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Revisiting the Covariance Matrix

• Assuming centered data

• C = SX XXT

• = X1X1
T + X2X2

T + ….

• Let us view C as a transform..
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Covariance matrix as a transform

• (X1X1
T + X2X2

T + … ) V = X1X1
TV + X2X2

TV + …
• Consider a 2-vector example

– In two dimensions for illustration
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Covariance Matrix as a transform

• Data comprises only 2 vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
4
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Covariance Matrix as a transform

• Data comprises only 2 vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• More vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• More vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• And still more vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• The covariance matrix captures the directions of 
maximum variance

• What does it tell us about trends?
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Data Trends: Axis aligned 
covariance

• Axis aligned covariance
• At any X value, the average Y value of vectors is 0

– X cannot predict Y

• At any Y, the average X of vectors is 0
– Y cannot predict X

• The X and Y components are uncorrelated
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Data Trends: Tilted covariance

• Tilted covariance
• The average Y value of vectors at any X varies with X

– X predicts Y

• Average X varies with Y
• The X and Y components are correlated
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Decorrelation

• Shifting to using the major axes as the coordinate system
– L1 does not predict L2 and vice versa
– In this coordinate system the data are uncorrelated

• We have decorrelated the data by rotating the axes
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The statistical concept of 
correlatedness

• Two variables X and Y are correlated if If 
knowing X gives you an expected value of Y

• X and Y are uncorrelated if knowing X tells you 
nothing about the expected value of Y
– Although it could give you other information
– How? 
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Correlation vs. Causation

• The consumption of burgers has gone up 
steadily in the past decade

• In the same period, the penguin population of 
Antarctica has gone down
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Correlation, not Causation
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The concept of correlation

• Two variables are correlated if knowing the 
value of one gives you information about the 
expected value of the other
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A brief review of basic probability
• Uncorrelated:  Two random variables X and Y are 

uncorrelated iff:
– The average value of the product of the variables equals the 

product of their individual averages

• Setup:  Each draw produces one instance of X and one 
instance of Y 
– I.e one instance of (X,Y)

• E[XY] =  E[X]E[Y]

• The average value of Y is the same regardless of the value 
of X
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Correlated Variables

• Expected value of  Y given X:
– Find average of Y values of all samples at (or close) 

to the given X
– If this is a function of X, X and Y are correlated
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Uncorrelatedness

• Knowing X does not tell you what the average 
value of Y is
– And vice versa
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Uncorrelated Variables

• The average value of Y is the same regardless 
of the value of X and vice versa
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Uncorrelatedness in Random 
Variables

• Which of the above represent uncorrelated RVs?
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Benefits of uncorrelatedness..

• Uncorrelatedness of variables is generally considered 
desirable for modelling and analyses
– For Euclidean error based regression models and probabilistic 

models, uncorrelated variables can be separately handled
• Since the value of one doesn’t affect the average value of others
• Greatly reduces the number of model parameters

– Otherwise their interactions must be considered

• We will frequently transform correlated variables to make 
them uncorrelated  
– “Decorrelating” variables
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The notion of decorrelation

• So how does one transform the correlated 
variables (X,Y) to the uncorrelated (X’, Y’)
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What does “uncorrelated” mean

• If Y is a matrix of vectors, YYT = diagonal
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Decorrelation
• Let X be the matrix of correlated data vectors

– Each component of X informs us of the mean trend of 
other components

• Need a transform M such that if Y = MX such 
that the covariance of Y is diagonal
– YYT is the covariance if Y is zero mean 
– For uncorrelated components, YYT = Diagonal 

MXXTMT = Diagonal 

M.Cov(X).MT = Diagonal
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Decorrelation
• Easy solution:

– Eigen decomposition of Cov(X):  

Cov(X) = ELET

– EET = I

• Let M = ET

• MCov(X)MT = ETELETE = L = diagonal

• PCA: Y = ETX
– Projects the data onto the Eigen vectors of the covariance matrix
– Diagonalizes the covariance matrix
– “Decorrelates” the data
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PCA

• PCA: Y = ETX
– Projects the data onto the Eigen vectors of the covariance matrix

• Changes the coordinate system to the Eigen vectors of the covariance matrix

– Diagonalizes the covariance matrix
– “Decorrelates” the data
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
• What about if we don’t require them to be 

orthogonal?
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Decorrelating the data

• Are there other decorrelating axes?
• What about if we don’t require them to be 

orthogonal?
• What is special about these axes?
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The statistical concept of 
Independence

