $B X$ are independent

Compute $B$ such that this matrix becomes diagonal

- Create a matrix of fourth moment terms that would be diagonal were the rows of $\mathbf{H}$ independent and diagonalize it
- A good candidate: the weighted correlation matrix of $\mathbf{H}$

$$
\boldsymbol{D}=E\left[\|\boldsymbol{h}\|^{2} \boldsymbol{h} \boldsymbol{h}^{\mathrm{T}}\right]=\sum_{k}\left\|\boldsymbol{h}_{k}\right\|^{2} \boldsymbol{h}_{k} \boldsymbol{h}_{k}^{\mathrm{T}}
$$

- $\boldsymbol{h}$ are the columns of $\mathbf{H}$
- Assuming $\boldsymbol{h}$ is real, else replace transposition with Hermitian


## ICA: The D matrix



## ICA: The D matrix

$$
\left.D=\left[\begin{array}{cccc}
d_{11} & d_{12} & d_{13} & . . \\
d_{21} & d_{22} & d_{23} & . . \\
. . & . . & . . & . .
\end{array}\right] \begin{array}{c}
\boldsymbol{D}=\boldsymbol{E}\left[\|\boldsymbol{h}\|^{2} \boldsymbol{h} \boldsymbol{h}^{\mathrm{T}}\right]
\end{array} d_{i j}=\boldsymbol{E}\left[\left(\sum_{l} h_{l}^{2}\right) h_{i} h_{j}\right]\right]
$$

- If the $h_{\mathrm{i}}$ terms were independent and zero mean
- For $i!=j$

$$
E\left[h_{i} h_{j} \sum_{l} h_{l}^{2}\right]=E\left[h_{i}^{3}\right] E\left[h_{j}\right]+E\left[h_{i}\right] E\left[h_{j}^{3}\right]+E\left[h_{i}\right] E\left[h_{j}\right] \sum_{l \neq i, l \neq j} E\left[h_{l}^{3}\right]=\mathbf{0}
$$

- For $i=j$

$$
-E\left[h_{i} h_{j} \sum_{l} h_{l}^{2}\right]=E\left[h_{i}^{4}\right]+E\left[h_{i}^{2}\right] \sum_{l \neq i} E\left[h_{l}^{2}\right] \neq \mathbf{0}
$$

- i.e., if $h_{\mathrm{i}}$ were independent, $D$ would be a diagonal matrix
- Let us diagonalize D


## Diagonalizing D

- Recall: $\mathbf{H}=\mathbf{B X}$
- B is what we're trying to learn to make $\mathbf{H}$ independent
- Assumption: $\mathbf{B}$ is unitary, i.e. $\mathbf{B B}^{\mathrm{T}}=\mathbf{I}$

Objective: Find a matrix $B$ such that the rows of $H=B X$ are statistically independent

Define a matrix $D$ that would be diagonal if the rows of $B X$ are independent

Compute B such that this matrix becomes diagonal

- Note: if $\mathbf{H}=\mathbf{B X}$, then each vector $\mathbf{h}=\mathbf{B x}$
- The fourth moment matrix of $\mathbf{H}$ is
- $\mathbf{D}=\mathrm{E}\left[\mathbf{h}^{\mathrm{T}} \mathbf{h} \mathbf{h} \mathbf{h}^{\mathrm{T}}\right]=\mathrm{E}\left[\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}\right]$

$$
=\mathrm{E}\left[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}\right]
$$

$$
=\mathbf{B}^{\mathrm{T}} \mathrm{E}\left[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{x x}^{\mathrm{T}}\right] \mathbf{B}
$$

$$
=\mathbf{B}^{\mathrm{T}} \mathrm{E}\left[\|\mathbf{x}\|^{2} \mathbf{x} \mathbf{x}^{\mathrm{T}}\right] \mathbf{B}
$$

## Diagonalizing D

- Objective: Estimate $\mathbf{B}$ such that the fourth moment of $\mathbf{H}=\mathbf{B X}$ is diagonal
- Compose $\mathbf{D}_{\mathbf{x}}=\sum_{k}\left\|\mathbf{x}_{k}\right\|^{2} \mathbf{x}_{\mathbf{k}} \mathbf{x}_{k}^{\mathrm{T}}$
- Diagonalize $\mathbf{D}_{\mathbf{x}}$ via Eigen decomposition $\mathbf{D}_{\mathbf{x}}=\mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}}$
- $\mathbf{B}=\mathbf{U}^{\mathrm{T}}$
- That's it!!!!


## B frees the fourth moment

$$
\mathbf{D}_{\mathbf{x}}=\mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}} ; \quad \mathbf{B}=\mathbf{U}^{\mathrm{T}}
$$

- $\mathbf{U}$ is a unitary matrix, i.e. $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{U} \mathbf{U}^{\mathrm{T}}=\mathbf{I}$ (identity)
- $\mathbf{H}=\mathbf{B X}=\mathbf{U}^{\mathrm{T}} \mathbf{X}$
- $\mathbf{h}=\mathbf{U}^{\mathrm{T}} \mathbf{x}$
- The fourth moment matrix of $\mathbf{H}$ is

$$
\begin{aligned}
\mathrm{E}\left[\|\mathbf{h}\|^{2} \mathbf{h} \mathbf{h}^{\mathrm{T}}\right] & =\mathbf{U}^{\mathrm{T}} \mathrm{E}\left[\|\mathbf{x}\|^{2} \mathbf{x x}^{\mathrm{T}}\right] \mathbf{U} \\
& =\mathbf{U}^{\mathrm{T}} \mathbf{D}_{\mathbf{x}} \mathbf{U} \\
& =\mathbf{U}^{\mathrm{T}} \mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}} \mathbf{U}=\Lambda
\end{aligned}
$$

- The fourth moment matrix of $\mathbf{H}=\mathbf{U}^{\mathrm{T}} \mathbf{X}$ is Diagonal!!


## Overall Solution

- Objective: Estimate $A$ such that the rows of $\mathbf{H}=$ $\mathbf{A M}$ are independent
- Step 1: Whiten M
- $\mathbf{C}$ is the (transpose of the) matrix of Eigen vectors of $\mathbf{M M}^{\text {T }}$
$-\mathbf{X}=\mathbf{C M}$
- Step 2: Free up fourth moments on X
- $\mathbf{B}$ is the (transpose of the) matrix of Eigenvectors of $\mathbf{X} . \operatorname{diag}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right) . \mathbf{X}^{\mathrm{T}}$
$-\mathbf{A}=\mathbf{B C}$


## FOBI for ICA

- Goal: to derive a matrix $\mathbf{A}$ such that the rows of $\mathbf{A M}$ are independent
- Procedure:

1. "Center" M
2. Compute the autocorrelation matrix $\boldsymbol{R}_{M M}$ of $\mathbf{M}$
3. Compute whitening matrix $\mathbf{C}$ via Eigen decomposition

$$
\boldsymbol{R}_{\mathrm{MM}}=\mathbf{E S E}^{\mathrm{T}}, \quad \mathbf{C}=\mathbf{S}^{-1 / 2} \mathbf{E}^{\mathrm{T}}
$$

4. Compute $\mathbf{X}=\mathbf{C M}$
5. Compute the fourth moment matrix $\mathbf{D}^{\prime}=E\left[\|\mathbf{x}\|^{2} \mathbf{x} \mathbf{x}^{\mathrm{T}}\right]$
6. Diagonalize $\mathbf{D}^{\prime}$ via Eigen decomposition
7. $\mathbf{D}^{\prime}=\mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}}$
8. Compute $\mathbf{A}=\mathbf{U}^{\mathrm{T}} \boldsymbol{C}$

- The fourth moment matrix of $\mathbf{H}=\mathbf{A M}$ is diagonal
- Note that the autocorrelation matrix of H will also be diagonal