• Two variables X and Y are dependent if If 
knowing X gives you any information about Y

• X and Y are independent if knowing X tells you 
nothing at all of Y
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A brief review of basic probability
• Independence:  Two random variables X and Y

are independent iff:
– Their joint probability equals the product of their 

individual probabilities

• P(X,Y) =  P(X)P(Y)

• Independence implies uncorrelatedness
– The average value of X is the same regardless of the 

value of Y
• E[X|Y] = E[X]

– But uncorrelatedness does not imply independence
11755/18797 33



A brief review of basic probability

• Independence:  Two random variables X and 
Y are independent iff:

• The average value of any function of X is the 
same regardless of the value of Y
– Or any function of Y

• E[f(X)g(Y)]  =  E[f(X)] E[g(Y)]   for all f(), g()
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Independence

• Which of the above represent independent RVs?

• Which represent uncorrelated RVs?
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A brief review of basic probability

• The expected value of an odd function of an 
RV is 0 if
– The RV is 0 mean

– The PDF is of the RV is symmetric around 0

• E[f(X)]  =  0 if f(X) is odd symmetric
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A note on bits..

• You flip a coin.  You must inform your friend in 
the next room about whether the outcome 
was heads or tails

• How many bits will you have to send?
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A note on bits..

• You roll a four-side dice.  You must inform your 
friend in the next room about the outcome

• How many bits will you have to send?
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A note on bits..

• You roll an eight-sided polyheldral dice.  You 
must inform your friend in the next room 
about the outcome

• How many bits will you have to send?
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A note on bits..

• You roll a six-sided dice.  You must inform your 
friend in the next room about the outcome

• How many bits will you have to send?
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Batching up 6-sided dice rolls

• Instead of sending 
individual rolls, you roll 
the dice twice
– And send the pair to your 

friend

• How many bits do you 
send per roll?
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Batching up 6-sided dice rolls

• Instead of sending individual 
rolls, you roll the dice twice
– And send the pair to your friend

• How many bits do you send per 
roll?

• 36 combinations: 6 bits per pair 
of numbers
– Still 3 bits per roll
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Batching up 6-sided dice rolls

• Instead of sending individual rolls, 
you roll the dice three times
– And send the triple to your friend

• How many bits do you send per 
roll?

• 216 combinations: 8 bits per triple
– Still 2.666 bits per roll
– Now we’re talking!
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Batching up 6-sided dice rolls
• Batching four rolls

– 1296 combinations

– 11 bits per outcome (4 rolls)

– 2.75 bit per roll

• Batching five rolls
– 7776 combinations

– 13 bits per outcome (5 rolls)

– 2.6 bits per roll
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Batching up 6-sided dice rolls

• Where will it end?
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Batching up 6-sided dice rolls

• Where will it end?

• bits per roll in the limit

– This is the absolute minimum – no batching will give you less 
than these many bits per outcome
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Can we do better?
• A four-sided die needs 2 bits

per roll
• But then you find not all

sides are equally likely

• P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125
• Can you do better than 2 bits per outcome
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Can we do better?
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what 
they received

• What is the average number of bits per 
outcome
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Can we do better?
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what they 
received

• An outcome with probability is equivalent to 
obtaining one of equally likely choices

– Requires bits on average
49
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Entropy

• The average number of bits per symbol required to communicate a 
random variable over a digitial channel using an optimal code is

   

• You can’t do better
– Any other code will require more bits

• This is the entropy of the random variable
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A brief review of basic info. theory

• Entropy:  The minimum average number of bits 
to transmit to convey a symbol

• Joint entropy:  The minimum average number of 
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

• Conditional Entropy:  The minimum average 
number of bits to transmit to convey a symbol 
X, after symbol Y has already been conveyed
– Averaged over all values of X and Y
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A brief review of basic info. theory

• Conditional entropy of if is 
independent of 

• Joint entropy of and is the sum of the 
entropies of and if they are independent
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Onward..
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Projection: multiple notes
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 P = W (WTW)-1 WT

 Projected Spectrogram = PM

M = 

W = 



We’re actually computing a score
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 M ~  WH
 H = pinv(W)M

M = 

W = 

H = ? 



How about the other way?
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 M ~ WH              W = Mpinv(H)       U = WH

M = 

W = ??

H = 

U = 



When both parameters are unknown

• Must estimate both H and W to best 
approximate M

• Ideally, must learn both the notes and their 
transcription!