## ICA by diagonalizing moment matrices

- FOBI is not perfect
- Only a subset of fourth order moments are considered
- Diagonalizing the particular fourth-order moment matrix we have chosen is not guaranteed to diagonalize every other fourth-order moment matrix
- JADE: (Joint Approximate Diagonalization of Eigenmatrices), J.F. Cardoso
- Jointly diagonalizes multiple fourth-order cumulant matrices


## Enforcing Independence

- Specifically ensure that the components of $\mathbf{H}$ are independent
- $\mathbf{H}=\mathbf{A M}$
- Contrast function: A non-linear function that has a minimum value when the output components are independent
- Define and minimize a contrast function

$$
» F(A M)
$$

- Contrast functions are often only approximations too..


## A note on pre-whitening

- The mixed signal is usually "prewhitened" for all ICA methods
- Normalize variance along all directions
- Eliminate second-order dependence
- Eigen decomposition $\mathbf{M M}^{\mathrm{T}}=\mathbf{E S E}^{\mathrm{T}}$
- $\mathbf{C}=\mathbf{S}^{-1 / 2} \mathbf{E}^{\mathrm{T}}$
- Can use first $K$ columns of $\mathbf{E}$ only if only $K$ independent sources are expected
- In microphone array setup - only $K<M$ sources
- $\mathbf{X}=\mathbf{C M}$
$-\mathrm{E}\left[\mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{j}}\right]=\delta_{\mathrm{ij}}$ for centered signal


## The contrast function

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- An explicit contrast function

$$
I(\mathbf{H})=\sum_{i} H\left(\overline{\mathbf{h}}_{i}\right)-H(\overline{\mathbf{h}})
$$

- With constraint: $\mathbf{H}=\mathbf{B X}$
$-\mathbf{X}$ is "whitened" $\mathbf{M}$


## Linear Functions

- $\mathbf{h}=\mathbf{B x}, \quad \mathbf{x}=\mathbf{B}^{-1} \mathbf{h}$
- Individual columns of the $\mathbf{H}$ and $\mathbf{X}$ matrices
$-\mathbf{x}$ is mixed signal, $\mathbf{B}$ is the unmixing matrix

$$
\begin{gathered}
P_{\mathbf{h}}(\mathbf{h})=P_{\mathbf{x}}\left(\mathbf{B}^{-1} \mathbf{h}\right)|\mathbf{B}|^{-1} \\
H(\mathbf{x})=-\int P(\mathbf{x}) \log P(\mathbf{x}) d \mathbf{x} \\
\log P(\mathbf{h})=\log P_{\mathbf{x}}\left(\mathbf{B}^{-1} \mathbf{h}\right)-\log (|\mathbf{B}|) \\
H(\mathbf{h})=H(\mathbf{x})+\log |\mathbf{B}|
\end{gathered}
$$

## The contrast function

$$
\begin{gathered}
I(\mathbf{H})=\sum_{i} H\left(\overline{\mathbf{h}}_{i}\right)-H(\overline{\mathbf{h}}) \\
I(\mathbf{H})=\sum_{i} H\left(\overline{\mathbf{h}}_{i}\right)-H(\mathbf{x})-\log |\mathbf{B}|
\end{gathered}
$$

- Ignoring $H(\mathbf{x})$ (Const)

$$
J(\mathbf{H})=\sum_{i} H\left(\overline{\mathbf{h}}_{i}\right)-\log |\mathbf{B}|
$$

- Minimize the above to obtain B


## An alternate approach

- Recall PCA
- $\mathbf{M}=\mathbf{W H}$, the columns of $\mathbf{W}$ must be orthogonal
- Leads to: $\min _{\mathbf{W}}| | \mathbf{M}-\mathbf{W} \mathbf{W}^{\mathrm{T}} \mathbf{M}| |^{2}+\Lambda$. $\operatorname{trace}\left(\mathbf{W}^{\mathrm{T}} \mathbf{W}\right)$
- Error minimization framework to estimate $\mathbf{W}$
- Can we arrive at an error minimization framework for ICA
- Define an "Error" objective that represents independence