W =? 

H = ? 

approx(M) = ? 
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A least squares solution

• Constraint: W is orthogonal
– WTW = I

• The solution: W are the  Eigen vectors of 
MMT

– PCA!!

• M ~ WH is an approximation
• Also, the rows of H are decorrelated

– Trivial to prove that HHT is diagonal

)(||||minarg, 2
, IWWHWMHW HW L T

F
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PCA

• The columns of W are the bases we have 
learned
– The linear “building blocks” that compose the 

music

• They represent “learned” notes

WHM

HWMHW HW



 2
, ||||minarg, F
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..

11755/18797 61



So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..

• Results are not good
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PCA through decorrelation of 
notes

• Different constraint: Constraint H to be decorrelated
– HHT = D

• This will result exactly in PCA too

• Decorrelation of H Interpretation: What does this 
mean?
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What else can we look for?

• Assume: The “transcription” of one note does 
not depend on what else is playing
– Or, in a multi-instrument piece, instruments are 

playing independently of one another

• Not strictly true, but still..
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What else can we look for?

• Assume: The “transcription” of one note does not depend on what 
else is playing
– Or, in a multi-instrument piece, instruments are playing independently 

of one another

• Attempting to find statistically independent components of the 
mixed signal
– Independent Component Analysis
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Formulating it with Independence

• Impose statistical independence constraints 
on decomposition

11755/18797 66

)....(||||minarg, 2
, tindependenareHofrowsF L HWMHW HW



Changing problems for a bit

• Two people speak simultaneously
• Recorded by two microphones
• Each recorded signal is a mixture of both signals
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A Separation Problem

• M = WH
– M = “mixed” signal
– W = “notes”
– H = “transcription”

• Separation challenge: Given only M estimate H
• Identical to the problem of “finding notes”
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A Separation Problem

• Separation challenge: Given only M estimate H

• Identical to the problem of “finding notes”
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Imposing Statistical Constraints

• M = WH

• Given only M estimate H
• H = W-1M =   AM

• Only known constraint:  The rows of H are 
independent

• Estimate A such that the components of AM are 
statistically independent
– A is the unmixing matrix
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Statistical Independence

• M = WH      H = AM
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An ugly algebraic solution

• We could decorrelate signals by algebraic manipulation
– We know uncorrelated signals have diagonal correlation 

matrix
– So we transformed the signal so that it has a diagonal 

correlation matrix (HHT)

• Can we do the same for independence
– Is there a linear transform that will enforce independence?
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An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?
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An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?
– Not really, but there is a matrix we can diagonalize

to make fourth-order moments independent
• Just as decorrelation made second-order moments 

independent
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Emulating Independence

• The rows of H are uncorrelated
– E[hihj] = E[hi]E[hj]
– hi and hj are the ith and jth components of any vector in H

• The fourth order moments are independent
– E[hihjhkhl] = E[hi]E[hj]E[hk]E[hl]
– E[hi

2hjhk] = E[hi
2]E[hj]E[hk]

– E[hi
2hj

2] = E[hi
2]E[hj

2]
– Etc.
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Zero Mean
• Usual to assume zero mean processes

– Otherwise, some of the math doesn’t work well

• M = WH      H = AM

• If mean(M) = 0  =>  mean(H) = 0
– E[H] = A.E[M] = A0 = 0
– First step of ICA:  Set  the mean of M to 0

– mi are the columns of M
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Emulating Independence..

• Independence  Uncorrelatedness
• Find C such that CM is decorrelated

– PCA

• Find B such that B(CM) is independent
• A little more than PCA
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Decorrelating and Whitening

• Eigen decomposition MMT= ESET

• C = S-1/2ET

• X = CM

• Not merely decorrelated but whitened
– XXT = CMMTCT = S-1/2ET ESETES-1/2 = I

• C is the whitening matrix
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Uncorrelated != Independent

• Whitening merely ensures that the resulting signals are 
uncorrelated, i.e.

E[xixj] = 0 if i != j

• This does not ensure higher order moments are also 
decoupled, e.g. it does not ensure that

E[xi
2xj

2] = E[xi
2]E [xj

2]

• This is one of the signatures of independent RVs
• Lets explicitly decouple the fourth order moments
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Decorrelating

• X = CM

• XXT = I

• Will multiplying X by B re-correlate the components?
• Not if B is unitary

– BBT = BTB = I

• HHT = BXXTBT = BBT = I

• So we want to find a unitary matrix
– Since the rows of H are uncorrelated

• Because they are independent
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FOBI: Freeing Fourth Moments
• Find B such that the rows of H = BX are independent

• The fourth moments of H have the form:
E[hi hj hk hl] 

• If the  rows of H were independent
E[hi hj hk hl]  = E[hi] E[hj] E[hk] E[hl]

• Solution:  Compute B such that the fourth moments of H = BX 
are decoupled
– While ensuring that B is Unitary

• FOBI:  Fourth Order Blind Identification
8111755/18797



ICA: Freeing Fourth Moments

• Create a matrix of fourth moment terms that would be 
diagonal were the rows of H independent and diagonalize it

• A good candidate: the weighted correlation matrix of H
𝟐

 

– h are the columns of H
– Assuming h is real,  else replace transposition with Hermitian

82

H = hk

Objective: Find a matrix B 
such that the  rows of  H=BX 
are statistically independent

Define a matrix D that would 
be diagonal if the rows of BX 
are independent

Compute B such that this 
matrix becomes diagonal



ICA: The D matrix
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ICA: The D matrix

• If the hi terms were independent and zero mean
• For i != j

   

,

• For i = j

–    

• i.e., if hi were independent, D would be a diagonal matrix
– Let us diagonalize D 84
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Diagonalizing D
• Recall:  H = BX

– B is what we’re trying to learn to 
make H independent

– Assumption: B is unitary, i.e. BBT = I

• Note:    if H = BX ,  then each vector h = Bx

• The fourth moment matrix of H is
• D =  E[hT h h hT] =  E[xTBBTx BT x xTB]

=  E[xTx BT x xTB]
=  BT E[xTx xxT]B

= BT E[||x||2 xxT]B

85

Objective: Find a matrix B 
such that the  rows of  H=BX 
are statistically independent

Define a matrix D that would 
be diagonal if the rows of BX 
are independent

Compute B such that this 
matrix becomes diagonal



Diagonalizing D

• Objective: Estimate B such that the fourth 
moment of H = BX is diagonal

• Compose 

• Diagonalize Dx via Eigen decomposition
Dx = ULUT

• B = UT

– That’s it!!!!
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B frees the fourth moment
Dx = ULUT ;   B = UT

• U is a unitary matrix, i.e. UTU = UUT = I (identity)
• H = BX = UTX

• h = UTx

• The fourth moment matrix of H is
E[||h||2 h hT]  =  UT E[||x||2 xxT]U

= UT Dx U
= UT U L U T U = L

• The fourth moment matrix of H = UTX is Diagonal!!
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Overall Solution

• Objective:  Estimate A such that the rows of H = 
AM are independent

• Step 1:  Whiten M
– C is the (transpose of the) matrix of Eigen vectors of 

MMT

– X = CM

• Step 2:  Free up fourth moments on X
– B is the (transpose of the) matrix of Eigenvectors of  

X.diag(XTX).XT

– A = BC
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FOBI for ICA
• Goal: to derive a matrix A such that the rows of AM are 

independent
• Procedure:

1. “Center” M
2. Compute the autocorrelation matrix RMM of M
3. Compute whitening matrix C via Eigen decomposition

RMM = ESET,    C = S-1/2ET

4. Compute X = CM

5. Compute the fourth moment matrix D’ = E[||x||2xxT] 

6. Diagonalize D’ via Eigen decomposition
7. D’ = ULUT

8. Compute A = UTC

• The fourth moment matrix of H=AM is diagonal
– Note that the autocorrelation matrix of H will also be diagonal
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ICA by diagonalizing moment 
matrices

• FOBI is not perfect
– Only a subset of fourth order moments are considered

• Diagonalizing the particular fourth-order moment matrix we 
have chosen is not guaranteed to diagonalize every other 
fourth-order moment matrix

• JADE: (Joint Approximate Diagonalization of 
Eigenmatrices), J.F. Cardoso
– Jointly diagonalizes multiple fourth-order cumulant

matrices
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Enforcing Independence

• Specifically ensure that the components of H are 
independent
– H = AM

• Contrast function: A non-linear function that has a 
minimum value when the output components are 
independent

• Define and minimize a contrast function
» F(AM)

• Contrast functions are often only approximations too..
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A note on pre-whitening
• The mixed signal is usually “prewhitened” for all ICA methods