## An alternate approach

- Definition of Independence - if $x$ and $y$ are independent:
$-\mathrm{E}[f(x) g(y)]=\mathrm{E}[f(x)] \mathrm{E}[g(y)]$
- Must hold for every $f()$ and $g()!!$


## An alternate approach

- Define $\mathbf{g}(\mathbf{H})=\mathbf{g}(\mathbf{B X})$ (component-wise function)

- Define $\mathbf{f}(\mathbf{H})=\mathbf{f}(\mathbf{B X})$

$$
\begin{array}{ccc}
\mathrm{f}\left(h_{11}\right) & \mathrm{f}\left(h_{21}\right) & \cdots \\
\mathrm{f}\left(h_{12}\right) & \mathrm{f}\left(h_{22}\right) & \\
\cdot & \cdot &
\end{array}
$$

## An alternate approach

- $\mathbf{P}=\mathbf{g}(\mathbf{H}) \mathbf{f}(\mathbf{H})^{\mathrm{T}}=\mathbf{g}(\mathbf{B X}) \mathbf{f}(\mathbf{B X})^{\mathrm{T}}$

$$
\mathbf{P}=\begin{array}{|ccc|}
\left.\begin{array}{cc}
P_{11} & P_{21} \\
P_{12} & P_{22} \\
\vdots & \vdots
\end{array} \quad \quad \mathbf{P}_{i j}=\mathbf{E}\left[\mathrm{g}\left(h_{i}\right) \mathrm{f}\left(h_{j}\right)\right], 0\right]
\end{array}
$$

This is a square matrix

- Must ideally be

$$
\mathbf{Q}=\begin{array}{|ccc|}
\hline Q_{11} & Q_{21} & \cdots \\
Q_{12} & Q_{22} & Q_{i j}=E\left[g\left(h_{i}\right)\right] E\left[f\left(h_{j}\right)\right] \quad i \neq j \\
\vdots & \vdots & Q_{i i}=E\left[g\left(h_{i}\right) f\left(h_{i}\right)\right]
\end{array}
$$

- Error $=\|\mathbf{P}-\mathbf{Q}\|_{\mathrm{F}}{ }^{2}$


## An alternate approach

- Ideal value for $\mathbf{Q}$

$$
\mathbf{Q}=\begin{array}{|ccc|}
\hline Q_{11} & Q_{21} & \cdots \\
Q_{12} & Q_{22} & Q_{i j}=E\left[g\left(h_{i}\right)\right] E\left[f\left(h_{j}\right)\right] \quad i \neq j \\
\vdots & \vdots & \\
Q_{i i}=E\left[g\left(h_{i}\right) f\left(h_{i}\right)\right]
\end{array}
$$

- If $g()$ and $f()$ are odd symmetric functions $\mathrm{E}\left[g\left(\mathrm{~h}_{\mathrm{i}}\right)\right]=0$ for all i
- Since $=E\left[h_{i}\right]=0 \quad(\mathbf{H}$ is centered $)$
- $\mathbf{Q}$ is a Diagonal Matrix!!!


## An alternate approach

- Minimize Error

$$
\begin{gathered}
\mathbf{P}=\mathbf{g}(\mathbf{B X}) \mathbf{f}(\mathbf{B X})^{\mathbf{T}} \\
\mathbf{Q}=\text { Diagonal } \\
\text { error }=\|\mathbf{P}-\mathbf{Q}\|_{F}^{2}
\end{gathered}
$$

- Leads to trivial Widrow Hopf type iterative rule:

$$
\begin{aligned}
& \mathbf{E}=\operatorname{Diag}-\mathbf{g}(\mathbf{B X}) \mathbf{f}(\mathbf{B X})^{\mathbf{T}} \\
& \mathbf{B}=\mathbf{B}+\eta \mathbf{E X}^{\mathbf{T}}
\end{aligned}
$$

## Update Rules

- Multiple solutions under different assumptions for $g()$ and $f()$
- $\mathbf{H}=\mathbf{B X}$
- $\mathbf{B}=\mathbf{B}+\eta \Delta \mathbf{B}$
- Jutten Herraut : Online update
$-\Delta \mathrm{B}_{\mathrm{ij}}=\mathrm{f}\left(\mathbf{h}_{\mathrm{i}}\right) \mathrm{g}\left(\mathbf{h}_{\mathrm{j}}\right)$;-- actually assumed a recursive neural network
- Bell Sejnowski
$-\Delta \mathbf{B}=\left(\left[\mathbf{B}^{\mathrm{T}}\right]^{-1}-\mathbf{g}(\mathbf{H}) \mathbf{X}^{\mathrm{T}}\right)$


## Update Rules

- Multiple solutions under different assumptions for $g()$ and $f()$
- $\mathbf{H}=\mathbf{B X}$
- $\mathbf{B}=\mathbf{B}+\eta \Delta \mathbf{B}$
- Natural gradient -- $f()=$ identity function

$$
-\Delta \mathbf{B}=\left(\mathbf{I}-\mathbf{g}(\mathbf{H}) \mathbf{H}^{\mathrm{T}}\right) \mathbf{X}^{\mathrm{T}}
$$

- Cichoki-Unbehaeven
$-\Delta \mathbf{B}=\left(\mathbf{I}-\mathbf{g}(\mathbf{H}) \mathbf{f}(\mathbf{H})^{\mathrm{T}}\right) \mathbf{X}^{\mathrm{T}}$


## What are G() and F()

- Must be odd symmetric functions
- Multiple functions proposed

$$
g(x)=\left\{\begin{array}{l}
x+\tanh (x) \quad \text { x is super Gaussian } \\
x-\tanh (x) \quad \mathrm{x} \text { is sub Gaussian }
\end{array}\right.
$$

- Audio signals in general
$-\Delta \mathbf{B}=\left(\mathbf{I}-\mathbf{H H}^{\mathrm{T}}-\mathbf{K} \tanh (\mathbf{H}) \mathbf{H}^{\mathrm{T}}\right) \mathbf{X}^{\mathrm{T}}$
- Or simply
$\left.-\Delta \mathbf{B}=\mathbf{( I}-\mathbf{K} \boldsymbol{\operatorname { t a n h }}(\mathbf{H}) \mathbf{H}^{\mathrm{T}}\right) \mathbf{X}^{\mathrm{T}}$


## So how does it work?



- Example with instantaneous mixture of two speakers
- Natural gradient update
- Works very well!


## Another example!

Input



Mix

$\mathrm{H}_{\mathrm{M}}^{\mathrm{M}} \mathrm{ramom}$


11755/18797

Output




## Another Example



- Three instruments..


## The Notes



- Three instruments..


## ICA for data exploration

- The "bases" in PCA represent the "building blocks"
- Ideally notes
- Very successfully used
- So can ICA be used to do the same?



## ICA vs PCA bases

- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
- May not align with the data!
- ICA finds directions that are independent
- More likely to "align" with the data



## Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
- ICA returns localizes edge filters



## Example case: ICA-faces vs. Eigenfaces



## ICA for Signal Enhncement



- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals
- ICA can be used to separate them out


## So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..


## PCA solution



- There are 12 notes in the segment, hence we try to estimate 12 notes..


## So how does this work: ICA solution




- Better.
- But not much
- But the issues here?


## ICA Issues

- No sense of order
- Unlike PCA
- Get K independent directions, but does not have a notion of the "best" direction
- So the sources can come in any order
- Permutation invariance
- Does not have sense of scaling
- Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order
- In the best case
- In worse case, output are not desired signals at all..


## What else went wrong?

- Notes are not independent
- Only one note plays at a time
- If one note plays, other notes are not playing
- Will deal with these later in the course..