– Normalize variance along all directions
– Eliminate second-order dependence

• Eigen decomposition MMT = ESET

• C = S-1/2ET

• Can use first K columns of E only if only K independent sources are 
expected
– In microphone array setup – only K < M sources

• X =  CM
– E[xixj] = dij for centered signal
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The contrast function

• Contrast function: A non-linear function that 
has a minimum value when the output 
components are independent

• An explicit contrast function

• With constraint :  H = BX
– X is “whitened” M
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Linear Functions

• h = Bx,    x = B-1h 
– Individual columns of the H and X matrices
– x is mixed signal, B is the unmixing matrix
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The contrast function

• Ignoring H(x) (Const)

• Minimize  the above to obtain B
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An alternate approach

• Recall PCA

• M = WH,  the columns of W must be orthogonal

• Leads to:  minW||M –WWTM||2 + L.trace(WTW)

– Error minimization framework to estimate W

• Can we arrive at an error minimization framework 
for ICA

• Define an “Error” objective that represents 
independence
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An alternate approach

• Definition of Independence – if x and y are 
independent:   
– E[f(x)g(y)] = E[f(x)]E[g(y)] 

– Must hold for every f() and g()!!
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An alternate approach
• Define g(H) = g(BX)  (component-wise 

function)

• Define f(H) = f(BX)
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An alternate approach
• P = g(H) f(H)T = g(BX) f(BX)T

This is a square matrix
• Must ideally be

• Error = ||P-Q||F2
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An alternate approach

• Ideal value for Q

• If g() and f() are odd symmetric functions 
E[g(hi)] = 0 for all i
– Since = E[hi] = 0   (H is centered)

• Q is a Diagonal Matrix!!!
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An alternate approach
• Minimize Error

• Leads to trivial Widrow Hopf type iterative 
rule:
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Update Rules
• Multiple solutions under different 

assumptions for g() and f()
• H = BX

• B = B +  DB

• Jutten Herraut : Online update
– DBij = f(hi)g(hj);  -- actually assumed a recursive 

neural network

• Bell Sejnowski
– DB = ([BT]-1 – g(H)XT)
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Update Rules

• Multiple solutions under different 
assumptions for g() and f()

• H = BX

• B = B +  DB

• Natural gradient  -- f() = identity function
– DB = (I – g(H)HT) XT

• Cichoki-Unbehaeven
– DB = (I – g(H)f(H)T) XT
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What are G() and F()

• Must be odd symmetric functions
• Multiple functions proposed

• Audio signals in general
– DB = (I – HHT-Ktanh(H)HT) XT

• Or simply
– DB = (I –Ktanh(H)HT) XT
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So how does it work?

• Example with instantaneous mixture of two 
speakers

• Natural gradient update
• Works very well!
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Another example!
Input Mix Output
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Another Example

• Three instruments..
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The Notes

• Three instruments..
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ICA for data exploration

• The “bases” in PCA 
represent the “building 
blocks”
– Ideally notes

• Very successfully used
• So can ICA be used to 

do the same?
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ICA vs PCA bases
Non-Gaussian data

ICA
PCA

 Motivation for using ICA vs PCA

 PCA will indicate orthogonal directions 
of maximal variance

 May not align with the data!

 ICA finds directions that are 
independent

 More likely to “align” with the data 

11755/18797 110



Finding useful transforms with ICA
• Audio preprocessing 

example
• Take a lot of audio snippets 

and concatenate them in a 
big matrix, do component 
analysis

• PCA results in the DCT bases
• ICA returns time/freq 

localized sinusoids which is a 
better way to analyze sounds

• Ditto for images
– ICA returns localizes edge 

filters
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces
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ICA for Signal Enhncement

• Very commonly used to enhance EEG signals
• EEG signals are frequently corrupted by 

heartbeats and biorhythm signals
• ICA can be used to separate them out
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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PCA solution

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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So how does this work: ICA solution

• Better..
– But not much

• But the issues here?
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ICA Issues
• No sense of order

– Unlike PCA

• Get K independent directions, but does not have a notion 
of the “best” direction
– So the sources can come in any order
– Permutation invariance

• Does not have sense of scaling
– Scaling the signal does not affect independence

• Outputs are scaled versions of desired signals in permuted 
order
– In the best case
– In worse case, output are not desired signals at all..
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What else went wrong?

• Notes are not independent
– Only one note plays at a time

– If one note plays, other notes are not playing

• Will deal with these later in the course..
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